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Abstract: The problem of realization of a linear input-output
map as a positive linear system on a time scale is studied. To state
the criteria of existence of realization, modified Markov parameters
corresponding to the input-output map are introduced. It is nec-
essary for the existence of a positive realization that the modified
Markov parameters be nonnegative. A necessary and sufficient con-
dition for realizability is expressed in the language of positive cones
in an infinite dimensional space. The sequence of modified Markov
parameters generates one of the cones that appear in the criterion
of realizability.
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1. Introduction

In many applications variables take only positive or nonnegative values. This
concerns, in particular, chemical systems, biological systems and compartmental
systems. There exist parallel theories of linear discrete-time and continuous-time
positive control systems (see Farina and Rinaldi, 2000; Kaczorek, 2002). The
results for the two cases are often similar but sometimes essentially different.

Calculus on time scales allows for unification of both theories. The calculus is
based on the concept of delta derivative which looks like an ordinary derivative if
the time scale is the set of reals and looks like the forward difference for functions
defined on the time scale of integers. Since a time scale may be an arbitrary
closed subset of the reals, dynamical systems on time scales can describe more
complicated phenomena where time is not homogeneous.

Positive linear systems on time scales were studied in Bartosiewicz (2012
and 2013), where controllability and observability were examined. Modified
Gram matrices were used to state criteria of positive reachability and positive
observability for linear systems on arbitrary time scales. It was also shown that
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for specific time scales, R and Z, the general statement splits into essentially
different conditions (see Bru, Romero and Sanchez, 2000; Commault, 2004;
Commault and Alamir, 2007; Coxson and Shapiro, 1987; Damm and Ethington,
2009; Fanti, Maione and Turchiano, 1990; Kaczorek, 2002, 2007; Ohta, Maeda
and Kodama, 1984; Valcher, 1996, 2009, for results on specific time scales).

Realizations of linear systems on time scales were studied in Bartosiewicz
and Pawłuszewicz (2006), where necessary and sufficient conditions for an input-
output map to have a finite-dimensional realization were developed. However,
the systems did not have to be positive. Positive realizations were studied
in both cases of continuous-time and discrete-time systems, with different ap-
proaches and techniques in Anderson, Deistler, Farina and Benvenuti (1996),
Farina (1995, 1996), Farina and Rinaldi (2000), Kaczorek (2002), Maeda and
Kodama (1981), Ohta, Maeda and Kodama (1984), van den Hof (1987).

In this paper we follow the ideas of J.M. van den Hof (1987) and use the
language of cones in an infinite dimensional space to state the main result - the
necessary and sufficient conditions for the existence of positive realizations. The
result holds for an arbitrary infinite time scale. We use the modified Markov
parameters corresponding to the input-output map. Contrary to the standard
Markov parameters, they depend on the particular time scale.

2. Calculus on time scales

We provide here basic information on calculus on time scales. For more infor-
mation the reader can consult, e.g., Bohner and Peterson (2001).

A time scale T is an arbitrary nonempty closed subset of the set R of real
numbers. It is a topological space with the topology induced from R.

Example 1. T = R, T = hZ for h > 0 and T = qN := {qk, k ∈ N} for q > 1.

Definition 1. For t ∈ T we define:
• the forward jump operator σ : T → T by σ(t) := inf{s ∈ T : s > t} if
t 6= supT and σ(supT) = supT when supT is finite;

• the backward jump operator ρ : T → T by ρ(t) := sup{s ∈ T : s < t} if
t 6= inf T and ρ(inf T) = inf T when inf T is finite;

• the forward graininess function µ : T → [0,∞) by µ(t) := σ(t) − t;
• the backward graininess function ν : T → [0,∞) by ν(t) := t− ρ(t).

The time scale T is homogeneous, if µ and ν are constant.

If T has a finite supremum M ∈ T and ρ(M) < M , then T
κ = T \ {M}.

Otherwise T
κ = T.

Definition 2. Let f : T → R and t ∈ T
κ. The delta derivative of f at t,

denoted by f∆(t) or ∆f
∆t

(t), is the real number with the property that for any
ε > 0 there is a neighborhood U = (t− δ, t+ δ) ∩ T such that

|(f(σ(t)) − f(s))− f∆(t)(σ(t) − s)| ≤ ε|σ(t)− s|

for all s ∈ U .
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If f∆(t) exists, then we say that f is delta differentiable at t.

Example 2. If T = R, then f∆(t) = f ′(t).

If T = hZ, then f∆(t) = f(t+h)−f(t)
h

.

If T = qN, then f∆(t) = f(qt)−f(t)
(q−1)t .

Higher order delta derivatives are defined inductively.

Definition 3. A function F : T → R is called an antiderivative of f : T → R

provided that F∆(t) = f(t) holds for all t ∈ T
κ.

A continuous function f has an antiderivative.

Definition 4. Let a, b ∈ T and assume that f has an antiderivative on [a, b]∩T.
Then the delta integral of f on the interval [a, b)T : [a, b) ∩ T is defined by

∫ b

a

f(τ)∆τ :=

∫

[a,b)T

f(τ)∆τ := F (b)− F (a).

Example 3. If T = R, then
b
∫

a

f(τ)∆τ =
b
∫

a

f(τ)dτ , where the integral on the

right is the usual Riemann integral.

If T = hZ, h > 0, then
b
∫

a

f(τ)∆τ =

b

h
−1
∑

t= a

h

f(th)h for a < b.

Definition 5. A function f : [a, b)T → R is piecewise continuous if there are
t0, t1, . . . , tk ∈ T such that a = t0 < t1 < . . . < tk = b, such that f is continuous
on [ti−1, ti)T for i = 1, . . . , k, and has a finite left-hand limit at each ti for
i = 1, . . . , k. Then we define

b
∫

a

f(τ)∆τ :=

k
∑

i=1

ti
∫

ti−1

f(τ)∆τ.

3. Linear systems on time scales

Let us consider the system of delta differential equations on the time scale T:

x∆(t) = Ax(t), (1)

where x(t) ∈ R
n and A is a constant n× n matrix.

Proposition 1 (Bohner and Peterson, 2001). Equation (1) with initial condi-
tion x(t0) = x0 has a unique forward solution defined for all t ∈ [t0,+∞)T :=
[t0,+∞) ∩ T.
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Definition 6. The matrix exponential function (at t0) for A is defined as the
unique forward solution of the matrix differential equation X∆ = AX, with the
initial condition X(t0) = I. Its value at t is denoted by eA(t, t0).

As we need eA(t, t0) only for t ≥ t0, we do not assume regressivity of A,
which would allow to have eA(t, t0) well defined also for t < t0. In particular,
eA(t, t0) does not have to be invertible.

Example 4. a) If T = R, then eA(t, t0) = eA(t−t0).
b) If T = Z, then eA(t, t0) = (I +A)(t−t0).

c) If T = qN, q > 1, then eA(q
kt0, t0) =

∏k−1
i=0 (I + (q − 1)qit0A) for k ≥ 1 and

t0 ∈ T.

The following semigroup property will be needed later:

Proposition 2. For s, t, r ∈ T and s < t < r we have

eA(r, t)eA(t, s) = eA(r, s).

Let us consider now a nonhomogeneous system

x∆(t) = Ax(t) + f(t) (2)

where f is piecewise continuous.

Theorem 1 (Bartosiewicz and Pawłuszewicz, 2006). Let t0 ∈ T. System (2)
for the initial condition x(t0) = x0 has a unique forward solution of the form

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ. (3)

4. Positive systems

We are going to use the following notation:
R+ - the set of nonnegative real numbers,
Z+ - the set of nonnegative integers,
R

k
+ - the set of all column vectors in R

k with nonnegative components,

R
k×p
+ - the set of k × p real matrices with nonnegative elements.

Definition 7. If A ∈ R
k×p
+ we write A ≥ 0 and say that A is nonnegative.

A nonnegative matrix A will be called positive if at least one of its elements is
greater than 0. Then we shall write A > 0.

By R
Z+ we denote the set of infinite columns z = (z0, z1, . . .)

T . Such z is

nonnegative if all zi ≥ 0. Then, R
Z+

+ consists of nonnegative columns.
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Definition 8. A subset C of a linear space X over R is called a (positive
convex) cone if for any α ∈ R+ and any x ∈ C, αx ∈ C, and for any x, y ∈ C,
x+ y ∈ C. A cone C is polyhedral, if there are x1, . . . , xk ∈ C such that

C = {x =

k
∑

i=1

αixi, αi ≥ 0}.

We shall consider cones in R
n and R

Z+ .

Example 5. R
Z+

+ is a cone, but it is not polyhedral.

Let us consider a linear control system, denoted by Σ, and defined on the
time scale T:

x∆(t) = Ax(t) +Bu(t), y(t) = Cx(t) (4)

where t ∈ T, x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p.

We assume that an input (control) u is piecewise continuous.
We say that system Σ is positive if for any t0 ∈ T, any initial condition

x0 ∈ R
n
+, any control u : [t0, t1) → R

m
+ and any t ∈ [t0, t1], the solution x of (4)

satisfies x(t) ∈ R
n
+ and also y(t) ∈ R

p
+.

From the variation-of-constants formula (3) we can easily get the following
characterization.

Proposition 3. The system Σ is positive if and only if eA(t, t0) ∈ R
n×n
+ for

every t, t0 ∈ T such that t ≥ t0, B ∈ R
n×m
+ and C ∈ R

p×n
+ .

Let µ̄ = sup{µ(t) : t ∈ T}. The following theorem gives a characterization of
nonnegativity of the exponential matrix on the time scale. It is a modification
of a characterization obtained in Bartosiewicz (2013).

Theorem 2. The exponential matrix eA(t, t0) is nonnegative for every t, t0 ∈ T

such that t ≥ t0 if and only if there is a ∈ R+ such that a ≤ 1/µ̄ and A+ aI ∈
R

n×n
+ . If µ̄ > 0, then one can set a = 1/µ̄, where 1/+∞ = 0.

Proof. Sufficiency. Assume that A+ aI ≥ 0. If µ(t0) > 0, then A+ I/µ(t0) ≥ 0.
This means that eA(σ(t0), t0) = µ(t0)A + I ≥ 0. If µ(t0) = 0, then for t > t0
and close to t0, I +A(t − t0) > 0. The last term approximates eA(t, t0). Since
the exponential matrix is continuous (with respect to t), then also eA(t, t0) > 0
for t > t0 and close to t0. To achieve nonnegativity of eA(t, t0) for all t ∈
T, t > t0, we have to use the semigroup property of the exponential matrix:
eA(t, s)eA(s, τ) = eA(t, τ) for τ < s < t and τ, s, t ∈ T.
Necessity. Assume that eA(t, t0) is nonnegative for t, t0 ∈ T such that t ≥ t0.
Suppose first that µ̄ > 0 and choose t0 ∈ T with µ(t0) > 0. Then eA(σ(t0), t0) =
I+µ(t0)A ≥ 0. This means that also A+ I/µ(t0) ≥ 0. As it holds for all t0 ∈ T

with µ(t0) > 0, A+ I/µ̄ is nonnegative. If µ̄ = 0, then T is a standard interval.
The exponential matrix is then standard eA(t−t0). For t close to t0, it may be
approximated by I+A(t− t0). Nonnegativity of the exponential matrix implies
that I+A(t−t0) > 0 for t > t0 and close to t0. Thus, for some a > 0, A+aI > 0.
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Corollary 1. The system Σ is positive if and only if there is a ∈ R+ such
that a ≤ 1/µ̄ and A+ aI ∈ R

n×n
+ , B ∈ R

n×m
+ and C ∈ R

p×n
+ .

Proof. This is a consequence of Proposition 3 and Theorem 2.
If T = R the exponential matrix eA(t, t0) is nonnegative for t > t0 if and

only if its off-diagonal elements are nonnegative (Metzler matrix).
If T = Z, then µ ≡ 1 and nonnegativity of the exponential matrix is equiva-

lent to A+ I ≥ 0. In that case the delta differential equation

x∆(k) = Ax(k)

may be rewritten in the shift form as

x(k + 1) = (A+ I)x(k).

5. Realization problem

Let us fix m, p, initial time t0 and let x(t0) = 0. Let ΦΣ(t, τ) := CeA(t, τ)B.
Then ΦΣ(t, τ) ∈ R

p×m.
The input-output map SΣ is given by

y(t) = SΣ(u)(t) =

∫ t

t0

ΦΣ(t, σ(τ))u(τ)∆τ.

Proposition 4. If the system Σ is positive, then ΦΣ(t, τ) = CeA(t, τ)B is a
nonnegative matrix for all t ≥ τ .

Now let the input-output map S be given by

y(t) = S(u)(t) =

∫ t

t0

Φ(t, σ(τ))u(τ)∆τ, (5)

where Φ(t, τ) ∈ R
p×m is a nonnegative matrix for all t ≥ τ . We assume that for

every t ≥ t0 the map τ 7→ Φ(t, σ(τ)) is continuous.

The problem of positive realization:

Find conditions on S under which there exists a positive linear system Σ, de-
fined by matrices A, B and C, such that SΣ and S coincide.

If T = R, then (5) becomes

y(t) = S(u)(t) =

∫ t

t0

Φ(t, τ)u(τ)dτ,

and we are looking for a positive system Σ : ẋ = Ax + Bu, y = Cx, such that
for every t ≥ t0

S(u)(t) = SΣ(u)(t) =

∫ t

t0

CeA(t−τ)Bu(τ)dτ.
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Since the right-hand side is a convolution operator, also S must have such
a structure. This means that Φ(t, τ) = Ψ(t − τ) for some nonnegative matrix-
valued function Ψ. This gives a standard positive realization problem for continu-
ous-time systems (see van den Hof, 1987). On the other hand, if T = Z, then
(5) takes the form

y(t) = S(u)(t) =

t−1
∑

τ=t0

Φ(t, τ + 1)u(τ),

where t and t0 are integers, and t > t0. Now, Σ has the form

x(t+ 1)− x(t) = Ax(t) +Bu(t), y(t) = Cx(t), (6)

and we compare S(u)(t) with

SΣ(u)(t) =

t−1
∑

τ=t0

C(I +A)t−τ−1u(τ).

Again, the right-hand side is a discrete convolution, which implies that Φ(t, τ) =
Ψ(t − τ) for some nonnegative matrix-valued function Ψ defined on the set of
nonnegative integers. This gives a standard positive realization problem for
discrete-time systems (see van den Hof, 1987), with the only difference that the
dynamics of the system is usually given in the shift form. Our system (6) is
then rewritten as

x(t+ 1) = (I +A)x(t) +Bu(t), y(t) = Cx(t),

which results in powers of I +A appearing in the input-output map SΣ.
As the operator S is uniquely defined by the function Φ, the problem may

be restated as follows:
Find conditions on Φ such that Φ(t, τ) = CeA(t, τ)B = ΦΣ(t, τ) for some ma-
trices A,B,C defining a positive system Σ.

For every τ the function t 7→ ΦΣ(t, τ) can be expanded in a power series
originated at τ and convergent for all t ≥ τ (see Bohner and Guseinov, 2007).
Thus, it is necessary for the existence of a realization that Φ have the same
property. This leads to the following:

Assumption 1 For every τ the function t 7→ Φ(t, τ) =: Φτ (t) can be expanded
in a power series originated at τ and convergent for all t ≥ τ .

Assumption 1 means that the map Φτ is uniquely defined by all its delta
derivatives at τ (see Bohner and Guseinov, 2007). It also implies that the time
scale contains infinitely many points to the right of t0 (otherwise we could only
compute a finite number of delta derivatives).

The Markov parameters of the operator S are the matrices

M τ
k :=

∆k

∆tk |t=τ
Φτ (t), τ ≥ t0, k ∈ Z+.
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Thus, Markov parameters uniquely define the operator S. This means that
the existence of a realization implies equality of corresponding Markov param-
eters for the operator S and its realization.

Proposition 5. If Φ(t, τ) = CeA(t, τ)B, then M τ
k = CAkB.

Proof. Observe that for k = 1

∆k

∆tk
CeA(t, τ)B = CAeA(t, τ)B

and eA(τ, τ) = I. Thus, M τ
1 = CAB. Similarly for k > 1.

Observe that the Markov parameters for SΣ do not depend on time τ . Since
the Markov parameters of the operator S and its realization are equal, a neces-
sary condition for the existence of a realization is that the Markov parameters
of the operator S do not depend on time τ . This justifies making the following

Assumption 2 The Markov parameters for S do not depend on time τ . We
set Mk := M τ

k .
Under Assumptions 1 and 2 we have the following necessary condition for

the existence of a positive realization.

Proposition 6. If S has a positive realization, then there are n ∈ N and
a0, a1, . . . , an−1 ∈ R such for all k ≥ 0

Mk+n + an−1Mk+n−1 + . . .+ a1Mk+1 + a0Mk = 0.

Proof. Follows from Theorem 6 of Bartosiewicz and Pawłuszewicz (2006), where
it was shown that the condition stated in the proposition is necessary and suf-
ficient for the existence of some, not necessarily positive, realization.

Remark 1. For T = Z, eA(t, τ) = (I + A)t−τ . Thus, we are looking for
matrices A, B and C, such that I +A, B and C are nonnegative and Φ(t, τ) =
C(I + A)t−τB. Observe that A does not have to be nonnegative. Equivalently,
we are looking for nonnegative Ã, B and C, such that Φ(t, τ) = CÃt−τB.
Once we find them, we can easily obtain A from Ã by setting A = Ã − I. As
Mk = CAkB is not necessarily nonnegative, we need to modify Mk in such a
way that the modified Mk is nonnegative and equal to CÃkB. Then we can
apply a method similar to the one used in van den Hof (1987). For T = R,
eA(t, τ) = eA(t−τ) and the matrix A does not have to be nonnegative. But it
must be a Metzler matrix, so for some positive a, A+ aI must be nonnegative.
Thus, we again modify Markov parametres in such a way that a modified Mk is
nonnegative and equal to C(A+ aI)kB.

Definition 9. Let Mk, k ∈ Z+, be the Markov parameters of S and let a ≥ 0.
The modified Markov parameters of S are defined by

P a
k =

k
∑

i=0

(

k

i

)

ak−iMi, k ∈ Z+.
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Observe that for a = 0, P 0
k = Mk. Moreover, one can uniquely recover the

sequence (Mk) from the sequence (P a
k ).

Proposition 7. For any a ≥ 0

Mk =

k
∑

i=0

(

k

i

)

(−a)k−iP a
i .

Proof. This is an easy exercise in combinatorics.

Proposition 8. Mk = CAkB iff P a
k = C(A+ aI)kB.

Proof. Necessity. By expanding (A+ aI)k we get

C(A+ aI)kB =

k
∑

i=0

(

k

i

)

Cak−iAiB = P a
k .

Sufficiency. By expanding Ak = (A+ aI − aI)k we get

CAkB =

k
∑

i=0

(

k

i

)

C(−a)k−i(A+ aI)iB =

k
∑

i=0

(

k

i

)

(−a)k−iP a
k = Mk

by Proposition 7.
Thus, the modified Markov parameters of SΣ correspond to modification of

the matrix A.

Proposition 9. Assume that S = SΣ for a positive system Σ on a time scale
T. Then there is a ∈ R+ such that a ≤ 1/µ̄ and P a

k ≥ 0 for k ∈ Z+. If µT > 0
then a can be equal to 1/µT. If µT = 0, then a depends on Σ.

Proof. Since ΦΣ(t, τ) = CeA(t, τ)B, then by Propositions 5 and 8 M τ
k = CAkB

and P a
k = C(A + aI)kB. By Theorem 2, for some a ∈ R+ such that a ≤ 1/µ̄,

P a
k ≥ 0 for k ∈ Z+.

Corollary 2. If S has a positive realization, then there is a ∈ R+ such that
a ≤ 1/µ̄ and the matrices P a

k are nonnegative for all k ∈ Z+.

Proof. The proof is a consequence of Proposition 9.
This is the reason to make

Assumption 3

Let S be an input-output map. Assume that there is a ∈ R+ such that a ≤ 1/µ̄
and the matrices P a

k ≥ 0 for k ∈ Z+.

Let z = (z0, z1, . . .)
T ∈ R

Z+

+ . Let s(z) = (z1, z2, . . .)
T and ς = sp = s ◦ . . .◦ s.

A cone K ⊂ R
Z+

+ is ς-invariant if ς(K) ⊂ K.
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Let

H =







P a
0

P a
1
...







and let K be the cone generated by H , i.e. K = HR
m
+ .

Assume that Assumptions 1, 2 and 3 hold (they are, of course, necessary for
the existence of positive realizations). The following theorem is an extension of
Theorem 4.4 of van den Hof (1987).

Theorem 3. An input-output map S has a positive realization iff there exists

a ς-invariant polyhedral cone L ⊂ R
Z+

+ such that K ⊆ L.

Proof. Necessity. Assume that S has a positive realization

x∆ = Ax +Bu, y = Cx.

Let a be the number guaranteed by Assumption 3 and let L be the cone gener-
ated by the columns of the matrix

C :=







C
C(A+ aI)

...






.

Then L = CRn
+ is a polyhedral cone contained in R

Z+

+ . Observe now that ς(L)
is a cone generated by the columns of the matrix C(A+ aI), so

ς(L) = C(A+ aI)Rn
+ = C[(A+ aI)Rn

+] ⊆ CRn
+ = L

since (A+ aI)Rn
+ ⊆ R

n
+. Thus, L is ς-invariant. Moreover

K = HR
m
+ = CBR

m
+ ⊆ CRn

+ = L

since B is a positive matrix.

Sufficiency. Let L ⊂ R
Z+

+ be a ς-invariant polyhedral cone such that K ⊂ L.
We shall first construct an abstract model of the realization. It will be a system
whose state space is equal to the cone L. We shall construct maps α : L → L,
β : Rm

+ → L and γ : L → R
n
+, such that the map γαkβ : Rm → R

p is given
by the matrix P a

k when the standard bases are chosen in R
m and R

p. Let
α := ς|L. The map β is defined on the generators ei, i = 1, . . . ,m, of the
cone R

m
+ by β(ei) = Hi - the ith column of H . The map γ cuts off the first

p components from the elements of L (which are infinite sequences). Observe
now that αk(β(ei)) is the ith column of the matrix







P a
k

P a
k+1
...






.
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Thus, γ(αk(β(ei))) is the ith column of P a
k . This means that the matrix of the

map γαkβ is in fact P a
k . To find matrix representations of α, β and γ we use

the generators of the cone L: z1, . . . , zn. Let Hj =
∑n

i=1 bijzi. Then, B := (bij)
is a positive n ×m matrix. It is clear that the representation of γ is C = P a

0 .
Finally, let α(zj) =

∑n

i=1 dijzi. Then, D = (dij) is a positive n × n matrix
representation of α. This gives CDkB = P a

k for k ∈ Z+. Now it is enough to
define A := D − aI to achieve

P a
k = C(A + aI)kB.

This means that the system x∆ = Ax+Bu, y = Cx, is a positive realization of
the input-output map S.

Example 6. Let m = p = 1 and the Markov parameters of the input-output
operator S be given by Mk = (−1)k. They are negative for odd k. The modified
Markov parameters are

P a
k =

k
∑

i=0

(

k

i

)

ak−i(−1)i = (a− 1)k, k = 0, 1, 2, . . . .

If a ≥ 1, then P a
k ≥ 0 for all k ≥ 0. Since a must be less or equal 1/µ̄, then

µ̄ ≤ 1. Now the cone K is generated by the column

H =











1
a− 1

(a− 1)2

...











.

Since ς(H) = s(H) = (a− 1)H, then K is ς-invariant. Thus, taking L := K we
see that the criteria of positive realizability, stated in Theorem 3, are satisfied.
One can easily compute the data of the realization: n = 1, C = 1, B = 1 and
A + aI = a − 1, so A = −1. The realization is good for all time scales, but it
is positive only for the time scales with µ̄ ≤ 1. For T = Z the modified Markov
parameters for a = 1 take the form P 1

k = 0 for all k > 0 and P 1
0 = 1. This

allows us to recover the input-output map:

S(u)(k) = u(k − 1)

with Φ(k, l) = 0 for k > l and Φ(k, k) = 1. We may set the initial time t0 = 0.
Taking subsequent delta derivatives of the map k 7→ Φ(k, 0) we obtain the Markov
parameters Mk = (−1)k. Thus, the modified Markov parameters form now the
impulse response (discrete) function of the input-output map S. In van den Hof
(1987) they are used to construct a positive realization, which looks like the one
obtained above for a = 1. On the other hand, for T = R the parameter a may
be arbitrary, but to achieve positivity of the modified Markov parameters it must
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be greater or equal 1. Thus, let us take a = 1 as before. Then P 1
k are as before,

but the map S looks now as follows:

S(u)(t) =

∫ t

0

e−(t−τ)u(τ)dτ

with Φ(t, τ) = e−(t−τ). The (standard) derivatives of the map t 7→ Φ(t, 0) at t =
0 give the original Markov parameters as before. Observe that now the modified
parameters are not directly related to the input-output map as this was in the
case of T = Z. But they are used to produce matrices A, B and C exactly in
the same way as before. The procedure for obtaining a positive continuous-time
realization described in van den Hof (1987) is slightly different, but it results in
the same modified Markov parameters. Namely, they are computed as derivatives
at t = 0 of the function t 7→ eatΨ(t), where Ψ is the impulse response function.
In our case Ψ(t) = e−t, so eatΨ(t) = 1. Finally, observe that for T = qN a
positive realization does not exist as µ̄ = +∞.

6. Conclusion

The paper contains a general framework for studying positive linear realizations
on the basis of an input-output map and the corresponding Markov parameters.
The language of time scales allows for studying continuous- and discrete-time
realizations simultaneously. Moreover, discrete time with variable graininess
is also admitted. The main result states a necessary and sufficient condition
for the existence of positive linear realizations. Future research in this area
should concern the existence of minimal positive realizations and the problem
of uniqueness of such realizations. Another interesting problem is the existence
of nonlinear positive realizations and possible constructions of such realizations.
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