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Abstract: This paper refers to application of the Schauder's 
fixed point theorem together with linear controllability results in get­
ting the sufficient controllability conditions for various kinds of con­
trollability and for different types of nonlinea.r control systems. The 
following nonlinea.r control systems are considered: finite-dimeusiona.l 
systems, systems with delays in control or in the state variables, 
and infinite-dimensional systems. The paper presents the review of 
results existing in the literature which show how Scba.uder 's fixed­
point theorem can be practically used to solve several controllability 
problems for different types of nonlinea.r control systems. 
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1. Introduction 

Controllability is one of the fundamental concepts in modern mathematical con­
trol theory. Many dynamical systems are such that control does not affect the 
complete state of the dynamical system but only a. part of it. Therefore, it is 
important to determine whether or not the complete system control is possible. 
Roughly speaking, controllability means that it is possible to steer a. dynami­
cal system from an arbitrary initial to an arbitrary final state using the set of 
admissible controls. The literature presents many different definitions of con­
trollability which depend on the type of a dynamical system. The extensive 
list of publications concerning various controllability problems, containing more 
than 500 items can be found in Klamka (1991). Moreover, a survey of recent 
results and the current state of the controllability theory for different types of 
dynamical systems can be found in Kla.mka ( 1 993) . 
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Controllability theory for linear control systems is well devPiopecl even in 
infinite-dimensional spaces, and the details can be found in several previous 
papers and monographs (see Klamka, 1991 , or Klamka, 1993, for more details). 
However, advances in nonlinear control systems have been rno~tly limited to 
specific classes of nonlinearities. Tt seen1s that the development of uonlinear 
controllability theory is possible by the well known f1xed-point techniques of 
nonlinear analysis . 

There are generally two different methods of analysis, see Ccmni cha.el and 
Quinn (1988), Ma.gnusson, Pritcha.rd and Quinn (1985 ). Tn the first. method , 
a. control driving the linea.rized system from a given initi al to t.he fin al state is 
constructed. This control is a function of the state at which the lillearization 
was performed and of the boundar y conditions. Substitution of this control 
function into the nonlinea.r state equation yields a nonlinear impli cit equation 
for the state. To solve this equation, one of the known fixed-point theorems 
(Scha.uder, Leray-Schauder, Banacb , Nussbaum, or Darbou) can be applied and 
thus sufficient controllability conditions can be found. The secon d method does 
not construct a. particular control, but considers the set of all controls, which 
steer the linea.rized system from a given initial state to the required endpoint. 
In this case multiva.lued maps are obtained and differenL versious (strong or 
weak) of Bohnenblust and Karlin fixed-poiut t heorem could be used to obtain a 
fixed point, see Carmichael and Quinn (1988), Tvlagnusson, Pri tcha.rd and Quinn 
(1985) . 

In this paper Schauder's fixed poin t theorem together with linear controlla­
bility results are considered as the basis for sufficient controll ability conditions 
for various kinds of controllability and different types of non]iuea r control sys­
tems. A review of existing results is presented, showing how Sclwucler 's fixed­
point theorem can be practically used to solve several controll ab ili ty problems 
for different types of nonlinea.r control systems. 

Let us recall that the fundam ental version of Schauder 's fi xed-point. theorem 
can be formulated as follows: 

"Every continuous operator whi ch maps a closed convex subset. of a Banach 
space into its compact subset has at least one fixed point". 

Observe that Schaucler's fixed-point theorem does not requin~ any contrac­
tion assumption, as in the Ba.nach fixed-point-theorem, but on the oLher hand 
it does not give us the uniqueness of the fi xed point. Since in COJJ\.ro ll ab ility 
analysis the uniqueness is not important , Schaucler's fixed-point. th eorem is an 
appropriate tool. 

The paper is organized as follows. Tn Section 2 differen t nw.thern n.t ica.l mod­
els of nonlinea.r finite-dimensional control systems are presented and short com­
ments on local and global controllability problems are given. Relative local and 
global controllability for nonlinear conLrol systerns with different kinds of delays 
in control or in the state variables is shortly described in Sect ion :3. Section 4 
is devoted to a study of exact local controll ab ili ty and exact global contmll a.bil­
ity for certain semilinear abstract infinite-dimensional control systems. Finally, 



Schauder 's fi xed -point theorem in nonlinear controllabi li ty problems 155 

Section 5 contains concluding remarks and eomments. 

2. Controllability of finite-dimensional nonlinear systems 

In this section we shall present the matheinatica.l models (differential state equa­
tions) of several types of nonlinear finite-dimensional control systems. Tt should 
be pointed out that for all these systenu; it is possible to obtaiu suHkient condi­
tions for different kinds of controllability using Schauder 's fixed-point theorem 
and the results taken from linear controll ability theory. 

The first controllability results for non linea.r problems were obtained for 
finite-dimensional control systems of the following form 

x'(t) = A(t,x(t))x(t) + B(t, :r(t))'lL(t) t E [to, tl] (l) 

where x E R.n, u E R.P and the elements of matrices A and B are continuous 
functions of x (for fixed t) and pieeewise continuous functions in t (for fixed x). 
Moreover, they are bounded on [t0 , tJ]. 

The system (1) is said to be eontrollable on [to , h ] if for any initial state 
x(t0) E R.n and any given vector x1 E R.n there exists a control 1t(t ), t E [t0 , iJ] 
which steers the system from x(to) to x 1 at time t 1 . 

In order to formulate the controllability problem in the form suitable for 
application of Schauder's fixed point. theorem, it is assumed that. the linear 
control system 

x'(t) = A(t, z(t))x(t) + B(t, z(t))'lL(t) (2) 

is controllable, where z is a specified function belonging to the spaee C(to , t 1 ; R.n). 
The solution of the linear system (2) iu terms of the sta.te transition matrix 
F(t , t 0 ; z) is given by 

x(t) = F(t, t0 ; z )x(t0 ) + it F(t, s, z )B( s, z )1t( s )ds. 
to 

(3) 

Let us define 

H(to, s; z) = F(to, s; z)B(s, z) 

and 

G(to ,t;z) =it H(to,s;z)HT(to,s;z)ds . 
io 

Let us assume that the linear system (2) is controllable on [t0 . t 1 J for each 
function z E C(to , t 1 ; Rn) , i.e. for each z there exists t.he inverse mat'.rix G(to, t 1 ; 

z)- 1 . Then it is easy to show that the foll owing control fnnct.ion 

(4) 
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drives the system (2) from x(t0 ) to x 1 in finite t ime t 1 . Substituting control1t(t) 
given by ( 4) into the right-hand side of equation (3) yields a nonlinea.r operator 
P: C(to, t1; Rn)->C(to, t1; Rn) of the following form 

(Pz)(t) = F(t, to; z)x(to)+ 

it F(t, s, z)B(s, z)HT(to, s; z)G- 1 (to, t 1 ; z) (F(t1 , to; z)1:r , - x(to))ds. (5) 
to 

Using Schauder 's fixed-point theorem it can be shown that tbe nonlinea.r 
operator P has a. fixed point z* which is a solution to the nonlinea.r equation (5), 
where the control u* is given by (4) evaluated at z* . Moreover, Pz*(to) = x(to ) 
and Pz*(tl) = x1. Therefore, the controlH* steers the nonlinear system (1) 
from x(to) to x1 at t1, i.e. , the system (J) is controllable on [to, t1 ]. 

The above considerations show that sufficient conditions for nonlinear con­
trollability can be obtained using Schauder's fixed-point theorem together with 
the well known linear controllability results, see Klamka (J 991 ), Klamka (J 993) . 

Let us observe that a similar method can be used to derive sufficient non­
linear controllability conditions for rather broad class of nonlinear control sys­
tems. After 1970, a great number of nonlinear controllability results based on 
Scha.uder's fixed-point theorem were obtained in the literature. Now, we shall 
briefly present the main types of nonlinear control systems considered in differ­
ent papers. Schauder's fixed-point theorem together with linear controllability 
conditions are used to obtain sufficient condi tions for different types of control­
lability. 

The papers of Davison and Kunze (1970), Do (1990), :tvlirza and Womach 
(1997a) consider a perturbed linear control system of the form 

x'(t) = A(t)x(t) + B(t)u(t) + f(t, x (t), u(t)). (6) 

The nonlinearity f satisfies a Lipschitz-type condit ion in x and H. 
The papers Klamka. (1975a, b) extend the controllabili ty results to nonlinear 

control systems of the following type 

x'(t) = A(t,x(t))x(t) + B(t ,x(t ))H(t) + f(t ,x(t )), (7) 

where elements of matrices A and B satisfy the same condi tions as in (1 ), 
whereas the nonlinear perturbation term f is uniformly bounded and satisfies 
a Lipschitz-type condition in x. 

Wei (1976) provides controllability results for nonlinear system of the form 

x'(t) = A(t, x(t), u(t))x(t) + B (t)tt(t) + f(t, x(t ), u(t)), (8) 

where elements of matrix A satisfy the same conditions as in (1 ), whil e the 
nonlinear perturbation term f is uniformly bounded and satisfies a Lipschitz­
type condition in x and u. Moreover, matrix B is assumed to have a continuous 
first derivative. 
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Dannon and Ka.rtsatos (1987) and Yamamoto (1 977) consider nonlinear con­
trol system of the form 

x'(t) = A(t,x(t), u(t))x(t) + B(t, x(t), u(t))u(t) + f(t , x (t) , u(t)) , (9) 

where elements of matrices A and B are continuous functions of :r and u for fixed 
t and piecewise continuous functions of t for fixed x and u , and are bounded 
for t E [to, t1] and x E Rn . The nonlinear perturbation term f is bounded and 
satisfies a Lipschitz-type condition in both x and 1l . 

Controllability and the so called total controllability (controllability con­
nected with stabilizability) of the nonlinear control system 

x'(t) = f(t,x(t)) + B(t)u(t), (10) 

and its pertrbation 

x'(t) = f(t , x(t)) + B(t)u(t) + g(t ,x(t) ,u(t)) , (11) 

are considered in Balachandran (1988) and Eke (1990) . It is generally assumed 
that the nonlinear functions f and g are continuous with respect to all their 
arguments and additionally satisfy Lipschitz-type conditions: f in x, and g 
both in x and u. Moreover, nonlinear functions f and g satisfy certain additional 
growth conditions. 

In Deo (1997) controllability of first order time-varying semilinear Volterra 
integrodifferential control system is considered. The state equation of the control 
system has the following form 

x'(t) = A(t)x(t) + lt K(t , s)x (s)ds + B (t )u(t) 
to 

(12) 

where the kernel K ( t, s) is an n x n continuous matrix. 
Applications of the nonlinear controllability theory in mathematical popula­

tion dynamics can be found in Joshi and George (1989 , 1992), Kla.mka (1991b, 
1994). Schauder 's fixed-point theorem can be also used in stocha.stic control­
lability problems. Sample controllability, in a given finite time interval , for a 
quite general nonlinear stochastic control system is investigated in Daner and 
Balacha.ndra.n (1997) . Moreover , several sufficient conditions for local or global 
controllability in a given time interval and for various types of nonlinear control 
systems can be found in the recent ly published pap ers Balacha.ndran (1985), Bal­
acha.ndran and Bala.subramania.m (1994), Ba.la.chandra.n and Dauer (! 987, 1989, 
1990, 1993, 1996) , Balachandra.n and Somasundra.m (1983 , 1 985), Da.uer (1 972, 
1976). In all these papers Schauder 's fixed-point theorem or Leray-Schauder 's 
fixed-point theorem are used to formulate and prove various controllability re­
sults. 
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3. Controllability for nonlinear systems with delays 

Controllability theory for nonlinear control systems with delays is rnucb more 
complicated and difficult than for systems without delays. First of a 11, let us 
observe that there are many different types of delays in control or state vari­
ables: multiple lumped constant or time-va.ryi ug delays aucl distri bn Led delays. 
Moreover, for control systems with delays tbere exist two clif-J'erent defi.nitions 
of the state: instantaneous state and absolute state. \Vitbout going into details 
it should be pointed out that instantaueous state of a delayed control sys1em is 
finite-dimensional and it is represented by a11 n-dimensiona.l vector in R n state 
space. On the other hand the absolute stat.e of a delayed control systern is repre­
sented by a suitably defined piece of trajectory of control system and hence it is 
an element of the appropriate infinite-dimensional function state space. There­
fore, for delayed control systems it is necessary to introduce two fundamental 
concepts of controllability: relative controllability or Eucliclea.n r·.ontrollability 
connected with the finite-dimensional state space and absolute eoutrollability or 
function controllability related to infini te-dimensional state space (see Klamka, 
1991, or Klamka, 1993, for more details). Most of the results given in this section 
concern the relative controllability of non linear control systems with difi'erent 
types of delays in the control or state variables. 

The paper by Balachandran and Balas\lbrama.niarn ( 1994) presc-'nts suilicient 
conditions for the global relative controll ability of a semilinear co11trol system 
with lumped and distributed delays i11 the state variables, described by the 
following differential equation 

x'(t) = A0 (t)x(t) + A1 (t)x(t- 1 )+ 

j_~ K(t, s )x(t + s )ds + B(t)u(t) + f(t, :r(t) , :;;(t- 1 ), 'U(t )) . (13) 

where A0 (t), A1 (t), B(t ), K(t,s) , are t ime-varying matrices of appropri ate di­
mensions and f is a nonlinear perturbat ion. 

Onwuatu (1993) considers relative null controllability for 1hc semilinear in­
finite neutral control system with multiple time-varying point. delays aucl dis­
tributed delays in the state variables 

k=N 

L Ak(t)x (hk(t)) + B(t)'u(t) + 
k=O 

j
.o 
-eo A(s)x(t + s)cls + f(t,x1_,11,(t)), ( 14) 

where D is a linear differentiable matri x fu nction, f is a nonlinear eoutinuous 
matrix function, symbol Xt denotes a piece of trajectory, hk(t), /;: = 0, 1. 2 . .. . , N 
are lumped time-varying delays, Ak(t), /;; = 0, I , 2, ... , N, are n x n dimensional 

time-varying matrices. The term f~oo A(s):r(t: + S)ds represents infini te delay. 
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Similarly, relative null controllability problem for semilinear neutral control 
system of the form (1 4) but additionally with multiple time-varying point delays 
in the control 

k=N i=N 

L Ak(t)x(hk(t)) + L B ;(t)n(h-i(t)) + 
k=O i=O 

(J 5) 

is discussed in Dauer, Balacbandran ancl Anthoni (1 998). The symbols Bi , -i = 
0, 1, 2, ... , N in (15) denote time-varying matrices of appropriate dimensions. 

Global relative controllability of the non linear system with distributed delays 
in control 

x'(t) = f(t, x(t) , n(t)) +[oh (d 8 B(t , s))u.(t + s), (16) 

and its generalization 

x'(t) = A(t, x(t), u(t))x(t) + f(t, x(t),·u.(t)) + [~7(d, B(t. s))u(t + s), (17) 

is considered in Onwua.tu (1989). Here, symbol J~h(dsB(t ,s)) u.(t +s) denotes 
the Stieltjes integral, Kla.mka (1991a). The nonlinear term f and the n x n­
dimensional matrix A satisfy certain additional assurnptior1s. 

Global and local relative controllability of the nonlinear system with multiple 
point delays in the control 

i=N 

x'(t) = A(t, x(t))2:(t) + L Bi(t, x(t))u(hi(t)), (18) 
·i=O 

and of its perturbation 

i=N 
x'(t) = A(t, x(t))2:(t) + L Bi(t, J;(t))u(hi(t)) + f(t , :r(t)) , (19) 

i=O 

is discussed in details in a series of papers Klamka (1975a, b, c, 197G). 
Similar controllability problems but for nonlinear systems with additional 

distributed delay in control represented by the term f~h ( d8 B( t . s) )·u.( t + s) are 
investigated in Klamka ( 1978 and 1980) . 

Global relative controllability of a more general nonlinear system with mul­
tiple time-varying point delays in the perturbation term 

x' (t) j
·O 

g(t, x(t), 1L(t)) + -h dr1B(t, 17, :r(t), u(t))v,(t + rt) + 

f(t, x(t), u(ho(t)), u(h1, (t)), .. . , u(hi(t)) , ... , n(hN(t))) (20) 
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is studied in Klamka ( 1999b). 
It should be mentioned that the methods used in controllability considera­

tions for nonlinea.r control systems with different types of delays in control , or in 
the state variables, are quite similar to those presented in Section 2 for problems 
and certain difficulties in finding the form of the nonlinear operator P, especially 
for control systems with distributed delays represented by the Stieltjes integral. 

4. Controllability for infinite-dimensional nonlinear sys­
tems 

Most of the controllability results for nonlinear infinite-dimensional control sys­
tems concern the so called semilinear control systems which consist of a linear 
and a nonlinear part, Klamka (1995, 1996, 1998, 1999a) . This type of non­
linear control systems arises if a local linear approximation around a nominal 
trajectory of a nonlinear control system is considered ( Carmichael and Quinn, 
1988, Mirza and Womack, 1972a). Moreover, it should be stressed that for 
infinite-dimensional systems two different concepts of controllability are anal­
ysed. Namely, the exact (or strong) controllability and the approximate (or 
weak) controllability, Klamka (1991a, 1993). However, most of the results given 
in this section concern exact local or global controllability. 

Let us consider a semilinear time-invariant infinite-dimensional control sys­
tem of the form 

x'(t) = Ax(t) + Bu(t) + F(x(t)) (21) 

where x(t) E X, u(t) E U, X and U are Banach space, A : X ::J D(A)---+X 
is a linear generally unbounded operator which generates strongly continuous 
semigroup of linear bounded operators S(t) : X --+X, for t > 0, B : U --+X is a 
linear bounded operator and F : X---+ X is a nonlinear operator. For the initial 
condition x(O) = 0, a mild solution of abstract differential equation (21) satisfies 
the following nonlinear integral equation 

x(t) =lot S(t- s)Bu(s)ds +lot S(t- s)F(x(s))ds. (22) 

Controllability results for a semilinear control system (21) strongly depend 
on the controllability properties of the linear part of the system given by 

x'(t) = Ax(t) + Bu(t). (23) 

Now, let us introduce for the linear system (23) the controllability operator 
C: LP(O, t 1 ; U)---+X defined by 

t-1 
Cu = Jo S(t1 - s)Bu(s)ds. 



Schauder's fixed-point theorem in nonlinear controllability problems 161 

The system (21) is said to be exactly controllable to a linear subspace V c X 
on [0, t 1] if V is contained in RangeC. 

If the linear system (21) is exactly controllable to the subspace V, then 
we can assume without loss of generality that RangeC = V and construct an 
invertible operator C1 defined on LP(O, t1; U)j K erG, 

Let us now consider the control 

u(t) = c;- 1 (v- lot' S(t1 - s)F(x(s))ds) (t). (24) 

The same approach as in Section 2 can be applied. Control u(t) given by (24) 
steers the semilinear control system (21) from zero initial state to v E V in 
time t 1 . Substituting control u(t) given by (24) into the right-hand side of the 
equality (22) yields the nonlinear operator P of the form 

(Px)(t) lot S(t- s)BC11 (v- lot' S(t1 - T)F(x(T))dT) ds + 

lot S(t- s)F(x(s))ds. (25) 

It can be verified that if the operator P has a fixed point x*, then the control 
u*, given by (24) evaluated at x* , steers the semilinear control system (21) 
from zero initial state to v E V in time t 1 i.e., the semilinear control system 
(21) is exactly controllable to V in time t 1 , see Carmichael and Quinn (1988), 
Magnusson, Pritchard and Quinn (1 985). 

Therefore, the general idea is to look for a fixed point of th e nonlinear map 
P defined by (25) in some ball contained in an appropriately defined Ba.nach 
space. It should b e pointed ont that the application of SclJaucler 's fixed point 
theorem requires both certain compactness and growth conditions imposed on 
the nonlinear operator F. Under these assumptions, Scbauder's fixed-point 
theorem can be used to prove that the operator P has a fixed point , i.e., that the 
semilinear control system (21) is exactly controllRble to 11 in time t 1 , Carmichael 
and Quinn (1988) , Magnusson, Pritchard and Quinn (1985) . 

Various kinds of sufficient conditions for exact or approxim ate controllability 
for different types of nonlinear inAnite-climensional control systems can be found 
in many recently published papers. Balachanclran and Da.uer ( 1 ()98) consider 
local exact controllability of semilinear evolntion control syst(~ms with time­
varying nonlinear term of the form 

x' ( t) = Ax(t) + Bv,(t) + F (t , x ( t) ) t E [to, h], (26) 

where the nonlinea.r operator F sati sfies cer tain grmvtb condition both in t 
and x and the linear unbounded operator A generates an analyJ,i<.: sernigroup of 
bounded linear operators S ( t ) : X ___, X, for t > 0. 
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The second order semilinea.r Volterra. integrodifferentia.l control system is 
considered in Ba.la.cha.ndra.n, Da.uer and Ba.la.subramania.m (1 995), Ba.la.cha.n­
dra.m, Park and Anthoni (1999), Park and Han (1997) where sufficient condi­
tions for global exact controllability are formulated and proved. The control 
system is described by the following state equation 

x"(t) = Ax(t) + 1t g(t, s, x(s))ds + B1L(t) t E [0, t1], (27) 

where linear unbounded operator A generates a strongly continuous one param­
eter cosine family of bounded linear operators S ( t) : X----+ X, for t > 0, and g is a 
nonlinear unbounded mapping with certain additional assumptions concerning 
continuity. 

5. Concluding remarks 

The paper contains a. short review of controllability results for nonlinear systems 
presented in the literature. The results referred to show that Schauder's fixed­
point theorem can be effectively used in nonlinear control probl ems to obtain 
sufficient conditions for different kinds of controllability applied to different 
dynamical systems. 
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