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Abstract: This paper refers to application of the Schauder’s
fixed point theorem together with linear controllability results in get-
ting the sufficient controllability conditions for various kinds of con-
trollability and for different types of nonlinear control systems. The
following nonlinear control systems are considered: finite-dimensional
systems, systems with delays in control or in the state variables,
and infinite-dimensional systems. The paper presents the review of
results existing in the literature which show how Schauder’s fixed-
point theorem can be practically used to solve several controllability
problems for different types of nonlinear control systems.

Keywords: controllability, nonlinear control systems, continuous-
time systems, fixed-point theorems, Schauder’s fixed-point theorem.

1. Introduction

Controllability is one of the fundamental concepts in modern mathematical con-
trol theory. Many dynamical systems are such that control does not affect the
complete state of the dynamical system but only a part of it. Therefore, it is
important to determine whether or not the complete system control is possible.
Roughly speaking, controllability means that it is possible to steer a dynami-
cal system from an arbitrary initial to an arbitrary final state using the set of
admissible controls. The literature presents many different definitions of con-
trollability which depend on the type of a dynamical system. The extensive
list of publications concerning various controllability problems, containing more
than 500 items can be found in Klamka (1991). Moreover, a survey of recent
results and the current state of the controllability theory for different types of
dynamical systems can be found in Klamka (1993).
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Controllability theory for linear control systems is well developed even in
infinite-dimensional spaces, and the details can be found in several previous
papers and monographs (see Klamka, 1991, or Klamka, 1993, for more details).
However, advances in nonlinear control systems have been mostly limited to
specific classes of nonlinearities. Tt seems that the development of nonlinear
controllability theory is possible by the well known fixed-point techniques of
nonlinear analysis.

There are generally two different methods of analysis. sece Carmichael and
Quinn (1988), Magnusson, Pritchard and Quinn (1985). In the first method,
a control driving the linearized system from a given initial to the final state is
constructed. This control is a function of the state at which the linearization
was performed and of the boundary conditions. Substitution of this control
function into the nonlinear state equation yields a nonlinear implicit equation
for the state. To solve this equation, one of the known fixed-point theorems
(Schauder, Leray-Schauder, Banach, Nussbaum, or Darbou) can be applied and
thus sufficient controllability conditions can be found. The second method does
not construct a particular control, but considers the set of all controls, which
steer the linearized system from a given initial state to the required endpoint.
In this case multivalued maps are obtained and different versions (strong or
weak) of Bohnenblust and Karlin fixed-point theorem could be used to obtain a
fixed point, see Carmichael and Quinn (1988), Magnusson, Pritchard and Quinn
(1985).

In this paper Schauder’s fixed point theorem together with linear controlla-
bility results are considered as the basis for sufficient controllability conditions
for various kinds of controllability and dilferent types of nonlinear control sys-
tems. A review of existing results is presented, showing how Schauder’s fixed-
point theorem can be practically used to solve several controllability problems
for different types of nonlinear control systems.

Let us recall that the fundamental version of Schauder’s fixed-point. theorem
can be formulated as follows:

”Every continuous operator which maps a closed convex subset of a Banach
space into its compact subset has at least one fixed point™.

Observe that Schauder’s fixed-point. theorem does not require any contrac-
tion assumption, as in the Banach fixed-point-theorem, but on the other hand
it does not give us the uniqueness of the fixed point. Since in controllability
analysis the uniqueness is not important, Schauder’s fixed-point theorem is an
appropriate tool.

The paper is organized as follows. In Section 2 different mathematical mod-
els of nonlinear finite-dimensional control systems are presented and short com-
ments on local and global controllability problems are given. Relative local and
global controllability for nonlinear control systems with different kinds of delays
in control or in the state variables is shortly deseribed in Section 3. Section 4
is devoted to a study of exact local controllability and exact global controllabil-
ity for certain semilinear abstract infinite-dimensional control systems. Finally,
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Section 5 contains concluding remarks and comments.

2. Controllability of finite-dimensional nonlinear systems

In this section we shall present the mathematical models (differential state equa-
tions) of several types of nonlinear finite-dimensional control systems. 1t should
be pointed out that for all these systems it is possible to obtain sufficient condi-
tions for different kinds of controllability using Schauder’s fixed-point theorem
and the results taken from linear controllability theory.

The first controllability results for nonlinear problems were obtained for
finite-dimensional control systems of the following form

z'(t) = A(t, z(t))z(t) + B(t, z(t))u(t) t € [to,t1] (1)

where z € R™, u € R? and the elements of matrices 4 and B are continuous
functions of z (for fixed t) and piecewise continuous functions in ¢ (for fixed z).
Moreover, they are bounded on [tg, 1;].

The system (1) is said to be controllable on [to,t;] if for any initial state
z(to) € R™ and any given vector z; € R™ there exists a control u(t).t € [to, 1]
which steers the system from a:(tg) to a; at time ¢;.

In order to formulate the controllability problem in the form suitable for
application of Schauder’s fixed point theorem, it is assumed that the linear
control system

2(t) = Alt, 2(8)a(t) + Bt 2(t) u(?) 2)
is controllable, where z is a specified function belonging to the space C(ty. t1; R™).

The solution of the linear system (2) in terms of the state transition matrix
F(t,tg; z) is given by

t
z(t) = F(t,to; 2)z(to) +/ F(t, s, z)B(s, z)u(s)ds. (3)
to
Let us define
H(tg, s;2) = F(to,s;2)B(s, z)
and

t
G(tg,t;z):/ H(tDTS;Z)HT{f(),.h‘Z.’J)(LS.
io

Let us assume that the linear system (2) is controllable on [fy.#] for each
function z € C(tg, t1; R™), i.e. for each z there exists the inverse matrix G(to, t1;
z)~'. Then it is easy to show that the following control function

u(t) = HT (to, t; 2)G(to, t1; 2) " (F(t1,to; 2) " Lan — z(to)) (4)
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drives the system (2) from z(t) to z; in finite time t;. Substituting control w(t)
given by (4) into the right-hand side of equation (3) yields a nonlinear operator
P : C(tg,t1; R™)—C(to,t1; R™) of the following form

(P2)(t) = F(t, to; z)z(to)+

¢
/ F(t,s,z)B(s,z)HT (to,5;2)G  tg, t1; 2) (F(ty, to; 2) 2y — z(to))ds. (5)
to

Using Schauder’s fixed-point theorem it can be shown that the nonlinear
operator P has a fixed point z* which is a solution to the nonlinear equation (5),
where the control w* is given by (4) evaluated at z*. Moreover, Pz*(tg) = z(to)
and Pz*(t;) = x;. Therefore, the control u* steers the nonlinear system (1)
from z(tp) to z; at ¢y, i.e., the system (1) is controllable on [tg,#].

The above considerations show that sufficient conditions for nonlinear con-
trollability can be obtained using Schauder’s fixed-point theorem together with
the well known linear controllability results, see Klamka (1991), Klamka (1993).

Let us observe that a similar method can be used to derive sufficient non-
linear controllability conditions for rather broad class of nonlinear control sys-
tems. After 1970, a great number of nonlinear controllability results based on
Schauder’s fixed-point theorem were obtained in the literature. Now, we shall
briefly present the main types of nonlinear control systems considered in differ-
ent papers. Schauder’s fixed-point theorem together with linear controllability
conditions are used to obtain sufficient conditions for different types of control-
lability.

The papers of Davison and Kunze (1970), Do (1990), Mirza and Womach
(1997a) consider a perturbed linear control system of the form

'(t) = A(Q)a(t) + B(t)u(t) + f(t, 2(2), u(t)). (6)

The nonlinearity f satisfies a Lipschitz-type condition in 2 and u.
The papers Klamka (1975a, b) extend the controllability results to nonlinear
control systems of the following type

z'(t) = At a(t))=(t) + B(t, x(t))u(t) + f(t,2(t), (M)

where elements of matrices A and B satisfy the same conditions as in (1),
whereas the nonlinear perturbation term f is uniformly bounded and satisfies
a Lipschitz-type condition in .

Wei (1976) provides controllability results for nonlinear system of the form

z'(t) = A(t, z(t), u(t))z(t) + B(t)u(t) + f(t,z(t),u(t)), (8)

where elements of matrix A satisfy the same conditions as in (1), while the
nonlinear perturbation term f is uniformly bounded and satisfies a Lipschitz-
type condition in x and w. Moreover, matrix B is assumed to have a continuous
first derivative.
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Dannon and Kartsatos (1987) and Yamamoto (1977) consider nonlinear con-
trol system of the form

mi(t) = A(tnﬂ(t)a u(t))&;(t) + B(ta :L‘(t)., 'u.(f.))u(t) + f(¢, ;L‘(t), ru'(t))'- (9)

where elements of matrices A and B are continuous functions of 2: and u for fixed
t and piecewise continuous functions of t for fixed z and w, and are bounded
for t € [to,t;] and € R™. The nonlinear perturbation term f is bounded and
satisfies a Lipschitz-type condition in both z and u.

Controllability and the so called total controllability (controllability con-
nected with stabilizability) of the nonlinear control system

2'(t) = f(t, (1)) + Bt)u(t), (10)

and its pertrbation

'(t) = f(t,2(t)) + Bt)u(t) + g(t, =(t), u(t)), (11)

are considered in Balachandran (1988) and Eke (1990). It is generally assumed
that the nonlinear functions f and g are continuous with respect to all their
arguments and additionally satisfy Lipschitz-type conditions: f in z, and g
both in 2 and u. Moreover, nonlinear functions f and g satisfy certain additional
growth conditions.

In Deo (1997) controllability of first order time-varying semilinear Volterra
integrodifferential control system is considered. The state equation of the control
system has the following form

2'(t) = A(t)a(t) + *K(t, 5)a(s)ds + B)u(t) teltot:],  (12)

where the kernel K(t,s) is an n X n continuous matrix.

Applications of the nonlinear controllability theory in mathematical popula-
tion dynamics can be found in Joshi and George (1989, 1992), Klamka (1991b,
1994). Schauder’s fixed-point theorem can be also used in stochastic control-
lability problems. Sample controllability, in a given finite time interval, for a
quite general nonlinear stochastic control system is investigated in Daner and
Balachandran (1997). Moreover, several sufficient conditions for local or global
controllability in a given time interval and for various types of nonlinear control
systems can be found in the recently published papers Balachandran (1985), Bal-
achandran and Balasubramaniam (1994), Balachandran and Dauer (1987, 1989,
1990, 1993, 1996), Balachandran and Somasundram (1983, 1985), Dauer (1972,
1976). In all these papers Schauder’s fixed-point theorem or Leray-Schauder’s
fixed-point theorem are used to formulate and prove various controllability re-
sults.
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3. Controllability for nonlinear systems with delays

Controllability theory for nonlinear control systems with delays is much more
complicated and difficult than for systems without delays. FFirst ol all, let us
observe that there are many different types of delays in control or state vari-
ables: multiple lumped constant or time-varying delays and distributed delays.
Moreover, for control systems with delays there exist two different definitions
of the state: instantaneous state and absolute state. Without going into details
it should be pointed out that instantaneous state of a delayed control system is
finite-dimensional and it is represented by an n-dimensional vector in B™ state
space. On the other hand the absolute state of a delayed control system is repre-
sented by a suitably defined piece of trajectory of control system and hence it is
an element of the appropriate infinite-dimensional function state space. There-
fore, for delayed control systems it is necessary to introduce two fundamental
concepts of controllability: relative controllability or Buclidean controllability
connected with the finite-dimensional state space and absolute controllability or
function controllability related to infinite-dimensional state space (see Klamka,
1991, or Klamka, 1993, for more details). Most of the results given in this section
concern the relative controllability of nonlinear control systems with different
types of delays in the control or state variables,

The paper by Balachandran and Balasubramaniam (1994) presents sufficient
conditions for the global relative controllability of a semilinear control system
with lumped and distributed delays in the state variables, described by the
following differential equation

2'(t) = Ao(t)(t) + A (H)a(t — 1)+
0
K(t, s)x(t + s)ds + B(t)u(t) + f(t,2(t), 2(t — 1), u(t)). (13)
-1
where Ag(t), Ai(t), B(t), K(t,s), are time-varying matrices of appropriate di-
mensions and f is a nonlinear perturbation.
Onwuatu (1993) considers relative null controllability for the semilinear in-
finite neutral control system with multiple time-varying point delays and dis-
tributed delays in the state variables

i k=N
GO = 3 AOen) + Bo) +
0
/ A(s)z(t + s)ds + f(t, 2, u(t)). (14)

where D is a linear differentiable matrix function, f is a nonlinear continuous
matrix function, symbol z; denotes a piece of trajectory, hy(t). bk =0,1.2.... . N
are lumped time-varying delays, Ag(f),k =0,1,2,..., N, are n x n dimensional
time-varying matrices. The term ffoo A(s)a(t + S)ds represents infinite delay.




Schauder’s fixed-point theorem in nonlinear controllability problems 159

Similarly, relative null controllability problem for semilinear neutral control
system of the form (14) but additionally with multiple time-varying point delays
in the control

d k=N i=N
ED(a) = Y Aualun() + 3 Bityulhu(t) +

k=0 =0
0
/ A(s)z(t + s) + f(t, 24, u(t)) (15)

is discussed in Dauer, Balachandran and Anthoni (1998). The symbols B,,i =
0,1,2,...,N in (15) denote time-varying matrices of appropriate dimensions.

Global relative controllability of the nonlinear system with distributed delays
in control

0
z'(t) = f(t,z(t),u(t)) + /_! (dsB(t. s))u(t + ), (16)

and its generalization
0

2/(t) = A(t, 2(t), u())a(t) + F(t,2(t), u(t)) + [ (duB(t.8))ult + ), (17)
it ‘—“!‘]’.
is considered in Onwuatu (1989). Here, symbol ffh(d,,,.B(f. s))u(t + s} denotes
the Stieltjes integral, Klamka (1991a). The nonlinear term f and the n x n-
dimensional matrix A satisfy certain additional assumptions.
Global and local relative controllability of the nonlinear system with multiple
point delays in the control

=N
2'(t) = A(t, 2(8))=(t) + Y Bilt, a(t))u(hi(t)), (18)
i=0
and of its perturbation
i=N
2'(t) = A(t, z(t))z(t) + Z Bi(t,a(t))u(hy(t)) + f(t,z(t)), (19)
i=0

is discussed in details in a series of papers Klamka (1975a, b, ¢, 1976).

Similar controllability problems but for nonlinear systems with additional
distributed delay in control represented by the term f_o h(dsB (t.s))ul(t + s) are
investigated in Klamka (1978 and 1980).

Global relative controllability of a more general nonlinear system with mul-
tiple time-varying point delays in the perturbation term

0
2'(t) = gt x(t),ut)) —l—]_hdnB('ﬁ,?;,a:(f.),‘ti.(t))u(t—i-?';) +

flt,z(t), ulho(t)), w(hy, (1), ... w(hi (1), .., u(hn (1)) (20)
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is studied in Klamka (1999b).

It should be mentioned that the methods used in controllability considera-
tions for nonlinear control systems with different types of delays in control, or in
the state variables, are quite similar to those presented in Section 2 for problems
and certain difficulties in finding the form of the nonlinear operator P, especially
for control systems with distributed delays represented by the Stieltjes integral.

4. Controllability for infinite-dimensional nonlinear sys-
tems

Most of the controllability results for nonlinear infinite-dimensional control sys-
tems concern the so called semilinear control systems which consist of a linear
and a nonlinear part, Klamka (1995, 1996, 1998, 1999a). This type of non-
linear control systems arises if a local linear approximation around a nominal
trajectory of a nonlinear control system is considered (Carmichael and Quinn,
1988, Mirza and Womack, 1972a). Moreover, it should be stressed that for
infinite-dimensional systems two different concepts of controllability are anal-
ysed. Namely, the exact (or strong) controllability and the approximate (or
weak) controllability, Klamka (1991a, 1993). However, most of the results given
in this section concern exact local or global controllability.

Let us consider a semilinear time-invariant infinite-dimensional control sys-
tem of the form

z'(t) = Az(t) + Bu(t) + F(z(t)) t €[0,t4], (21)

where z(t) € X,u(t) € U,X and U are Banach space, A : X DO D(A)—X
is a linear generally unbounded operator which generates strongly continuous
semigroup of linear bounded operators S(t) : X—X, for ¢t > 0,B : U—X is a
linear bounded operator and F': X—X is a nonlinear operator. For the initial
condition z(0) = 0, a mild solution of abstract differential equation (21) satisfies
the following nonlinear integral equation

z(t) = /0 S(t — s)Bu(s)ds + /0 S(t—s)F(z(s))ds. (22)

Controllability results for a semilinear control system (21) strongly depend
on the controllability properties of the linear part of the system given by

z'(t) = Az(t) + Bu(t). (23)

Now, let us introduce for the linear system (23) the controllability operator
C : LP(0,t;;U)—X defined by

t—1
Cu= f S(t1 — s)Bu(s)ds.
0
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The system (21) is said to be exactly controllable to a linear subspace V- C X
on [0,t] if V' is contained in RangeC.

If the linear system (21) is exactly controllable to the subspace V', then
we can assume without loss of generality that RangeC = V' and construct an
invertible operator C; defined on L?(0,t;U)/KerC,

Let us now consider the control

ulf) =1 (v " fo " St - s)F(m(s))ds) (t). (24)

The same approach as in Section 2 can be applied. Control u(t) given by (24)
steers the semilinear control system (21) from zero initial state to v € V in
time ¢;. Substituting control u(t) given by (24) into the right-hand side of the
equality (22) yields the nonlinear operator P of the form

i1

t
(Pz)(t) = /ﬂ S(t — s)BCy! (y— S(t]-T}F(:c{T))dT) ds +
i

/ S(t — s)F(z(s))ds. (25)
0

It can be verified that if the operator P has a fixed point z*, then the control
u*, given by (24) evaluated at z*, steers the semilinear control system (21)
from zero initial state to v € V in time t; i.e., the semilinear control system
(21) is exactly controllable to V' in time t;, see Carmichael and Quinn (1988),
Magnusson, Pritchard and Quinn (1985).

Therefore, the general idea is to look for a fixed point of the nonlinear map
P defined by (25) in some ball contained in an appropriately defined Banach
space. It should be pointed out that the application of Schauder’s fixed point
theorem requires both certain compactness and growth conditions imposed on
the nonlinear operator F. Under these assumptions, Schauder’s fixed-point
theorem can be used to prove that the operator P has a fixed point, i.e., that the
semilinear control system (21) is exactly controllable to V' in time ¢;, Carmichael
and Quinn (1988), Magnusson, Pritchard and Quinn (1985).

Various kinds of sufficient conditions for exact or approximate controllability
for different types of nonlinear infinite-dimensional control systems can be found
in many recently published papers. Balachandran and Dauner (1998) consider
local exact controllability of semilinear evolution control systems with time-
varying nonlinear term of the form

z'(t) = Az(t) + Bu(t) + F(t,2(t)) t € [to, 1], (26)

where the nonlinear operator F' satisfies certain growth condition both in ¢
and o and the linear unbounded operator 4 generates an analytic semigroup of
bounded linear operators S(t) : X—X, for ¢ > 0.




162 J. KLAMKA

The second order semilinear Volterra integrodifferential control system is
considered in Balachandran, Dauer and Balasubramaniam (1995), Balachan-
dram, Park and Anthoni (1999), Park and Han (1997) where sufficient condi-
tions for global exact controllability are formulated and proved. The control
system is described by the following state equation

z'(t) = Az(t) +/0 g(t, s,z(s))ds + Bu(t) t € [0,t1], (27)

where linear unbounded operator A generates a strongly continuous one param-
eter cosine family of bounded linear operators S(t) : X—X, forf >0, andgisa
nonlinear unbounded mapping with certain additional assumptions concerning
continuity.

5. Concluding remarks

The paper contains a short review of controllability results for nonlinear systems
presented in the literature. The results referred to show that Schauder’s fixed-
point theorem can be effectively used in nonlinear control problems to obtain
sufficient conditions for different kinds of controllability applied to different
dynamical systems.
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