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Purpose: Process optimization in healthcare using artificial intelligence (AI) is still in its infancy. In this study, we address the research question 

“To what extent can an AI-driven chatbot help to optimize the diagnostic process?”  
Design / Method / Approach: First, we developed a mathematical model for the utility (i.e., total satisfaction received from consuming a good or 

service) resulting from the diagnostic process in primary healthcare. We calculated this model using MS Excel. Second, after identifying the 
main pain points for optimization (e.g., waiting time in the queue), we ran a small experiment (n = 25) in which we looked at time to diagnosis, 
average waiting time, and their standard deviations. In addition, we used a questionnaire to examine patient perceptions of the interaction 
with an AI-driven chatbot. 

Findings: Our results show that scheduling is the main factor causing issues in a 
physician’s work. An AI-driven chatbot may help to optimize waiting time as well 
as provide data for faster and more accurate diagnosis. We found that patients 
trust AI-driven solutions primarily when a real (not virtual) physician is also 
involved in the diagnostic process. 

 Practical Implications: AI-driven chatbots may indeed help to optimize diagnostic 
processes. Nevertheless, physicians need to remain involved in the process in 
order to establish patient trust in the diagnosis. 

Originality / Value: We analyze the utility to physicians and patients of a diagnostic 
process and show that, while scheduling may reduce the overall process utility, 
AI-based solutions may increase the overall process utility. 

Research Limitations / Future Research: First, our simulation includes a number of 
assumptions with regard to the distribution of mean times for encounter and 
treatment. Second, the data we used for our model were obtained from different 
papers, and thus from different healthcare systems. Third, our experimental 
study has a very small sample size and only one test-physician.  
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Мета роботи: Оптимізація процесів у охороні здоров'я з 

використанням штучного інтелекту все ще перебуває у 
початковому стані. У цьому дослідженні ми вирішуємо 
дослідницький питання: «Якою мірою чат-бот, керований 
штучним інтелектом, може допомогти оптимізувати 
діагностичний процес?» 

Дизайн / Метод / Підхід дослідження: По-перше, ми розробили 
математичну модель для корисності (тобто загального 
задоволення, що отримується від споживання товару чи 
послуги) внаслідок діагностичного процесу у первинній 
охороні здоров'я. Ми розрахували цю модель за 
допомогою MS Excel. По-друге, визначивши основні болючі 
точки для оптимізації (наприклад, час очікування в черзі), ми 
провели невеликий експеримент (n = 25), в якому вивчили 
час до встановлення діагнозу, середній час очікування та їх 
стандартні відхилення. Крім того, ми використовували 
анкету для вивчення сприйняття пацієнтами взаємодії з чат-
ботом, керованим штучним інтелектом. 

Результати дослідження: Наші результати показують, що 
складання розкладу є основним фактором, який викликає 
проблеми у роботі лікаря. Керований штучним інтелектом 
чат-бот може допомогти оптимізувати час очікування, а 
також надати дані для більш швидкої та точної діагностики. 
Ми виявили, що пацієнти довіряють рішенням на основі 
штучного інтелекту насамперед тоді, коли у діагностичному 
процесі бере участь реальний (не віртуальний) лікар. 

Практична цінність дослідження: керовані штучним інтелектом 
чат-боти дійсно можуть допомогти оптимізувати 
діагностичні процеси. Тим не менш, лікарі повинні 
залишатися залученими до процесу, щоб пацієнти довіряли 
діагнозу. 

Оригінальність / Цінність дослідження: Ми проаналізували 
корисність діагностичного процесу для лікарів та пацієнтів і 
показали, що хоча складання розкладу може знизити 
загальну корисність процесу, рішення на основі штучного 
інтелекту можуть підвищити загальну корисність процесу. 

Обмеження дослідження / Майбутні дослідження: По-перше, 
наше моделювання включає низку припущень щодо 
розподілу середнього часу зустрічі та лікування. По-друге, 
дані, які ми використовували для нашої моделі, були 
отримані з різних документів, а отже, із різних систем 
охорони здоров'я. По-третє, наше експериментальне 
дослідження має дуже маленький розмір вибірки і лише 
одного лікаря-випробувача. 
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Цель работы: Оптимизация процессов в здравоохранении с 

использованием искусственного интеллекта (ИИ) все еще 
находится в зачаточном состоянии. В данном исследовании 
мы решаем исследовательский вопрос: «В какой степени 
чат-бот, управляемый ИИ, может помочь оптимизировать 
диагностический процесс?» 

Дизайн / Метод / Подход исследования: Во-первых, мы 
разработали математическую модель для полезности (т.е. 
общего удовлетворения, получаемого от потребления 
товара или услуги) в результате диагностического процесса 
в первичном здравоохранении. Мы рассчитали эту модель 
с помощью MS Excel. Во-вторых, определив основные 
болевые точки для оптимизации (например, время 
ожидания в очереди), мы провели небольшой эксперимент 
(n = 25), в котором изучили время до постановки диагноза, 
среднее время ожидания и их стандартные отклонения. 
Кроме того, мы использовали анкету для изучения 
восприятия пациентами взаимодействия с чат-ботом, 
управляемым искусственным интеллектом. 

Результаты исследования: Наши результаты показывают, что 
составление расписания является основным фактором, 
вызывающим проблемы в работе врача. Управляемый ИИ 
чат-бот может помочь оптимизировать время ожидания, а 
также предоставить данные для более быстрой и точной 
диагностики. Мы обнаружили, что пациенты доверяют 
решениям на основе ИИ в первую очередь тогда, когда в 
диагностическом процессе участвует реальный (не 
виртуальный) врач. 

Практическая ценность исследования: Управляемые ИИ чат-
боты действительно могут помочь оптимизировать 
диагностические процессы. Тем не менее, врачи должны 
оставаться вовлеченными в процесс, чтобы пациенты 
доверяли диагнозу. 

Оригинальность / Ценность исследования: Мы 
проанализировали полезность диагностического процесса 
для врачей и пациентов и показали, что, хотя составление 
расписания может снизить общую полезность процесса, 
решения на основе ИИ могут повысить общую полезность 
процесса. 

Ограничения исследования / Будущие исследования: Во-
первых, наше моделирование включает ряд допущений в 
отношении распределения среднего времени встречи и 
лечения. Во-вторых, данные, которые мы использовали для 
нашей модели, были получены из разных документов, а 
значит, из разных систем здравоохранения. В-третьих, 
наше экспериментальное исследование имеет очень 
маленький размер выборки и только одного врача-
испытателя.  
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1. Introduction  

he world of healthcare has changed enormously in recent 
years, and a patient-centric approach is increasingly 
important for modern healthcare business practice. In 2018, 
on average 71% of the world’s population had visited a primary 

care physician at least once a year, while 28% had consulted a 
physician three times or more a year (Advisor, 2018). Patients 
surveyed stated “access to treatment and long waiting times” as 
the top issue in their healthcare system, followed by issues of “not 
enough staff,” “too high costs of accessing treatment,” and 
“bureaucracy” (Advisor, 2018: 44). 

The world’s population is getting older, and there is a lack of 
medical capacity to cope with the resulting demand for treatment. 
Besides capacity problems, physicians struggle with new 
technology and have to cope with changing and increasing 
regulation (Fuchs, 1996; Saltman & Figueras, 1997; Haimi, Brammli-
Greenberg, Waisman, & Baron-Epel, 2018; Carayon & Hoonakker, 
2019). In addition, patients can choose from a variety of physicians 
and hospitals, making the healthcare market even more 
competitive (Ettinger, 1998; Varkevisser, van der Geest, & Schut, 
2012). Consequently, medical professionals are under constant 
pressure to offer cost- and time-efficient treatment while at the 
same time satisfying the individual needs and expectations of their 
patients. Technology is often regarded as an approach that can 
improve cost-effectiveness and scheduling (Cutler, 2007; Rau et al., 
2013). 

Recent developments in the field of healthcare require each 
physician to have not only up-to-date professional knowledge but 
also the capability to process vast amounts of information 
(Moreira, Rodrigues, Korotaev, Al-Muhtadi, & Kumar, 2019). 
Digitalization allows central storage of patient-related data as well 
as opportunities for collecting additional data (e.g., using 
smartwatches or smartphone-connected pill bottles) and applying 
advanced data analysis strategies (Bhavnani, Narula, & Sengupta, 
2016). At the same time, the burden of learning, predicting, and 
diagnosing grows accordingly. This growth requires more 
sophisticated AI technologies such as Machine Learning and Deep 
Learning to allow physicians to extract useful information from 
data (Bohr & Memarzadeh, 2020). 

One specific new technology has attracted great attention and is 
expected to revolutionize the healthcare sector in the future: 
artificial intelligence (AI). Using machine learning, computers can 
learn from experience, recognize causal connections in the 
recorded data, execute tasks based on these learnings, and further 
improve their knowledge. Thus, implementation of AI in healthcare 
information systems is expected to assist or even partly replace 
medical professionals in the future. This study contributes to the 
literature by proposing a new approach to using AI to reduce the 
workload of medical professionals as well as costs for patients 
while ensuring proper care and patient satisfaction. A holistic view 
of primary diagnosis in ambulatory care is used to examine the 
effects of an AI-based decision support tool that is incorporated 
into a standard primary care process. 

2. Research Question 

n this study, we address the research question: To what 
extent can an AI-driven chatbot help to optimize the 
diagnostic process? 

3. Theoretical Background 

he healthcare market is evolving continuously and becoming 
more complex as a result (Plsek & Greenhalgh, 2001). Despite 
the improvements already made, researchers are developing 
strategies, concepts, and tools to advance the healthcare 

system further. Suggestions in the literature are focused on four 
areas. The first area is concerned with policy-related topics, 
including how to improve policymaking and regulate or deregulate 

the healthcare sector (Fuchs, 1996; Marmor & Wendt, 2012). Some 
researchers estimate the quality and performance of healthcare, 
while others try to determine the utility derived from treatment. 
Researchers also use the process utility derived from screening 
procedures to operationalize measures in preventive care using a 
range of measurement methods such as standard gamble 
techniques, time trade-off techniques, and conjoint analysis 
(Brennan & Dixon, 2013).  

Nevertheless, physicians and patients may perceive the quality of 
the process differently, and this implies different process utilities. 
Indeed, the perception of service quality by a physician deviates to 
some extent from the perception by the patient (Levine et al., 2012), 
a fact that should be taken into consideration when service quality 
is evaluated. Results and findings vary as much as the approaches 
taken. Some researchers have analyzed best practice in diagnosing 
patients and minimizing medical errors. The literature in this 
stream suggests that healthcare is far from being accurate and that 
error rates are unacceptably high (Herzlinger, 2006; Graber, 2013).  

Another stream of literature analyzes queuing techniques and 
utilization planning. A variety of modeling methods and heuristic 
models have been used to determine which effects occur if 
appointment-making is altered (Ahmadi-Javid, Jalali, & Klassen, 
2017). Papers in this area mostly deal with the uncertainty of 
different determinants of everyday healthcare practices, and the 
uncertainty that might be related to the perception of process 
quality. 

Current efforts to use advanced technology focus mainly on the 
application of telehealth systems to specific medical conditions, for 
example, telehealth monitoring devices for managing congestive 
heart failure patients (Lehmann, Mintz, & Giacini, 2006), and 
telehealth approaches to chronic obstructive pulmonary disease 
(Polisena et al., 2010) and diabetes management (Polisena et al., 
2009). Other approaches analyze the impact of digital health 
assistants that are not directly connected to human healthcare 
professionals. These assistants include apps that remind a patient 
to take his or her medicine (Dayer, Heldenbrand, Anderson, Gubbins, 
& Martin, 2013) or enable a patient to perform a self-diagnosis 
(Semigran, Linder, Gidengil, & Mehrotra, 2015). Other systems give 
general advice on how to improve a patient’s general health by, for 
example, losing weight (Kamel Boulos, Brewer, Karimkhani, Buller, 
& Dellavalle, 2014). However, according to the evaluation of a 
symptom-checker compared with a real practitioner (Semigran et 
al., 2015), self-diagnosing tools have lower accuracy rates than real-
life physicians and are currently not accurate enough to represent 
a viable alternative to physician visits.  

Only a few studies focus on a combined approach, i.e., evaluating 
a shared solution where the patient’s use of technology at the 
front end is managed by a healthcare professional at the back end. 
There are also some decision support systems that rely on AI to 
propose a diagnosis or make recommendations (Krittanawong, 
Zhang, Wang, Aydar, & Kitai, 2017; Miller & Brown, 2018). However, 
most of these tools are focused on specific conditions or 
symptoms and, more importantly, are designed for specialists only. 
The question therefore remains: Can these approaches help to 
optimize processes in healthcare facilities? In this paper, we 
address this question from the viewpoint of process management. 

We root our study in the notion of system welfare, proposed by 
Allon & Kremer (2018), who suggested looking at the welfare of a 
system from the perspective of an individual. For hospital 
management, welfare is present if the system runs as planned in 
terms of service value 𝑣 (taken as interchangeable with service 
quality), cost (i.e., disutility) of waiting in a queue 𝑐𝑊, cost due to 
time spent in the patient encounter 𝑐𝑆, waiting time in the queue 
𝑇𝑊, and the time required for each patient to be processed by a 
physician 𝑇𝑆. The processing time 𝑇𝑆 can be described as a relation 
between 𝜇𝑗 (time spent per unit of work j, e.g., time to measure 

body temperature) and 𝑤𝑗  (units of work j, i.e., the activity of 

measuring body temperature). R represents the system 
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throughput, i.e., the number of patients treated during a time 
period. Following Allon & Kremer (2018), we can therefore 
formalize system welfare in the following manner: 

𝑆𝑊 = (𝑣 − 𝑐𝑊𝑇𝑊  −  𝑐𝑆𝑇𝑆) ⋅ 𝑅 =  (𝑣 − 𝑐𝑊𝑇𝑊  − 𝑐𝑆 ∑
𝑤𝑗

𝜇𝑗
𝑗

) ⋅ 𝑅 

In this study, we focus on two types of service value, as 𝑣 
represents both the utility of the encounter for a patient and the 
utility of the encounter for a physician. Perceptions of value may 
differ; whereas patients may enjoy longer conversation time with 
the physician, perceiving it as a sign of respect and necessary 
attention, physicians may perceive the time spent as a missed 
opportunity to encounter more patients and, thus, as low 
efficiency and effectiveness of their work. The welfare of the 
system is, therefore, a balance between the utilities of both the 
patient and the physician.  

However, as Allon & Kremer (2018) argued, it is not only the waiting 
time that has an impact on the perception of utility, but also the 
work context. AI-driven technologies may reduce waiting time 
thanks to fast and precise information processing. However, if the 
system is not trusted, the utility and, consequently, the welfare of 
the system may decrease. In our investigation, we shed light not 
only on process optimization through the use of chatbots but also 
on patient perceptions of AI-driven technology. We also consider 
the content variables (i.e., the encounter-specific diagnostic 
activities) necessary for the welfare of a health system. 

4. Methodology 

o analyze the factors that can improve patient and doctor 
satisfaction, we develop a model that calculates the overall 
utility of a patient–doctor interaction in primary care. To 
calculate the utility, we identify a list of determinants of utility 

for the patient received during a standard encounter. We also 
include the utility for the physician in order to simulate the process 
of patient–physician interaction. 

4.1. Determinants of Utility 

he primary goal of doctor–patient interaction is to increase 
the patient’s welfare. The fact that the satisfaction of patients 
contributes to the positive outcome of treatments is widely 
acknowledged (Hall, Ferreira, Maher, Latimer, & Ferreira, 2010; 

Hudak, Hogg-Johnson, Bombardier, McKeever, & Wright, 2004; 
Rubel, Bar-Kalifa, Atzil-Slonim, Schmidt, & Lutz, 2018). It follows that 
the actual medical treatment is not the only determinant of a 
patient’s perceived utility of the healthcare system. 

4.1.1. Patient’s Perceived Utility 

dditional determinants of patient satisfaction include the 
attitude of medical personnel, prompt service, the ability to 
share information with patients, the patience of the doctor in 
doing so, and the availability and use of the latest equipment 

(Carlucci, Renna, & Schiuma, 2013; Hassin & Haviv, 2003; Levine et al., 
2012; Peprah, 2013; Teke et al., 2010). In contrast, long waiting times, 
unfriendliness, and incorrect diagnoses reduce a patient's welfare. 
The utility function of the patient can be set up on this basis. Let Ut 
be the utility of the treatment outcome, Ua the utility from the 
attitude of the personnel, Ui the utility from the physician’s ability 
to share information, Up the utility derived from the patience of the 
doctor, Ue the utility derived from new equipment, and Uw the 
utility resulting from waiting time. Thus: 

Upatients = Ut + Ua + Ui + Up + Uc + Uw             (1) 

Some factors cannot be influenced by the implementation of a 
technical solution such as an AI-driven chatbot. The specificity of 
treatments, personalities of medical professionals, and money 
spent on the interior of a hospital are beyond the scope of 
technological improvements. This fact leads to a restriction on our 
utility function (1), where Ua, Ui, and Ue become irrelevant for the 
further analysis of an AI-based system and are set to zero. This 
leaves us with a restricted utility equation for the patient: 

Upatients = Ut + Up + Uw   (2) 

To calculate the utility from waiting time (Uw), the waiting time (Tw) 
should be multiplied by a utility factor for every time unit spent on 
waiting. Note that the benefit from low waiting time (bwaiting) and 
the cost of waiting (cwaiting) because of long waiting time have been 
separated. This separation is necessary to account for the 
endowment effect by which people overvalue the loss of goods 
they already possess in comparison to the goods they gain. In our 
case, this is the loss of time that patients could have spent on other 
activities in comparison to having completed the physician visit 
earlier than expected. Consequently, it can be assumed that |b|<|c|. 

 𝑈𝑤 =  𝑏𝑤  × |𝑇𝑤|,   if 𝑇𝑤 ≤  0  (3a) 

 𝑈𝑤 =  𝑐𝑤  × 𝑇𝑤,   if 𝑇𝑤 >  0  (3b) 

If medical treatment is effective, the patient will receive a positive 
utility (btreatment, or bt). However, if the treatment is not effective or 
if it worsens the condition of the patient, s/he will incur an even 
higher negative utility (ctreatment, or Ct). The utility gain of an effective 
treatment is calculated based on the benefit of an effective cure 
(bt) multiplied by the expected time needed for the cure minus the 
actual time needed for the cure (Tc

expected−Tc
actual). If a patient is 

cured earlier than expected, s/he will receive a higher benefit from 
such a process. If a patient is cured in time, i.e., exactly as expected, 
s/he might still derive a benefit, which means that the multiplier will 
always be 1 or higher. If a treatment is not effective or the physician 
has diagnosed the patient incorrectly, the cost of the wrong 
treatment (ct) will be multiplied by the actual time to the cure and 
also by a wrong-treatment impact factor (iw). The longer a patient 
receives an incorrect treatment, the higher the utility loss. In 
addition, some consequences of illness are worse than others; a 
false diagnosis of a severe illness will cause a higher utility loss 
than, for example, the common flu. Therefore, we introduce a 
wrong-treatment impact factor as follows: 

𝑈𝑡 =  𝑏𝑡  × 𝑚𝑎𝑥(1, 𝑇𝑐
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 − 𝑇𝑐
𝑎𝑐𝑡𝑢𝑎𝑙),  

if treatment was effective   (4a), 

𝑈𝑡 =  𝑐𝑡  × 𝑇𝑐
𝑎𝑐𝑡𝑢𝑎𝑙 × 𝑖𝑤, 

if treatment was ineffective  (4b) 

The utility derived from the patience of the physician (pUp) is 
determined by the individual perception of the patient of the 
benefit or cost derived from the physician’s patience 
(bpatience/cpatience) but also by the time that is actually “freed” for the 
physician, as freed time reflects reduced workload (p+Tb). If the 
actual processing time of the patient (p*) is less than the planned 
time slot (p+Tb) for the diagnosis, the physician has enough time 
for the patient and is not in a hurry. S/he can engage in a more 
personal conversation, which results in an extended and better 
explanation of the illness and of the proposed treatment, as well 
as helping to build a better relationship by answering the patient’s 
questions. Consequently, the patient will derive a benefit (Coulter 
& Jenkinson, 2005; Thompson, Yarnold, Williams, & Adams, 1996). If 
the physician is under time pressure because the diagnosis took 
the planned time or longer ((p+Tb) ≤ p*), every additional minute 
will reduce the patience of the physician, and the patient will derive 
a negative utility: 

 𝑈𝑝 =  𝑏𝑝  × (𝑝 + 𝑇𝑏 − 𝑝∗),  if (𝑝 + 𝑇𝑏) > 𝑝∗        (5a) 

 𝑈𝑝 =  𝑐𝑝  × (𝑝 +  𝑇𝑏 −  𝑝∗),  if (𝑝 + 𝑇𝑏) ≤ 𝑝∗        (5b) 

Given these determinants, we can set up an equation for the 
patient’s utility. Parts of this equation can be changed against the 
benefit or cost equations if applicable. 

𝑈𝑝𝑎𝑡𝑖𝑒𝑛𝑡 =  𝑏𝑡  × 𝑚𝑎𝑥(1, 𝑇𝑐
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 −  𝑇𝑐
𝑎𝑐𝑡𝑢𝑎𝑙) +  𝑏𝑝  × (𝑝 +  𝑇𝑏 −

 𝑝∗) + 𝑏𝑤  × |𝑇𝑤|   (6a), 

𝑈𝑝𝑎𝑡𝑖𝑒𝑛𝑡 =  𝑐𝑡  × 𝑇𝑐
𝑎𝑐𝑡𝑢𝑎𝑙 × 𝑖𝑤 +  𝑐𝑝  × (𝑝 + 𝑇𝑏 −  𝑝∗) + 𝑐𝑤  × 𝑇𝑤 (6b) 
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4.1.2. Physician’s Utility 

 physician also derives utility from interacting with a patient. 
Clearly, the physician’s income depends on the diagnostic 
process; the more efficiently the doctor can diagnose 
patients, the higher his/her income. It is therefore in the 

interest of the healthcare professional to diagnose the patient 
correctly and offer the best treatment for the diagnosed illness. To 
define the utility function of the physician, let Utr be the benefit 
from the treatment, Upr the utility from processing the patient in 
time, and Ud the utility derived from the accompanying 
administrative work. 

𝑈𝑑𝑜𝑐𝑡𝑜𝑟 =  𝑈𝑡𝑟 + 𝑈𝑝𝑟 + 𝑈𝑑  (7) 

For simplicity, we assume that a physician derives utility from each 
treatment regardless of whether s/he diagnosed the patient 
correctly1. Consequently, the physician derives a benefit from the 
treatment of each patient (btr). 

𝑈𝑡𝑟 = 𝑏𝑡𝑟          (8) 

An encounter that takes longer than expected might cause delays 
in the schedule and create additional stress for the medical 
personnel. The benefit from processing time depends, therefore, 
on the deviation from the planned diagnosis time slot (p+Tb). If 
diagnosing the patient takes less time than expected (p+Tb>p*), the 
physician will receive an additional positive utility from this specific 
treatment. If the actual processing time (p*) is exactly as planned, 
the physician will still be satisfied and will derive a benefit, which 
means that the multiplier is always 1 or higher. However, if the 
processing time is longer than expected (p+Tb<p*), the physician 
will derive a negative utility, as s/he will be working overtime and 
will be faced with more time pressure and stress. This, in turn, has 
a negative impact on his/her accuracy (Williams, Manwell, Konrad, 
& Linzer, 2007). Given these considerations, costs are calculated as 
costs per minute of overtime. 

𝑈𝑝𝑟 =  𝑏𝑝𝑟 × 𝑚𝑎𝑥(1, 𝑝 + 𝑇𝑏 − 𝑝∗), if (𝑝 + 𝑇𝑏) ≥ 𝑝∗         (9a) 

 𝑈𝑝𝑟 =  𝑐𝑝𝑟  × (𝑝 + 𝑇𝑏 − 𝑝∗), if (𝑝 +  𝑇𝑏) < 𝑝∗      (9b) 

Another determinant of the physician’s utility is the administrative 
work related to the patient–physician interaction. The burden of 
administrative work is high and time-consuming. As administrative 
work should not be the core activity of a physician, for every 
minute spent on administrative tasks, the physician will derive a 
negative utility. 

𝑈𝑑 = 𝑇𝑑 × 𝑐𝑑   (10) 

Given these determinants, the overall utility function of a physician 
can be set up as follows and is again interchangeable with the 
respective positive or negative utility parts: 

𝑈𝑑𝑜𝑐𝑡𝑜𝑟 =  𝑏𝑡𝑟 + 𝑏𝑝𝑟 × 𝑚𝑎𝑥(1, (𝑝 + 𝑇𝑏 − 𝑝∗)) + 𝑇𝑑 × 𝑐𝑑     (11a) 

𝑈𝑑𝑜𝑐𝑡𝑜𝑟 =  𝑏𝑡𝑟 + 𝑐𝑝𝑟 × (𝑝 + 𝑇𝑏 − 𝑝∗) + 𝑇𝑑 × 𝑐𝑑      (11b) 

Combining the utility equations for the patient and the physician 
results in the overall system utility: 

 𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑏𝑡  × 𝑚𝑎𝑥(1, 𝑇𝑐
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 − 𝑇𝑐
𝑎𝑐𝑡𝑢𝑎𝑙) + 𝑏𝑝  × (𝑝 + 𝑇𝑏 −

 𝑝∗) + 𝑏𝑤  × |𝑇𝑤| + +𝑏𝑡𝑟 + 𝑏𝑝𝑟 × 𝑚𝑎𝑥(1, (𝑝 + 𝑇𝑏 − 𝑝∗)) + 𝑇𝑑 ×

𝑐𝑑    

 

 

 

 
1 We assume per capita financing, as this is the case in Ukraine, where part 
of our data comes from. Each family doctor is assumed to supervise 
approximately 1,800 patients. Ukrainian family doctors are not paid 
according to the number of patients treated or treatments assigned, but 
according to a collective agreement signed with the hospital. Some 

4.2. Study 1: Standard Simulation Setup 

n our first study, we developed a model that incorporates the 
utility equations from the previous section. The model was 
built in MS Excel and based on a computer-generated data set 
that calculates the arrival time, processing time, and 

administrative work time needed per patient. For each patient, we 
also took into account whether his/her treatment is effective, how 
long his/her cure takes, and for how long s/he expects to follow the 
prescribed treatment. Using the utility equation and the generated 
data, we calculated the physician and patient utility for each 
patient during one work week. The model operates on the basis of 
a five-day work week and nine work hours per day. Per day, it is 
assumed that a fixed number of 27 patients will be treated. Finally, 
we calculated the sum of the utility for all patients within one work 
week. This procedure was executed 100 times, and the trimmed 
average (with a cutoff of 10%) of the summed utility of all 100 runs 
was derived. 

4.2.1. Arrival Time 

he calculation of the patient arrival time was based on the 
findings of Alexopoulos and colleagues (2008), who tested 
different distributions of their data using the ExpertFit 
automatic fitting procedure. They found that the best fit 

method for modeling the unpunctuality of patients was a Johnson 
SU distribution with the following parameters estimated using 
quantile matching: 𝛾 = −0.576, 𝛿 = 1.548, 𝜆 = 21.741, and 𝜉 = −0.775, 
where 𝛾 and 𝛿 are the shape parameters of their model, 𝜆 is a scale 
parameter, and 𝜉 is a location parameter (Alexopoulos et al., 2008). 
Using this distribution, our model estimated the deviation from the 
planned appointment time (in other words, the actual arrival time). 

4.2.2. Processing Time 

he processing time for each patient was calculated in a similar 
way. We used data collected within a research project that 
analyzed the impact of process changes on healthcare 
providers in two cities in Ukraine and had 179 participating 

family doctors (Bogodistov, Moormann, & Sibbel, 2018). The 
measured processing times of those physicians were analyzed 
using EasyFit (MathWave Technologies, 2019). The fitted 
distributions were tested using Kolmogorow–Smirnow, 
Anderson–Darling, and Chi-square tests of goodness of fit (GoF). 
The results of the distributions that might be relevant for analysis 
of the diagnostic process are given in Tab. 1. Based on their 
performance in the GoF tests, the fitted distributions were ranked 
from poorest fit (i.e., approximating 1) to best fit (i.e., 
approximating 0). The tests found that a normal distribution on 
average performed best in all three tests and consequently had the 
best fit to the dataset. 

The calculated normal distribution had the determinants of 𝜎 = 
5.0336 and 𝜇 = 16.261 (Fig. 1). Skewness (.689) and kurtosis (1.919) 
were in the acceptable range (George & Mallery, 2019; Hair, Black, 
Babin, & Anderson, 2010). Based on an average processing time 
(which was varied during the simulation) and a standard deviation 
from the dataset above, we calculated the actual processing time 
for each patient as a normal distribution of the average processing 
time. As the processing time cannot be zero, the calculated 
processing time is always ≥ 1. 

 

 

 

 

hospitals develop sophisticated collective agreements that take account of 
the types of patients and the number of treatments or patient visits. 
However, in most cases, the quality of treatment is less relevant. Medical 
errors may have legal consequences and/or may lead to the hospital 
management deciding to reduce the agreed payment.  
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Table 1: Test statistics for processing time distribution generated with EasyFit 

# Distribution Kolmogorow–Smirnow Anderson–Darling Chi-square 

  Statistic Rank Statistic Rank Statistic Rank 

1 Exponential .43661 55 41.324 54 365.31 51 

2 Logistic .1914 24 7.2334 22 186.46 18 

3 Lognormal .19794 28 7.7726 28 197.65 39 

4 Normal .1728 1 6.5043 2 45.371 2 

5 Uniform .20604 36 50.802 56 N/A 

Source: developed by the authors 

 

 

Figure 1: Distribution of patient encounter times 

Source: developed by the authors 

4.2.3. Starting Time 

he calculation of the starting time for each treatment 
recognizes that patients can be late (i.e., they arrive after the 
appointment time of the next patient) or that their diagnosis 
can take longer than expected, which will cause delays in 

subsequent appointments. As patients cannot be rejected because 
of lateness or because of a complicated condition, rescheduling 
has to be executed. The model checks whether each patient and 
the previous patients are too late or whether the next scheduled 
patient (who might have arrived early) can be treated first. If an 
encounter takes longer than expected, the next encounter will be 
delayed. 

If a patient arrives early, the waiting time is calculated only from 
the time of the planned appointment. We assume that waiting 
caused by being too early will not affect the patient’s utility, as s/he 
knows the time of appointment and does not expect any additional 
utility from being early. Nevertheless, if the patient is encountered 
earlier than the planned appointment time (e.g., because the 
previous patient arrived too late), s/he will derive a positive utility 
from the reduction in waiting time. If a patient is late, the waiting 
time is calculated from the point of arrival. 

4.2.4. Duration of Administrative Work 

he time needed for administrative work related to each 
patient was calculated as 37% of the total processing time, 
based on the findings of Sinsky and colleagues (2016) that 
physicians spend on average 37% of the time they spend in the 

examination room on administrative tasks. 

 

 
2 A normal flu is usually cured in about 3–4 days, whereas curing a 
broken ankle might take weeks. Although the assumption is not 

4.2.5. Healing Time 

o calculate the time needed for healing, this simulation assumes 
a standard distribution based on a mean of seven days with a 
standard deviation of four days2. As the time needed for curing 
cannot be zero, the number will always be ≥ 1 and is rounded up 

to a full day. The same calculation was used to generate the patient’s 
expectation of the time needed for curing. This setting assumes that 
the curing time expected by the patient is realistic, although in some 
cases this time will deviate because of uncertainty associated with 
the course of the disease. Therefore, the curing time can be equal to, 
greater than, or less than expected. This assumption might not be 
accurate, as in reality the curing time can differ markedly depending 
on the disease. Nevertheless, for the sake of simplicity, we retained 
this assumption to generate a random deviation of actual curing time 
and expectations and to estimate the utility losses based on the 
assumed deviations. 

4.2.6. Incorrect Treatment 

ccording to the results of a study conducted by Singh and 
colleagues (2014), the likelihood of incorrect treatment or 
false diagnosis is around 5.08%. Our model therefore includes 
the possibility of incorrect treatment and the resulting utility 

losses, assuming that the effectiveness of a treatment has a 
probability of 94.92% (100−5.08%). 

4.2.7. Appointment Scheduling 

he patient encounters (appointments) in our model were 
planned with respect to the average processing time plus the 
time buffer (p+Tb). For example, if on average the processing 
of one patient takes 20 minutes and the physician plans a time 

buffer of five minutes before the next patient arrives, 
appointments will be scheduled every 25 minutes. 

4.2.8. Utility Factors 

irst, we assume that bt > bp > bw and ct > cp > cw, which means 
that patients primarily want to be treated effectively. As this 
is the main reason for their visit to the physician in the first 
place, it seems reasonable to assume that this is the most 

important factor. Second, patients want to be informed about 
their condition at their own pace (i.e., the doctor’s patience is 
required), and this is more important than a short waiting time. To 
make this order of priorities effective in the utility calculation, the 
factors are exploded (bt=9, bp=5, bw=1). Utility factors are also set in 
respect to bx< cx (the endowment effect), so |cx| = |bx| x 2. To make 
this simulation a patient-centric model, all utility factors of the 
physician are set to 1, meaning that the utility of the patient is in 
focus, whereas the physician is indifferent with regard to the 
determinants important to him or her. This is also a reasonable 
assumption, as the physician’s job is to remain profitable without 
stress or unsatisfactory work. Consequently, we hold all 
determinants as equally important. 

realistic and actual outcomes differ massively from disease to disease, 
for modeling purposes we simplify.  
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4.2.9. Simulation Results 

he results of the model are shown in Fig. 2 and Fig. 3. The 
graphs show the utility in relation to the applied average 
processing time and standard deviation of processing time, 
with a time buffer (Tb) of 1 minute (Fig. 2) and 5 minutes 

(Fig. 3). A decrease in the average processing time results in an 

increase in utility. If the average processing time (p) is equal to or 
higher than the standard deviation of processing time (SDp), the 
utility starts to decrease again. An increase in the time buffer shifts 
the utility curve, meaning that the utility is generally higher when a 
larger time buffer is applied. The lower the SDp, the higher the 
utility achieved. 

 
Figure 2. Simulation result, utility with time buffer of 1 minute 

Source: developed by the authors 

 
Figure 3. Simulation result, utility with time buffer of 5 minute 

Source: developed by the authors 

As the results of our simulation show, utility increases substantially 
if the system manages to reduce standard deviations for the 
patient encounter time. The higher the standard deviation, the 
lower the overall utility. This is likely to be due to a shift in 
encounter times, as each deviation causes a chain reaction where 
the other appointments have to be delayed or rescheduled. A 
standard deviation of only 10 minutes drives patient utility (and, 
thus, the overall system welfare) into negative values. 
Consequently, process standardization is of the highest priority 
(Bogodistov, Moormann, Sibbel, Krupskyi, & Hromtseva, 2021). The 
overall utility becomes negative if the processing time is greater 
than 15 minutes or less than about 7 minutes. This holds true in 
combination with a standard deviation of encounter time of about 
7 minutes or higher. We conclude that not only processing times 
that are too long but also processing times that are too short are 
perceived by patients as negative outcomes of the process. This 
corresponds to measurements in Six Sigma projects where results 

 
3 We used the 2019 version of Infermedica-API. At the time of publication, a 
new version with new features is available: 
https://developer.infermedica.com/docs/changelog. 

should always be within the boundaries of a lower and an upper 
specification limit (George, Maxey, Rowlands, & Upton, 2005). 
Indeed, patients value communication, and if the encounter is too 
short (e.g., due to longer processing time of a previous patient’s 
encounter), the patient may perceive the communication as 
unsatisfactory (Greene, Adelman, Friedmann, & Charon, 1994; Like & 
Zyzanski, 1987). 

4.3. Study 2: AI-based Optimization 

o analyze whether the two crucial determinants identified in 
Study 1, namely processing time and standard deviation of 
processing time, can be influenced by an AI-powered solution, 
we developed and tested a sample software solution. We 

used a chatbot system that relies on AI. The system was 
programmed and designed to assist a physician in primary 
diagnosis. The diagnostic AI was created by Infermedica 3  and 

https://developer.infermedica.com/docs/changelog
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trained on well-founded medical literature and millions of patient 
records. The gained knowledge was checked and revised by a team 
of medical professionals and continues to be improved regularly. 
Entered symptoms are checked against the knowledge database 
of the AI, a list of possible diagnoses is generated, and further 
diagnosis questions are asked automatically. 

4.3.1. Patients’ Interface 

n our version of the chatbot, patients are able to enter their 
symptoms in a chat (for an example, see Fig. 4), and their chat 
opponent is AI-driven. The solution was placed on a university 

server and was accessible by smartphone, tablet, personal 
computer, and laptop. The physician interface was accessed via 
tablet. The patient was guided through the diagnosis process by 
asking questions or telling him/her which data should be entered. 
The patient entered responses as free text. Afterwards, the 
chatbot asked diagnostic questions with predefined answer 
buttons “Yes,” “No,” and “Don’t know”. 

 

 

 

 

 

Figure 4. Simulation result, utility with time buffer of 5 minute 

Source: developed by the authors 

4.3.2. Procedure 

n order to test the system, we invited participants who 
remembered their last visit to a physician. Although the 
participants were not ill at the time of participation in the 
study, they recalled their symptoms and entered them as 

“actual” symptoms.  

After the initial symptom description, the AI generated a list of 
possible diagnoses. By asking diagnostic questions, the AI 
excluded options from the list of possible diseases and proceeded 
with the most probable remaining diagnoses. When a specified 
probability threshold or question limit was reached, the diagnostic 
process was stopped. As a result, each patient was ascribed to one 
of the three categories:  

− Self-care, i.e., the patient can cure the disease 
himself/herself and there is no need to see a physician;  

− Consultation, i.e., the patient is advised to see a physician for 
approval; or  

− Emergency, i.e., immediate medical care is needed.  

All data, including the diagnoses with their respective probabilities, 
the triage scale (immediate, urgent, non-urgent), the patient’s 

description of symptoms, and the questions asked by the AI and 
answered by the patient, were forwarded to the physician. Until 
the physician had reviewed the data, no diagnosis was sent or 
shown to the participant. 

4.3.3. Physician’s Interface 

he physician role was played by a medical student who is in 
the final year of his studies. The physician used a Web-based 
interface where he could see all the patient records, i.e., the 
records of those who had recently entered their symptoms 

and those whom he had already diagnosed (Fig. 5). 

This overview contained the name of the patient, the triage level, 
and the most likely diagnosis. Additionally, the status of the patient 
case was shown: pending, i.e., the diagnosis has not been reviewed 
by the physician, or diagnosed for already diagnosed patients.  

By clicking on “View,” the physician was able to see all the data 
entered by the patient, including age, body mass index (BMI), 
allergies, blood pressure (optional), pulse (optional), the patient’s 
description of his/her symptoms, and all the diagnostic questions 
with their respective answers (Fig. 6). 
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Figure 5. Physician’s interface 

Source: developed by the authors 

 

Figure 6. Detailed view of the patient’s case 

Source: developed by the authors 

 

In terms of action opportunities, the physician could choose 
between the following options: stay at home, visit the doctor, 
emergency (i.e., call the emergency service). Furthermore, the 
physician was expected to add free text explaining the diagnosis 
and next steps to the patient. With a click on the diagnosis button, 

these selections were saved in the database, and an e-mail was 
sent to the patient (Fig. 7). 
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Figure 7. E-mail sent to the patient 

Source: developed by the authors 

4.3.4. Process Optimization 

ithin this example system, our participants were able to enter 
their symptoms from home. Thus, the staff knew about the 
condition of the patient in advance of his/her visit to the 
physician. In such circumstances, appointment scheduling 

becomes more reliable and straightforward, as the possible 
diagnosis is known (or can be assumed with a certain level of 
probability). Moreover, the physician can better organize visits in 
order to avoid cross-contamination between patients with 
different illnesses. Consequently, the deviation from the planned 
processing time should reduce. Likewise, waiting times for patients 
should be reduced, as fewer deviations from the scheduling plan 
are likely. 

The average processing time is also assumed to be lower, as the 
standard diagnostic questions have been answered prior to the 
face-to-face interaction with the physician. Theoretically, this 
should save time and make the diagnosis more accurate, as the 
medical professional can then focus on the more sophisticated 
questions required. The burden of administrative work may remain 
unchanged. However, if a hospital managed to incorporate 
documentation from the chatbot system into their existing IT 
system, the workload would be reduced, as a crucial part of the 
documentation would be typed by the patient and/or processed by 
the AI-based system. With improved scheduling, less 
administrative work, and more time for each patient, stress levels 
of doctors should decrease. Accordingly, both the physician and 
the patient would benefit from improved accuracy and a faster, 
more reliable diagnostic process. 

4.3.5. System Testing 

e tested our system with a group of 25 participants. Their 
mean age was 30 with a median of 24. Thirteen of the 
participants (52%) were male and twelve (48%) were female. 
The participants were asked to enter symptoms that they had 

experienced in the past and that had prompted them to consult a 
medical professional. After they had used the system, the 
participants were asked to fill out a questionnaire that asked about 
their perception of the chatbot, whether they could imagine using 
a similar tool in the future, and what costs and benefits they would 
attribute to such a system. The participants were also asked to 
estimate the time to diagnosis when they visited the doctor and to 
enter the diagnosis of the physician. While the participants were 
using the chatbot, the duration of each chat was measured. 

The medical student in the final year of his studies acted as the 
physician. He was asked to review the medical cases. He diagnosed 
all the patients on the basis of the data collected by the chatbot 
and the system’s recommendations. This diagnostic procedure was 
executed using the Web interface of the developed system. We 
also measured the time from the point of opening a patient record 
to the finalization of that patient’s diagnosis. The diagnosis of the 
physician and the diagnosis of the AI-based system were then 
compared with the actual diagnosis the patient received when s/he 
visited a physician. The AI-proposed diagnosis takes the form of a 
list of possible illnesses, sorted by their degree of probability. For 
our analysis, we took the first five diagnoses from the list and 
checked whether they corresponded to the patient’s condition. As 
some conditions can only be diagnosed through physical 



ISSN 2519-8564 (рrint), ISSN 2523-451X (online). European Journal of Management Issues. – 2021. – 29(4)  

examination of the patient, the physician was asked to name the 
diagnostic test he would execute to confirm a provisional 
diagnosis. We used this explanation to determine whether the 
physician would have been able to diagnose the patient correctly. 

4.3.6. Process Optimization Results 

ll of the participants completed the chatbot diagnosis 
successfully. On average, the chat with the diagnosis AI took 
each patient 5 minutes and 12 seconds. The mean chat time 
was 5:02 minutes for male participants and 5:23 minutes for 

female participants. Our physician needed on average 4 minutes 
and 40 seconds to review each case. The chatbot was accurate in 
76% of cases (meaning that the correct diagnosis was listed among 
the top five AI diagnoses). Male participants were diagnosed with 
an accuracy rate of 92%, whereas female participants were 
diagnosed with an accuracy rate of only 58%. With one exception, 
the diagnosis of the chatbot was always in the correct area. In 
other words, even if the correct diagnosis was not included in the 
list, the diagnoses listed by the system pointed in the direction of 
the body part or organ affected. The diagnostic accuracy of our 
physician was 100%, meaning that in each case his diagnosis was 
accurate or he named a diagnostic procedure that he would 
execute in a physical examination that would have resulted in the 
correct diagnosis. The physician asked for an additional personal 
consultation in 84% of cases. Only four patients were not required 
to see the doctor in person. 

Most of the participants stated that they did not have the feeling 
that they had spoken to a human (64%). Nevertheless, most of 
them (88%) felt understood by the AI, and the questions asked 
were related to their disease or its symptoms (84%). In a small 
percentage of cases (16%), questions were asked repeatedly. A 
majority of the test-patients (68%) stated that they could imagine 
using a similar system for physician consultation in the future. If a 
real physician were definitely to be included in the diagnostic 
process, that figure rose to 76%. Nevertheless, only 64% would use 
such a system instead of visiting a physician in person. Participants 
believed that the main advantage of an AI-based system would be 
“reduced waiting time” for the patient (76%), followed by “time 
savings” from patients not always having to see a doctor in person 
(72%), “reduced workload” for the physician (72%), “faster 
treatment” (48%) and “fewer failures” of diagnosis (4%). When 
asked about the disadvantages, 88% of the participants stated that 
they thought such a system would result in “less personal contact” 
with the physician, while 28% believed that they would have “no 
personal contact” at all. Most participants assumed that AI-based 
systems would result in “more diagnostic errors” (68%). Increased 
workload for patients or physicians was attributed only once (4%). 
In reality, based on the answers of the test participants, the 
average time needed for diagnosing a patient, without waiting 
time, was 15:26 minutes, with the longest diagnosis needing 50 
minutes and the shortest 2 minutes. The latter finding indicates an 
enormous growth in utility for both patients and physicians. 

5. General Discussion 

he simulation suggests that a shortened average processing 
time can increase the overall utility of the system. This is 
because less time spent on diagnosing a patient face to face 
means fewer actions are performed, which implies less 

administrative work. Moreover, if the processing time is generally 
decreased, the deviations from the processing time will also 
decrease.  

Nevertheless, if appointments are scheduled without buffer time, 
the results will be deviations in waiting time, impatience for 
patients, and stress for the physician, which will cause negative 
utilities. This is the reason why utility starts to decrease again when 
p ≤ SDp, i.e., when processing time is lower than or equal to the 
standard deviation in processing time. In contrast, when SDp 
becomes lower, treatments do not deviate much from the planned 
diagnosis time. Fewer delays occur, which reduces waiting time 
and stress for the physician and therefore increases utility. As a 

patient’s disease is usually not known before s/he visits the 
physician, appointment scheduling is susceptible to uncertainty. If 
physicians rely in their planning on a medium processing time, they 
risk generating high waiting times and dissatisfaction due to 
deviations from their planned appointment slots. As the simulation 
results show, high utility can be achieved, but only with a low 
standard deviation of processing time. 

From the test results, it appears that the diagnosis chatbot system 
saves time compared to the face-to-face diagnosis process. The 
physician spent an average of 16 minutes on diagnosing a patient 
face to face. On the other hand, the AI needed just 5 minutes for a 
diagnosis of 76% accuracy. Adding in the physician’s review time, 
the overall diagnosis time using the system took 10 minutes, which 
is a reduction of 37.5%. Nevertheless, in most cases, our physician 
needed a personal consultation for confirmation of the provisional 
diagnosis, and so additional diagnosis time was needed. Overall, 
patients perceived the chatbot-driven diagnosis as efficient and 
accurate and could imagine using such a system, especially if a real 
physician was also involved in the diagnostic process. We would 
like to emphasize here that we ran our model with the older 
version of 2019-API. The newer versions of the software 
incorporate COVID-19 symptoms along with several other updates. 
Researchers seeking to replicate our study should therefore use 
older versions of the API. 

Participants mentioned the same advantages as those assumed 
previously in this paper (time savings, shorter waiting times, and 
less work for the physician). We can therefore conclude that 
patients recognize the benefits of such a system and would be 
willing to use it. Nevertheless, the questionnaire results indicated 
that patients are concerned about losing contact with their 
physician and that they fear being incorrectly diagnosed in the 
absence of a personal consultation. However, in most cases the 
physician called for a physical examination, which showed the 
diagnosis to be accurate; thus, these concerns would mostly be 
rejected. 

As the computer model results show, a higher overall utility can be 
achieved by simultaneously decreasing the processing time and 
the standard deviation of the processing time. Our AI solution has 
been shown to decrease diagnosis time, as well as providing other 
opportunities for improvement. For instance, patients can enter 
their symptoms on a tablet provided by the hospital while waiting 
in the queue, or on a smartphone on the way to an appointment 
with a physician. This can enable medical professionals to plan an 
appropriate time slot for each patient, thereby reducing deviations 
from the planned processing time. Consequently, AI-driven 
systems in combination with a face-to-face visit to a physician may 
reduce waiting time and stress while also increasing the time 
available for more sophisticated analyses and tests. The resulting 
higher rates of accuracy and reduced waiting times could benefit 
both physicians and patients. 

The results of our study will be of great interest for practitioners as 
well as researchers. First, as the standard deviations of time during 
patient encounters play a crucial role in patients’ utility and, thus, 
in the system welfare, reducing these deviations should be the 
main focus of hospitals. We recommend the (Lean) Six Sigma 
methodology, as it focuses on standard deviations in processes 
(Coleman, 2012; Corn, 2009; Proudlove, Moxham, & Boaden, 2008). 
We also emphasize that organizations such as hospitals should 
develop an organizational capability with regard to (Lean) Six 
Sigma instead of conducting ad hoc process optimizations. It is 
important to measure the capability permanently and rigorously 
(Bogodistov & Moormann, 2019) and to report results in an easily 
understandable manner (Bogodistov, 2017; Moormann, Antony, 
Chakraborty, Bogodistov, & Does, 2017). Research in the application 
of (Lean) Six Sigma in combination with AI-based systems seems to 
be very promising. Second, the application of AI-driven tools may 
reduce processing time. Moreover, part of the diagnosis procedure 
can be transferred from the encounter itself to other parts of the 
process, e.g., while the patient is waiting in a queue or sitting on 
public transport on the way to the encounter. Further research 
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should consider the linear and non-linear effects of AI-driven 
solutions and introduce both into queuing theory. We hold it 
especially important to investigate not only the process 
throughput but also the affective states of patients and physicians, 
as the quality of their interaction will change. 

6. Limitations 

ur model was run using a normal distribution for the 
treatment time. Although the normal distribution was found 
to be the best fit to the data, it performed poorly on the 
Kolmogorow–Smirnow, Anderson–Darling, and Chi-square 

tests, all of which indicated that the hypothesis that these data 
follow a normal distribution should be rejected. Using a different 
dataset might therefore result in different modeling results. 
Furthermore, the utility-based model assumes a fixed number of 
patients. If processing time can be reduced, the physician might be 
able to see more patients in a day, which would increase the 
system’s utility. Future studies should include this option in the 
model. 

Because of the structure of the model, the influence of each part 
of the utility calculation is determined by the utility determinants. 
If the utility determinants are set differently, the results will vary. 
Nevertheless, even if the applied utility assumptions do not hold, 
the improvements in utility will still be present. The influence on 
the overall utility depends, of course, on the relative (assumed) 
weight of the assumptions. The same applies to the different 
distribution of processing times; if the distribution deviates slightly 
from the one used in this paper, the results will vary, but the 
improvements should still be observable. 

Our test of the system was executed on a small scale and with a 
medical student who does not diagnose primary care patients on a 
regular basis. The results of a test under everyday ambulatory care 
conditions with an experienced physician might vary from those 
reported in this paper. To determine the effects under real-life 
conditions, the system will have to be retested in future research. 
Nevertheless, the goal of this study (to establish whether even a 
simple AI-driven chatbot could help to reduce diagnosing time) has 
been achieved. Moreover, we have uncovered further issues for 
investigation, including trust in AI and willingness to have personal 
contact with the physician. We hope that further research on a 
larger scale will shed light on the fascinating topic of the use of AI 
in healthcare from the point of view of process management. 
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