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IoT networks are so voluminous that they cannot be treated as individual devices, but as 
populations. Main aim of the paper is to create a comprehensive method for predicting 
failures taking device variance into consideration. We propose using data fusion of happen-
stance observations (resets and failures) to better estimate device parameters. We propose 
using methods of population analysis in Bayesian statistics to estimate failure times investi-
gating only a part of the population. For this purpose, we use multilevel hierarchical Baye-
sian model and provide it with post stratification. We propose model assumptions, construct 
the model and evaluate it, and perform computations using Hamiltonian Monte Carlo. This 
method is known as the Bayesian workflow. We have analyzed three different models show-
ing that, in case of small device variance, it can be ignored, or at least compensated, while 
significant differences require hierarchical modeling. We also show that hierarchical model 
shows significant robustness to a small amount of data. We have shown attractiveness of 
Bayesian approach to modeling failures of IoT devices. Ability to diagnose and tune models, 
and assure their computational fidelity is a great advantage of Bayesian workflow.
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1. Introduction
We can say, that Internet-of-Things (IoT) devices have become a 

ubiquitous aspect of current industry and life. The remote monitoring 
systems using Internet of Things include vehicle or assets monitor-
ing, people/pets monitoring, fleet management, water and oil leak-
age, energy grid and power plant monitoring etc. Main applications 
of IoT devices include on-line monitoring and predictive maintenance 
of industrial equipment. Their use provides both process monitoring 
for constant quality assurance, and condition monitoring in order to 
prevent unplanned downtimes. The machines and devices diagnostics, 
their maintenance and methods of preventing failures with the use of 
IoT relate to various fields such as Industry 4.0, management of trans-
port devices or medical devices.

Currently rising in relevance and especially interesting field are the 
IoT networks comprising multiples of same device. Example would 
be an industrial plant sensor network, which collects data regarding 
the operation of the entire installation at various points. Failures of 
sensor devices are not uncommon, especially if the devices are cheap 
and/or mass produced. This, of course, causes degradation of cov-

erage, but also introduces a multitude of problems. Replacement of 
networked devices during plant operation might be difficult – for ex-
ample, because of physical accessibility. Usual reasons for switching 
to wireless solutions are difficulties with providing necessary cable 
connections. IoT device failures introduce difficulties in energy man-
agement, while they are usually low power solutions, their number 
complicates matters. This is even more troublesome for battery oper-
ated devices.

As IoT networks are not failure free, we need to consider acciden-
tal failures, such as broken communication links or failures of cyber 
instances and cyber-attacks. Even sensors made in the same factory 
can have significant variance. Thus ensuring the robustness of IoT 
devices and predicting the failure of these devices is a very important 
issue. In this subject, we can divide research studies into the follow-
ing categories:

IoT devices anomaly detection,• 
attack detection in IoT,• 
self-healing IoT sensors,• 
cascade-of-failures across domains.• 

J. Baranowski (ORCID: 0000-0003-3313-581X): jb@agh.edu.pl



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 2, 2022 249

Because of advances in sensor monitoring technology, low-cost 
solutions, and high impact in various application domains, IoT sys-
tems are becoming increasingly popular, and anomaly detection has 
attracted considerable attention from the research community Fahim 
and Sillitti [9] present a literature review of anomaly detection in IoT 
systems. They identify several research gaps related to data collec-
tion, analysis of unbalanced large data sets, limitations of statistical 
methods in processing massive sensory data. They note that a few 
research articles deal with predicting anomalous behavior in real-
world scenarios. In anomaly recognition, the focus of most papers 
is on automatic detection of anomalies in data. Key considerations 
are point, contextual, and collective anomalies. Rarely, they focus on 
relationships of data anomalies with sensor failures. Kaya et al. [15] 
present the prediction of sensor failure because of aging or environ-
mental factors in the food industry. They base proper food quality 
assessment on the correct operation of the sensors used. The authors 
examine the loss of data, in order to tolerate for the failed sensor and 
keep the overall prediction accuracy acceptable. They propose a Sin-
gle Plurality Voting System (SPVS) classification approach, applying 
K-Nearest Neighbor (kNN), Decision Tree, and Linear Discriminant 
Analysis (LDA) as the base classifiers.

Vangipuram et al. [23] present detection of missing values in IoT 
environment based on open sourced data. The authors presented a 
technique for imputation of missing data values, a classifier that is 
based on feature transformation to perform classification, and an im-
putation measure to compute the similarity between any two instances, 
also useful as a similarity measure. They tested the performance of the 
proposed classifier using imputed datasets got by applying Kmeans, 
F-Kmeans and the proposed imputation methods. Moghaddam and 
Muccini [20] present an overview of methods, techniques and archi-
tectures for Fault-tolerance in IoT. Failure can occur at all levels of 
the Internet of Things (IoT) application architecture, e.g., oversight 
of sensor nodes, failure of network links, and failure of components 
that process and store data. For this reason, fault-tolerance (FT) has 
become a key issue for IoT systems.

Anomaly detection and prediction is the first step to secure IoT 
systems. The goal of IoT security is to protect assets, ensure the pri-
vacy, confidentiality, availability, and integrity of communications in 
the IoT ecosystem. Therefore, IoT security has recently gained the 
attention of researchers in attack detection. Hasan et al. [14] analyzed 
performances of several machine learning models and compared them 
in attack and anomaly prediction on the IoT systems accurately. The 
authors consider several machine learning (ML) algorithms, such as 
Logistic Regression (LR), Support Vector Machine (SVM), Deci-
sion Tree (DT), Random Forest (RF), and Artificial Neural Network 
(ANN). Diro and Chilamkurti [8] present the application of deep 
learning to enable attack detection in the social web. The authors com-
pare a deep and a shallow neural network using open source dataset 
and show that the deep model is more effective in detecting attacks 
than its shallow counterparts. Manimurugan et al. [18] also consider 
deep machine learning for anomaly and intrusion detection in IoT. 
They propose a model of the Deep Belief Network (DBN) algorithm.

Self-healing IoT sensors are the next research area. Lin et al. [16] 
propose a solution called SensorTalk for automatic detection of poten-
tial sensor failures and calibrate the aging sensors semi-automatically. 
They have proposed both analytical and simulation models for the 
detection delay selection so that when a potential failure occurs; it 
detects it early enough without causing too many false alarms. Cas-
cading failures are another important topic. In the Internet of Things 
(IoT), various devices work together to collect data, communicate in-
formation to each other, and process it intelligently. Because of the 
interactions and dependencies between IoT devices, a malfunction of 
one of them can trigger a cascade of failures. Xing [27] systematically 
reviews cascading failure modeling and reliability analysis method-
ologies, as well as failure mitigation strategies. However, research 
on cascade failure prediction is lacking. Wang et al. [25] consider a 
sequence of failures due to randomly failed physical links (and simul-

taneous failures of cyber nodes). Makhshari and Mesbah [17] present 
new research on the challenges of IoT. The authors provide the first 
systematic study of bugs and challenges that IoT developers face in 
practice through a large-scale empirical investigation. They collected 
5,565 bug reports from 91 representative IoT project repositories and 
categorized a random sample of 323 based on the observed failures, 
root causes, and the locations of the faulty components.

Aleš et al. [1], who consider effectiveness of production and main-
tenance in Industry 4.0 installations with a focus on Industrial IoT, 
present an interesting approach. In their work, they propose original 
calculations of Nakajim’s OEE (overall equipment effectiveness) in-
dicator for the entire production and monitoring line. This approach, 
however, relies on relatively simple mathematical models.

As we can conclude, from the observed results, a lot of work was 
done in the anomaly detection, failure classification and security. The 
condition of entire networks is a different matter. Efficient diagnostics 
of large scale IoT device networks are very difficult. Because of de-
vice number, maintenance has to be worked in large scale and predic-
tive solutions. Such networks, especially comprising similar devices, 
can be viewed as populations of sorts, and this is a potential for a new 
method. The hypothesis that we want to verify in this work is it is 
possible to use methods usually reserved for populations to analyze 
networks of IoT devices. We wanted to find out if such methods can 
provide useful results in the technical context, especially for reliabil-
ity analysis.

Population behavior is normally a domain of social sciences and 
psychology. That is why statistical modeling thrives in these areas, 
with special mention to Bayesian statistics. Bayesian statistics is an 
approach allowing for inference in the presence of uncertainty (A. 
Gelman et al. [11]). And in case of analyzing mass-produced prod-
ucts, such as IoT devices, one has to consider production variability 
and systematic behavior, not unlike ‘traditional’ populations. This 
is a field where most successful are multilevel, hierarchical models 
(Bürkner [6]; Browne and Draper [5]; A. Gelman [12]). There are cer-
tain results of Bayesian statistics in the reliability field, as for example 
Andrzejczak and Bukowski [2] have considered Bayesian approach 
to model Weibull distribution of expected lifetime. Currently, there 
is a substantial field of methods allowing practical diagnostics and 
evaluation of such models (Vehtari, Gelman, and Gabry [24], Gabry 
et al. [10]; Mikkola et al. [19]). Justification for reliance on popula-
tion analysis methods also comes from the fact that collection of data 
regarding IoT behavior is rarely a goal itself, but it’s collected as hap-
penstance. So instead of planned validation experiments, we can log 
information such as restarts, package losses, and times of failure.

The goal of this work is then to provide a conceptual design of a 
Bayesian method to estimate failure times (or equivalently remaining 
useful time). Main contributions are:

creation of data fusion method, joining restart and failure time • 
data, to determine underlying state of system,
analysis of methods for modeling pooled data to compensate for • 
small variability in the network and their shortcomings when vari-
ability increases,
creation of a multilevel hierarchical model that captures group • 
variability and providing complete design analysis in the aspect 
of prior selection and computational faithfulness,
post-stratification with a hierarchical model, using limited data • 
about a sample of population, to predict statistics of the entire 
group (with potentially different composition) and validating ro-
bustness with limited data.

We organized paper as follows. In the following section, we pro-
vide basics of Bayesian inference methods used for the rest of the 
paper. We describe the Bayesian basics, prior and posterior predictive 
checks, simulation based calibration and computational framework 
that was used. Then we follow with the description of considered case 
study. Next three sections cover pooling models for data with similar 
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groups (no faults), multilevel model and post-stratification analysis. 
Paper ends with conclusions.

2. Materials and Methods
In this section, we will cover the basics of so called Bayesian work-

flow (Gelman et al. [13]), which is a collection of practices allowing 
principled and responsible modeling of phenomena. We cover basics 
and concepts we use in this paper. We also describe the computational 
setup and express the assumptions of data fusion of observational data 
for IoT maintenance.

2.1. Bayesian inference
We will now introduce the main ideas of Bayesian modeling, which 

encapsulate information and data as a highly structured collection of 
probability distributions. Obviously, such a defined model fully real-
izes the requirements of transparency and interpretability, as we can 
instantly recover information about not only feature influence but also 
their uncertainty.

Principled Bayesian modeling (otherwise known as Bayesian 
workflow) relies on creation of highly customized models that will 
capture phenomenon of interest. Usually actual process depends on 
some kind of latent system, and we can observe it through a measure-
ment process. Main strength of Bayesian approach is the ability to 
jointly model this process and the latent system. This is a model of the 
actual data generating process. Our measurement process results in 
observations y , that belong to an observation space, Y . On the other 
hand, models have their assumptions, or structures from the assump-
tions space  . Parameter 𝜃 identify structured models, representing 
model configurations. Our observational model on the Y ×  is then 
the likelihood:

 π θ y |( )  (1)

Likelihood together with a prior distribution π θ ( )  gives a Baye-
sian joint distribution:

 π θ π θ π θ  y y, |( ) = ( ) ( )  (2)

This distribution is a model representing measurement process and 
the expertise about possible model configurations. Having actual ob-
servations we can incorporate them together into a posterior distribu-
tion:
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which is our main tool for inference. 

Important aspect in practice becomes model utility verification. In 
particular, we need to address prior selection, analysis of prior predic-
tive distribution and simulated based calibration.

2.2. Prior predictive checking
Main tool for prior distribution selection (in a way that allows en-

coding our expertise) is the prior predictive check. For that, we use the 
prior predictive distribution:

 π π θ θ y y( ) = ∫ ( ), ,d  (4)

This distribution allows as to average our data generating process 
over the prior. This is then a marginal distribution of possible meas-
urements given our expertise. A reasonable prior distribution will pro-

vide us the information about observational space expected by the 
model that it is consistent with observed data. In case of low dimen-
sional problems observation of possible measurement distribution is 
enough. In multidimensional cases we need to verify distributions of 
some desired statistics of both simulated and real measurements. 

Fortunately, we do not need to construct the distribution (4) explic-
itly integration might be difficult, impractical or simply not possible. 
We can, however, approximate it (or pushforward distributions of sta-
tistics) using joint distributions samples. Sampling:
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is equivalent to sampling from the joint distribution (2). In order to get 
samples from pushforwards we need to evaluate the statistics of inter-
est on values of y . We compute Actual prior predictive checks using 
either visualizations or interval coverages of appropriate marginals. 

2.3. Posterior predictive checking
One of the main tools allowing to verify model validity is to verify 

how predictions generated by the model behave regarding data. Main 
tool for that is the posterior predictive distribution:

 π π θ π θ θ  y y y y| | | ( ) = ∫ ( ) ( )d  (8)

Similarly to the prior predictive distribution, we do not integrate 
directly, but first sample the posterior distribution of parameters, and 
then use them to sample the predicted outputs. This is an extremely 
useful tool, as it allows to compare how the model fits the data and 
how well it captures the uncertainty.

2.4. Simulated-based calibration
Theoretical tools for model analysis are only worth as much as our 

ability to compute them. In case of Bayesian models we usually need 
to use Monte Carlo sampling in some variant (in this paper we use 
Hamiltonian Monte Carlo). HMC allows for analysis of certain types 
of problems, like non-identifiability, by analysis of divergences, how-
ever there are other issues that make exploration of the posterior (or 
joint distribution) problematic. 

One theoretical tool that we can use for verification of HMC sam-
pling validity is the self consistency of posterior. This property means, 
that posterior distributions fit using simulated data from prior predic-
tive distribution recover the prior distribution when averaged. We can 
formulate it as [11]

 π θ π θ π θ θ  ' '| d d( ) = ∫ ( ) ( )y y y, .  (7)

This is of course needs to be considered in the context of HMC 
samples. Talts et al. [22] proposed to compare prior distribution and 
estimated average (7) using rank statistic. If those distributions are 
equivalent, the distribution of ranks should be uniform. This requires 
a following procedure. First, we sample parameters from priors. Next, 
we simulate outputs from corresponding prior predictive distribution, 
and use them to estimate parameters (in other words, to fit the poste-
rior). We then use prior samples of parameters to compute ranks with 
respect to sampled parameters from posterior. Because of possibility 
of autocorrelation influencing rank statistic the samples we thin the 
samples (usually by a factor of 8). This is repeated many times (usu-
ally 1000) and histograms are computed and evaluated for uniformity. 
Deviation form uniformity indicates computational problems. 
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2.5.	 Multilevel	regression	with	post-stratification	(MRP)
This method (sometimes called “Mister P”) is a statistical technique 

used for correcting model estimates for known differences between a 
sample population (the population of the data you have), and a target 
population (a population you would like to estimate for). There are 
multiple success stories of this method. For example, Wang et al. [26] 
using political surveys for Xbox gamers could construct very reliable 
predictions of U.S. presidential election results. This idea is popular 
in social sciences, but as we show here, we can also use it in technical 
applications.

The post-stratification is essentially using a fitted model for data of 
a population of different composition than the training dataset. Mul-
tilevel regression aspect is representing using Bayesian models for 
partial pooling of data from different groups within the population. 
This allows for capturing both similarities and differences between 
groups.

2.6. Computational setup
For Bayesian computation, we have used Hamiltonian Monte 

Carlo algorithm, for which the currently most advanced software is 
Stan (Carpenter et al. [7]). Hamiltonian Monte Carlo algorithm (see, 
for example, paper by Betancourt [3]) (also known as hybrid Monte 
Carlo), is a Markov chain Monte Carlo method used for sampling of 
probability distributions. The main idea behind HMC is to use Ham-
iltonian dynamics equations to simulate movement of points on the 
“surface” of probability distribution to construct proposal distribution 
for Metropolis-Hastings algorithm. Hamiltonian differential equations 
are automatically created by automatic differentiation of probability 
distribution and then solved with symplectic integrators (preserving 
volumes and differential forms, time reversible and limiting diffusion 
of solutions). The samples from HMC have smaller autocorrelation 
than, for example, random walk Metropolis-Hastings algorithm and 
HMC is more efficient in exploration of typical sets of probability 
distributions. Moreover, HMC has self diagnosis properties as diver-
gences (numerical instabilities in solutions of differential equations) 
indicate either non-identifiability or problems with posterior geom-
etry.

We performed independent computation on Apple Mac Mini with 
Apple M1 CPU and 16 GB RAM and on Apple MacBook Pro with 
Intel Core i9 CPU and 32 GB RAM. Computation results were identi-
cal on both platforms, with approximately 14% speed advantage for 
the former. All the codes are available in the repository listed at the 
end of the paper.

3. Case study – Diagnostic data fusion
In case of multi-element systems, starting with process industry, 

through complicated machinery to IoT networks, detailed diagnos-
tics of each part is not possible. One cannot provide sensors for each 
part, that is why traditional methods of diagnostics are useless. Failure 
phenomena in all kinds of devices are hard to model, as they usually 
are tangent to fundamental behavior of systems. It can have multiple, 
subtle underlying causes. That is why we have two major problems 
to handle: lack of dedicated data, and no basis in first principle mod-
eling.

That is why we need to consider observational data that can be 
available with little overhead, in case of IoT devices those are number 
of resets and total lifetime of device (referred in this paper as failure 
time). We will create a data fusion [21] of these two disparate sources, 
in order to provide information about underlying parameters of the 
model and to predict failure times of devices.

We give the following basic assumptions:
There are underlying causes of increased number of restarts and • 
approaching failure.
This relationship is approximately monotonous: high probability • 
of restart reduces expected failure time.

The approximate model of the underlying cause is a parameter • 
with an appropriate link function corresponding to the state of the 
system (its health).
There is a possibility of a variance between batches of the same • 
(or functionally identical) devices, but with some general similar-
ity.
Distribution of restarts and failure time is Poisson and Gamma, • 
respectively.
Certain number of restarts are normal.• 
Very short failure times are rather unlikely.• 
We have an observational data of a few devices, but dataset has • 
representation of this variability.

Fig. 1. Relationship between resets occurring during operation and time of 
failure of the device does not have an obvious relationship. However, 
we can observe a group of devices that are characterized by a large 
amount of resets and short lifetime that come from the same batch. 
Rest of the batches are mixed. Considered dataset comprises 200 sam-
ples of pairs of number of resets and registered lifetime

We provide a case study covering an extended network of 1000 
similar IoT devices. We have data from 200 devices that have failed; 
we have registered their failure time and number of resets that oc-
curred. Devices came from four batches approximately evenly repre-
sented in the dataset. We artificially generated data, in a way fulfilling 
the assumptions. Data, together with generating code, are available in 
the repository. We present registered pairs of resets and failure times 
in the figure 1. Color of the points corresponds to batches from which 
they come. As we can observe, three batches express a similar behav-
ior, while one (marked in the dataset as third) exhibits short time till 
failure and many resets.

In the following sections, we will cover three aspects of modeling:
Modeling based only on the healthy data. This is a typical situ-1. 
ation, where we have only accessed to normal operation of the 
system. We will try to cover such a situation with a simple 
model, pooling all the data together, and then we will analyze 
how model behaves with addition of a faulty batch.
Modeling entire dataset with a full hierarchical model. Because 2. 
of the increased model complication, we will cover the entire 
analysis aspect of prior verification and analysis of computa-
tional faithfulness.
Post-stratification. We will then perform the post-stratification 3. 
using the hierarchical model on the entire 1000 device network 
to predict the failure time of the given percentage of the entire 
network. We will also present the robustness analysis of the 
model. We will consider how the model behaves when, instead 
of an original sample of 200 devices, it would consider only its 
subset. We will verify how it would influence the post-stratifi-
cation, especially its confidence interval.
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4. Pooling of all data in the normal operation

The first case we want to consider is also a very common one. 
Often, system data collection is not a planned experiment, but a hap-
penstance, or casual observation. And obviously the most operation 
occurs under normal conditions, so data about abnormal cases are 
scarce. That is why we focus on an example of such situation in the 
considered case. In the figure 2, we see that for three batches behavior 
of devices is relatively similar, with a bulk of points concentrated in 
one space.

Because of the observed similarity, we attempt to create a relatively 
simple model, still adhering to the assumptions. We, however, ignore 
the information about batches to create a model capturing entire pop-
ulation. This is not an uncommon approach, as not knowing about 
group variance it is natural to treat all object similar way.

4.1. Poisson model
We propose a three-parameter model with combined likelihood. 

This likelihood joins both information about resets and the lifetime.
We introduce two additional parameters (besides system health β):
A reset baseline • λR  which is added to β and through exponential 
link function serves as a Poisson distribution’s rate.
A shape parameter • κ  of Gamma distribution, for which (also via 
link function) β serves as a scale.

Link function is necessary to ensure the positivity of coefficients, 
while allowing efficient exploration of parameter space by Hamilto-
nian Monte Carlo.

We present graphical representation of this model in the figure 3, 
and the mathematical formulas for it are:
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Prior parameters were reasonable guesses to comply with assump-
tions and not over-saturate the exponential. We do not give here de-
tails of prior predictive checks because of space constraints. Code 
given in the repository allows such an analysis.

We present summaries of samples from the posterior distribution 
in the table 1. As we can observe, the parameters are relatively well 
concentrated with λR  having the smallest standard deviation of all 
(relative to the mean). Verifying posterior predictive samples in the 
figure 4 we see, that while for the simple dataset failure times are 
captured rather well, the predictions of resets have not represented 

the variance of the sample. This suggests that a more dispersed model 
can improve it.

Fig. 4. Posterior predictive distributions of proposed simple model Poisson 
in reduced dataset are reasonable, but not a perfect fit. We compare 
ribbon plot of sampled data histograms with the histogram of original 
data. While the more important failure time (top image) shows rea-
sonable consistency, there is a systematic difference for predictions of 
number of resets (bottom image). Observed samples are much wider, 
while predicted ones are well concentrated around the mean

Fig. 3. As an initial attempt of modelling we propose a simple Poisson model, 
where all devices are characterized by parameter β which is influenc-
ing both resets and time of failure. In the proposed model structure we 
have three parameters. General reset baseline λR  is added to system 
parameter and transformed by exponential link function to a Poisson 
distribution. Link function is necessary to keep positivity of Poisson 
distribution’s rate. Failure time is modelled as a Gamma distribution 
with shape parameter κ  and as the scale we use β, again through link 
function. For the purpose of image clarity we have denoted number of 
resets per device as iy  and time of failure of device asτ i

Fig. 2. For the simplified analysis, we consider data from batches numbered 
as 1, 2 and 4, which exhibit similarity to each other and similar life-
times. Data includes no more than 30 resets per device
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4.2. Dispersed Poisson or Negative Binomial model
One of main limitations of Poisson models (e.g. Poisson regres-

sion) is that this distribution enforces mean and variance to be equal. 
An attractive solution for this requirement is the Negative Binomial 
distribution, in the so called location-overdispersion parametriza-
tion1:

NegBinomial2 n
n

n

n
| ,µ φ

φ µ
µ φ

φ
µ φ

φ

( ) =
+ −







 +








 +










1       (11)

The mean and variance of a random variable 
n n∼ ( )NegBinomial2 | ,µ φ  are:

  n n[ ] = [ ] = +µ µ
µ
φ

and Var
2

. (12)

Seeing that Poisson µ( )  has variance μ, negative binomial distri-
bution has its variance increased by an additional µ φ2 0/ > . This 
gives much more flexibility in modelling of distributions of integers. 
The only problem with this parametrization, is that only φ ∞→  re-
turns to Poisson distribution. That is why it is more convenient to 
construct model using ψ φ= −1 , which actually covers the overdis-
persion, while ψ = 0  returns (computationally) the original Poisson. 
We will not provide details of the implementation, but the code is in 
the repository.

Using a negative binomial distribution, we formulate the model in 
the following form (graphical representation in the figure 5):
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Regarding prior on φ , we actually set uniform, bounded from be-
low by 0 prior on ψ φ= −1  This essential gives a reciprocal of square 
for prior on φ , but it does not influence computation, and would only 
clutter the formulas. In the code, we represented it by setting a lower 
bound of 0 on the parameter.

We present summaries of samples from the posterior distribution 
in the table 2. All the parameters are much more uncertain than in the 

1  see for example Stan Functions Reference   
https://mc-stan.org/docs/2_28/functions-reference/nbalt.html

previous case, which actually is a desired quality. As we know, data 
came from different batches, and capturing variance between them 
requires more uncertain parameters. β parameter has even unknown 
sign (as 67% confidence interval has zero somewhere around the mid-
dle), but this is not as important because of link function. This uncer-
tainty, however, impedes the predictive quality of failure time. As we 
can see in the figure 6, the ribbon plot of failure time predictions is 
much wider, and the actual median prediction is well below observed 
data. Ability to capture resets variance in the right image in figure 6 
results in unreliable prediction for failure time in the left image. Most 
uncertainty is especially for short failure times.

As we can observe, both models pooling all the data together have 
their shortcomings. For completeness, we present how they predicted 
resets and failure times for individual batches. We can observe it in 
the figure 7. As we can see, predictions for the population are not rep-
resentative of the individual groups. This puts into question how well 
both models would function in the full dataset.

Table 1. Sampling of posterior distribution of the simple model does not provide difficulties. All parameter estimates are well concen-
trated around their means. Markov Chain Monte Carlo standard errors are small, two orders of magnitude below parameter 
standard deviations. Effective sample size of both bulk of distribution and its tails is on the level between 16% and 19% (total 
number of samples is 4000) what is a reasonable result. Potential scale reduction factor , R̂  is reasonably close to 1 indicating 
good mixing of Markov chains

Mean st. dev. MCSE ESS (bulk) ESS (tail) R̂

Rλ 3.678 0.104 0.004 652.0 703.0 1.0

κ 4.617 0.441 0.017 666.0 775.0 1.0

β −0.951 0.102 0.004 647.0 739.0 1.0

mean – mean value of variable, st. dev. – standard deviation of variable, MCSE  – mean of Monte Carlo standard error for variable, ESS (bulk) – ef-
fective sample size of samples from the bulk of distribution of variable, ESS (tail) – effective sample size of samples from the bulk of distribution of 
variable, R̂  – potential scale reduction factor

Fig. 5. In order to better capture the variance in device resets in the 
case of similar groups we are considering the overdispersed 
integer model, governed by the negative binomial distribution. 
The general assumptions are not modified – all devices are 
characterized by parameter β which is influencing both resets 
and time of failure. Similarly to the poisson model, we are add-
ing the exponential link and a reset baseline λR . We are add-
ing however the over-dispersion parameter which functionally 
behaves like poisson distribution, but with variance different 
from the mean. Failure time, without changes, is modelled as a 
Gamma distribution with shape parameter κ  and as the scale 
we use β, again through link function. For the purpose of im-
age clarity, we have denoted number of resets per device as iy  
and time of failure of device as τ i
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4.3. Inference on full dataset
While simple models worked rather well evaluating pooled data 

for similar groups, introduction of the less similar group (batch, see 
Fig. 1) show their weakness more significantly. In order to save space, 
we will not provide here full results of sampling (they are available in 
the repository), but we just give some main takeaways:

Sampling of both models was rather similar regarding parameter • 
concentration and HMC behavior.
We observed that • λR  increased significantly for the Poisson mod-
el (mean of 5).
While both models incorporated the same distribution for failure • 
time, its coefficients were completely different. For this case β 

Fig. 6. Posterior predictive distributions of proposed dispersed model im-
prove the predictive ability in the aspect of resets (bottom image) but 
the increased uncertainty of parameters results in very wide confi-
dence intervals for short failure time occurrences (top image)

Fig. 7. Posterior predictive distributions of Poisson (top two rows) and negative binomial (bottom two rows) show that neither model using pooled data can capture 
behavior within individual groups. Batch 3 is missing, as it contains the faulty data that we will introduce to the model in the next section

Table 2. Sampling of the posterior distribution of the negative binomial 
model is computationally more efficient. Effective sample sizes 
start at 32% of original sample size, even getting over 50% in one 
case. R̂  is very close to 1. However, uncertainty of parameters is 
much more significant, up to the situation that we cannot confi-
dently establish the sign of β. Markov Chain Monte Carlo standard 
errors are also larger, but this is explainable by increased vari-
ance. This is justified because data comes from different distribu-
tions, and some compromises had to be made

Mean st. dev. MCSE ESS (bulk) ESS (tail) R̂

Rλ 2.957 0.925 0.026 1302.0 1448.0 1.0

κ 7.983 0.967 0.020 2303.0 1910.0 1.0

β -0.230 0.926 0.026 1301.0 1474.0 1.0

φ 7.632 1.367 0.028 2438.0 2076.0 1.0

mean – mean value of variable, st. dev. – standard deviation of variable, 
MCSE  – mean of Monte Carlo standard error for variable, ESS (bulk) – 

effective sample size of samples from the bulk of distribution of variable, 
ESS (tail) – effective sample size of samples from the bulk of distribution 
of variable, R̂  – potential scale reduction factor
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was strongly negative for Poisson model, and mostly positive for 
the negative binomial one.
Neither model could capture behavior of resets. In the figure 8, • 
we can see that Poisson model is stuck between actual data and 
negative binomial is very vague.
We are not presenting failure time predictions, nor individual • 
group predictions, as they are rather uninteresting. Complete set 
of figures with generating code is available in the repository.

These issues show that construction of a model cannot ignore group 
behavior, especially if we expect groups to differ from one another. In 
case of IoT devices, changes in manufacturer, model or even produc-
tion batch can introduce significant deviations. That is why we need 
to focus on more sophisticated models.

5. Focusing on individual batches – Multilevel hierar-
chical model

We propose to use multilevel hierarchical model. Batches will 
share the same distribution type, but with different parameters, com-
ing from a common distribution with unknown hyper-parameters. We 
give proposed model structure in the figure 9 in both centered and 
non-centered parametrization. In our code, we only use the latter be-
cause of its computational efficiency. We avoided providing detailed 

equations, because they are more readable from the 
code or diagram than from equations.

Main justifications of the model are following:
We assume general structure of Poisson-Gamma • 

model for each group.
We keep reset baseline • λR  and shape κ  identical 

for each group.
Multilevel effect come from the individual ‘health’ • 

parameter βi  for each group (batch) of devices.
Hierarchy is in the regularization enforced by the • 

assumption that all βi  come from the same Normal 
distribution with hyper-parameters µb  and σb . 
Hyper-parameters have respectively priors as stand-
ard normal, and half-normal with standard deviation 
of 2.

Non-centered parametrization is functionally • 
equivalent, but is computationally more efficient 
to consider group parameters from standard normal 
and scaling and shifting them by parameters.

5.1.  Prior predictive checking
 Because the model is much more complicated, 

we provided a thorough prior predictive checks il-
lustrated in table 3 and with prior predictive distri-
butions in the figure 10. The general idea is to sam-
ple parameter values from priors. So using priors 
we have simulated 1000 times parameters for 200 
devices split into 4 batches (with the same composi-

tion of batches as in original data) and then using those parameters 
sampled from appropriate Poisson and Gamma distributions corre-
sponding pairs of resets and failures. Having such samples, we have 
computed relevant statistics. In table 3, we can see that statistics of in-
dividual parameters are consistent with priors. We visualize simulated 
data in the figure 10. We have used the same bins as with histogram 
of original data and computed histograms for each sample (of 200 
devices), then for each bin we have computed quantiles obtaining the 
visualized ribbon plots. Data simulated on priors is obviously zero 
inflated, but it does not contradict the original data, as it fits within 
the ribbon plots.

5.2. Simulation-based calibration
To ensure computational fidelity, we have performed full simula-

tion-based calibration. We did this to avoid situation, when compli-
cated model geometry provides difficulties in proper exploration of 
typical set by HMC in Stan, and also to avoid potential coding errors. 
Using a similar scheme as with prior predictive checks, we have simu-
lated 1000 samples of 200 devices and their corresponding resets and 
failure times. For each of those samples, we have performed MCMC 
sampling of the multilevel model using them as data. Then, for each 
of sampled parameters, we have computed the rank statistic, of how 

Fig. 8. Posterior predictive distributions of resets for Poisson (left image) and negative binomial (right image) models show that neither model can handle introduc-
tion of more different groups. Poisson distribution just give prediction between the observed data, and the negative binomial model is over-inflated at zero

Fig. 9. In order to capture between group behavior, we used a multilevel regression model with use 
of batch indicator as predictor with individual intercepts for each group. Because we are 
considering the same type of device expected behavior is similar, that is why the model is hier-
archical with normal prior for intercepts with hyper-parameters μb and σb. Natural, so called 
‘centered’ parametrization (left image) is, however, very inefficient computationally. We do not 
provide detailed analysis here. Those problems are not present in equivalent ‘non-centered’ 
parametrization (right image)
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many samples were smaller than the one of the model which generated 
the data. Distributions of those ranks should be uniform. We verified 
that by thinning samples 8 times and plotting histograms. We present 
histograms of ranks in the figure 11. All are reasonably uniform.

5.3.	 Posterior	predictive	(retrodictive)	distributions
We complete our analysis with posterior predictive checks, which 

work as an actual validation of the model. As previously, we can veri-
fy that using ribbon plots and comparing them to the data. In this way 
we can consider them retrodictive, as we want to obtain the same data, 
that we used for the inference.

In the figure 12, we can see that, especially in the aspect of resets, 
we have obtained very good results. While median of predicted failure 
times is consistent with data, previous models also were not bad in this 
aspect. However, in case of resets we can see, that model well identified 
groups of devices. This is also visible in plots for the individual groups 
(figure 13) as the model coefficients well represented each batch.

Finally, we can observe the parameter fits in table 4. We can see the 
relatively good concentration of parameter values for each group iβ . 
What is perhaps interesting, such concentration is visible in ‘centered’ 
parameters and not in the ‘non-centered’ that are the part of the actual 
model. Hyper-parameters have significant uncertainty, allowing all 
the individual batches to be captured. As we can also see, batch no. 3, 
the faulty one, has significantly different coefficient.

6. Post-stratification and robustness analysis
Having a well-fitted model it was possible to perform post-stratifi-

cation. We have tested it on a sample of 1000 devices with only their 
batch number recorded. Our goal was to analyze following statistics:

after what time 20% devices will fail,• 
after what time 50% devices will fail.• 

The idea of post-stratification computationally uses the samples 
from the MCMC inference. In our case, we had 4000 samples of pa-
rameters for each group and the global parameters. For each of those, 
we sampled 1000 failure times (with the desired composition of devic-
es) and computed the relevant statistic. In this way, we obtained 4000 
samples of each statistic, which we could use for our maintenance 
predictions. We visualize these results in the figure 14. As we can see, 
their distribution is approximately normal and value concentrations 
are relatively good. As we can see in the table 5, confidence intervals 
are tight with standard deviations on the level of 4% of mean.

6.1.	 Robustness	to	amount	of	data
As a final verification of the methodology, we have analyzed the 

model consistency if scarcer data are available. Considered 200 sam-
ples is a relatively big part of post-stratified 1000, and not I realistic. 

Fig. 10. Complicated structure of the model warrants analysis of parameter priors, so they allow consistency with data. Provided prior parameters show that failure 
time is plausible (left image). Reset data is not as clear, as histogram does not fit in the 90th percentile of ribbon plot. It, however, fits in to the 99th (right 
image)

Fig. 11. In order to verify the computational faithfulness of the model, we have 
performed simulation-based calibration. We have sampled from prior 
predictive distribution and fitted the model to those samples. Because 
of self-consistency property of Bayesian models, the rank statistic of 
parameters should have uniform distribution. Grey shapes correspond 
to percentiles of acceptability (with the dark gray line being median). 
As we can see it, all rank histograms are reasonably uniform

Fig. 12. Application of multilevel model results in much better fits to the data. 
Histogram of failure times is almost identical to ribbon plot median 
(top image). In case of resets, our histogram is independent for every 
integer, so we can see certain negligible inconsistencies (bottom im-
age)
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Recent works (Broderick, Giordano, and Meager 2021) show that 
even 1% of data can significantly influence the predictions. While 
authors provide more detailed metrics for certain simpler problems, 
we have dropped randomly bigger chunks of data to see how it in-
fluences the post-stratification results. We have decided to randomly 
drop 10%, 75% and even 90% of data to see how post-stratification 
results will behave. As a metric, we have considered means and stand-
ard deviations of statistics of interest. We summarize results in the 
figure 15 and the table 6. As we can see, the method handles issue re-
markably well. Means are very consistent and what really changes are 
the confidence intervals, which also are not blowing up, as they are at 
most doubled (better than the expected 10 ). What is also interest-

ing (but because of constraints kept to the repository) is that even with 
20 data points, the model still captures individual properties of each 
group rather well (and estimate 8 parameters).

7. Discussion and conclusions
In this paper, we have performed a conceptual analysis of using 

Bayesian models for modeling IoT device behavior using Bayesian 
analysis. Our intention was to show that such models allow captur-
ing complicated group behavior (for different batches of devices). We 
have shown, that for simpler cases, with limited variation between 
units we can ignore it all together with obtaining estimates with some 

Fig. 13. Analysis of the multilevel model with respect to individual batches supports it is a good model for the problem. Each individual group is well modeled, both 
for cases of failure times (a) and resets (b). In case of batch 3 i.e. the faulty one, the fit of resets is less obvious, but we should note that all the samples are 
in the neighborhood of data points, and the actual number of datapoints observed was not large for each integer value

Table 4. Posterior parameter estimates are reasonable. Each of them has a confidence interval with a sensible level of uncertainty. 
Sampling is very effective as effective sample sizes are around 25% some even exceeding. For completeness, we present also 
recomputed parameters β which are not explicitly present in non-centered parametrization. From it, we can clearly see that 
parameter of batch no. 3 differs significantly from the others. Potential scale reduction factor  R̂   is reasonably close to 1 
indicating good mixing of Markov chains, however it was required to adapt integration step of HMC and increase the maximal 
tree depth parameter.

Mean st. dev. MCSE ESS (bulk) ESS (tail) R̂

Rλ 2.960 0.080 0.002 1337.0 1671.0 1.00

κ 8.164 0.615 0.017 1262.0 1378.0 1.00

µbatch 0.145 0.621 0.020 988.0 1170.0 1.00

σbatch 1.497 0.609 0.019 990.0 1248.0 1.00

αbatch,1 −0.411 0.453 0.016 813.0 1083.0 1.00

αbatch,2 −0.019 0.420 0.014 893.0 1035.0 1.01

,3batchα 1.462 0.646 0.020 1079.0 1121.0 1.00

αbatch,4 −0.712 0.504 0.018 773.0 980.0 1.00

β1 −0.376 0.084 0.002 1412.0 1596.0 1.00

β2 0.137 0.082 0.002 1398.0 1781.0 1.00

β3 2.075 0.080 0.002 1349.0 1715.0 1.00

β4 −0.770 0.083 0.002 1479.0 1922.0 1.00

mean – mean value of variable, st. dev. – standard deviation of variable, MCSE  – mean of Monte Carlo standard error for vari-
able, ESS (bulk) – effective sample size of samples from the bulk of distribution of variable, ESS (tail) – effective sample size of 
samples from the bulk of distribution of variable, R̂  – potential scale reduction factor
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uncertainty. When the device population has large variation (for ex-
ample from bad quality control at the manufacturer or subcontrac-
tor) it justifies more complicated models. We have shown that using 
hierarchical multilevel structure, we can efficiently estimate popula-
tion lifetime. Proposed model is robust with respect to data reduction, 
provided groups are representation. These results show great potential 
for using Bayesian method in technical applications, where they are 
underrepresented, especially for reliability analysis. 

There are obvious limitation to our approach. Because we have 
used simulated data, it is obviously not applicable directly. However, 
using real data would obfuscate main ideas, as it would necessitate 
more complex model. And such complications are a potential for 
method extension.

Natural ideas of extension would model not only within device type 
but also between type variance of devices. As long as we can capture 
certain similarities, concepts still hold. This conceptually is just add-
ing a level to the model. We have just used examples of post-stratifi-
cation metrics. Those could be much more advanced utility functions. 
For example, one could consider expected coverage, energy losses, 
costs of maintenance, etc. Such complications of the model are pos-
sible and we will investigate them in the future.

The observation about robustness is an assuring one, as 20 data-
points allowed to estimate 8 parameters of the model with accuracy 
high enough to obtain useful results. Reason of such gain might be the 
data fusion effect. Using two measurements from each device adds 
additional regularization. This compensated for an increased number 
of parameters.

There is a large application potential for the depth of Bayesian 
methods in the technical sciences. This work is one example and we 
will continue it in further research. Monitoring and maintaining IoT 
networks is one area where their use can be very natural.
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Abbreviations
We use the following abbreviations in this manuscript:  

HMC Hamiltonian Monte Carlo

HDI Highest Density Interval

ESS Effective Sample Size

MCSE Monte Carlo Standard Error

Table 6. Detailed values of estimated 20q  (the estimated 20th percentile) 
and median of failure times, for different amounts of data. Mean 
values are very consistent, and data reduction (even 10 times) 
increases uncertainty in a limited fashion 

mean st. dev.

10% of data 20q 6.059 0.555

median 10.156 1.025

25% of data 20q 5.803 0.379

median 9.710 0.665

90% of data 20q 5.907 0.248

median 9.973 0.370

Full dataset 20q 5.971 0.245

median 10.064 0.362

Table 5. Results of post stratification in tabular form. Q20 is the estimated 
20th percentile of failure times, and median is its median. Estimates 
are relatively tight

Mean st. dev. MCSE
ESS 

(bulk)
ESS 

(tail) R̂

20q 5.971 0.245 0.004 3501.0 3559.0 1.0

median 10.064 0.362 0.006 3876.0 3530.0 1.0
mean – mean value of variable, st. dev. – standard deviation of variable, 
MCSE  – mean of Monte Carlo standard error for variable, ESS (bulk) – 

effective sample size of samples from the bulk of distribution of variable, 
ESS (tail) – effective sample size of samples from the bulk of distribution 
of variable, R̂  – potential scale reduction factor

Fig. 14. Using model estimated using 200 samples with approximately even 
batch distribution, we can compute quantities of interest. In particu-
lar, we can estimate the distribution of time after 20% of devices fail 
(top plot) and same for 50% (bottom plot)

Fig. 15. Reducing the dataset does not influence the quality of post-stratifi-
cation significantly. While having fewer samples increases the confi-
dence interval, mean is relatively consistent and loss of uncertainty 
is not enormous. In the image, we have visualized means along with 
error bars of one standard deviation
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