
1Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137347

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 69(3), 2021, Article number: e137347
DOI: 10.24425/bpasts.2021.137347

Abstract. Voice acoustic analysis can be a valuable and objective tool supporting the diagnosis of many neurodegenerative diseases, especially in 
times of distant medical examination during the pandemic. The article compares the application of selected signal processing methods and machine 
learning algorithms for the taxonomy of acquired speech signals representing the vowel a with prolonged phonation in patients with Parkinson’s 
disease and healthy subjects. The study was conducted using three different feature engineering techniques for the generation of speech signal 
features as well as the deep learning approach based on the processing of images involving spectrograms of different time and frequency resolutions. 
The research utilized real recordings acquired in the Department of Neurology at the Medical University of Warsaw, Poland. The discriminatory 
ability of feature vectors was evaluated using the SVM technique. The spectrograms were processed by the popular AlexNet convolutional neural 
network adopted to the binary classification task according to the strategy of transfer learning. The results of numerical experiments have shown 
different efficiencies of the examined approaches; however, the sensitivity of the best test based on the selected features proposed with respect 
to biological grounds of voice articulation reached the value of 97% with the specificity no worse than 93%. The results could be further slightly 
improved thanks to the combination of the selected deep learning and feature engineering algorithms in one stacked ensemble model.
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variable [3, 4]. The results of Parkinson’s disease recognition 
system are directly related to the selection of relevant feature 
extraction and the classification method. The acoustic analy-
sis of the voice signal can be conducted using different signal 
processing tools to extract various voice features.

The most studied parameters of the acoustic analysis in the 
current literature are fundamental frequency F0 and parameters 
describing its variability in time (jitter). Jitter can be determined 
for its several measures and finally received parameters like 
Jitta, PPQ5, RAP. The jitter is affected mainly by the lack of 
control of the vibration of the cords. The next group of param-
eters describes the signal energy in general. Shimmer, which is 
the amplitude variation of the sound wave, is determined by 
shimmer parameters like ShdB, APQ3, APQ5 [5‒7].

Apart from the baseline features, other features were dis-
tinguished: HNR (harmonic-to-noise ratio), NHR (noise-to-har-
monic ratio), ZCR (zero-crossing rate), and its modification 
HZCRR (high zero-crossing rate ratio). As a complement of 
these groups of features, several statistical measures used to 
describe them are also calculated [5, 8].

In addition to basic time and frequency methods used to 
extract features, perceptually motivated signal representations 
are also applied in PD recognition. Such representations, for 
instance, characterize the cepstral techniques. Cepstral coeffi-
cients have been rated as having the best correlation with the 
degree of voice pathologies in clinical research [5, 9, 10]. Also, 
Q-factor wavelet transform (QWT ) was applied to vocal signals 
of the individuals for the diagnoses of PD [5].

The new trend in PD research is that most studies use the 
combination of different feature types to perform the classifi-

1.	 Introduction

Parkinson’s disease (PD) is one of the most common neuro-
degenerative diseases of the central nervous system. Despite 
many years of research, its etiopathogenesis has still not been 
fully studied, and symptomatic treatment is based primarily on 
administering medicine affecting the dopaminergic receptor. 
Furthermore, diagnosing this disease is still mainly based on the 
clinical assessment of a patient’s motor status. In related works, 
devoted to the research and development of technical solutions 
supporting the diagnostics and evaluation of Parkinson’s dis-
ease, the accelerometer-based data acquisition devices seem 
to be the most common thanks to the high sensitivity of avail-
able sensors in tremor measurements [1, 2]. However, tremor 
is not the only symptom of the disease and medical doctors are 
rather trying to identify the coexistence of several others. One 
of them is the deterioration in muscle activation responsible for 
the respiratory system, larynx, and articulation, which results in 
the reduced vocal loudness and clarity of speech.

2.	 Related work

Characteristic voice changes experienced by ca. 70 to 90% of 
patients already at the early stages of the disease are usually 
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Fig. 1. Voice waveforms of the vovel a with 5 s pronation corresponding to a sick (A) and healthy subject (B).

cation task rather than using separate feature types in model 
training. Extended feature space in these studies can be reduced 
via feature selection methods.

Most of the studies presented in the literature describe 
research that has been conducted with different databases and 
a limited number of recordings. Furthermore, in some articles, 
the sample is very small, and the algorithms have been tested 
on unequal patient groups. Several studies do not describe the 
duration and the severity of the disease.

3.	 Contribution

The objective of the experiments conducted by the authors in 
this paper is to develop a target diagnostic system which facil-
itates an objective taxonomy of patients’ voices by means of 
digital signal and image processing including the use of machine 
learning algorithms. Such a system could be treated as technical 
support for physicians evaluating subjectively the voice disorder 
in PD and would allow them to start treatment and monitor its 
effectiveness during a distant medical examination. First, the 
paper presents the way a convolutional neural network (CNN) 
can be used to recognize the voice coming from PD patients. The 
general motivation behind the application of the CNN networks 
is their ability to solve many recognition tasks without using 
experts to find relevant features [11]. In the case of a lack of suf-
ficient domain knowledge concerning the recognized subjects, 
such an approach could be of non-trivial importance. Then the 
study discusses the so-called feature engineering which means 
finding sets of parameters to be used as a base to generate fea-
ture vectors for modelling the voice of a patient including those 
derived from the expert knowledge of physicians. The presented 
material evaluates the non-linear speech signal analysis, addi-
tionally taking perceptual frequency scales into account. The 
vectors of selected voice descriptors were used in the classifica-
tion scheme based on a classical SVM neural network and then 
compared to the deep learning approach utilizing images of the 
time-frequency representations of voice signals.

There has been an increase in interest in deep neural net-
works over the last few years. Up to our knowledge, deep learn-
ing architecture is a new issue in Parkinson’s disease diagnosis 
by voice [12, 13]. However, the comparison of the results of PD 

recognition obtained from the deep learning approach and the 
traditional feature engineering is still limited. The comparison 
presented in this paper will lead to a better understanding of the 
advantages and disadvantages of each approach.

4.	 Data pool

The tests were conducted within the database of the patients’ 
voice recordings collected in the Department of Neurology at 
the Medical University of Warsaw with the participation of the 
medical personnel. The test bench consisted of the Shure MX58 
dynamic microphone connected to a personal computer with 
dedicated software via a USB adapter containing a preamplifier 
and ADC converter [14]. The frequency response of the set 
was configured especially for the voice sounds and enabled 
recordings over the frequency range from 50 Hz to 15 kHz. The 
microphone sensitivity of –54.5 dBV/Pa was as low as in other 
dynamic microphones, but it was sufficient enough for record-
ing the voice at small distances from a patient’s mouth. All the 
recordings were registered with a sampling rate of 44.1 kSa/s 
and a 16-bit resolution.

The acquisition scenario involved recording the vowel 
a with prolonged phonation, uttered by a patient for at least 
5 seconds. The acquired voltage signals were then normalized 
by a factor representing their root mean square value. Exem-
plary acquired waveforms corresponding to both categories 
are depicted in Fig. 1. More problems with stable phonation 
resulting in an amplitude modulation can be observed in the 
case of a PD patient.

The patients participating in the study were selected accord-
ing to the UPDRS score (Unified Parkinson’s Disease Rating 
Scale) [4]. The material comprised of 22 patients (14 women 
and 8 men, aged 28‒70, average: 55.5) with diagnosed Par-
kinson’s disease. All patients were treated with L-dopy prepa-
ration for a period of at least 6 months. The disease duration 
ranged from one to 12 years (average: 5.3 years). The symp-
tom severity was assessed as per the above scale – part III and 
amounted to 20.25 points on average. The control group was 
used as a reference comprising 22 persons without a diagnosed 
PD. They were 14 men and 8 women, aged 40 on average. The 
tests were conducted using the recordings articulated in two 
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successive registrations by each person. Hence, there were 88 
signals acquired in total for further study, i.e. 44 voice record-
ings of sick people and 44 recordings of healthy people.

5.	 Assessment scheme

In order to reliably assess the proposed methods for recognition 
of PD patients, the voice database should be partitioned into 
subsets used for training and evaluating the performance of 
classifiers. The commonly used cross-validation method facil-
itates doing so without the risk of obtaining too optimistic and 
unreliable assessments, especially when the data pool is not too 
numerous. It involves random division of the entire data set into 
N folds of equal size. Next, a single fold is used to validate the 
model, while the remaining subsets are used in training. The 
process is repeated N times so that within each repetition the 
validating and learning sets are separated. The classification 
results obtained with the validation folds are then averaged. 
The value N is usually set from 5 to 10, but there are no special 
governing rules in this respect [15]. In this research, in order to 
use the testing and training corpora independently of a person, 
a single fold in cross-validation contained 8 recordings corre-
sponding to all data representing 2 people from each class. In 
this way, the 11-fold cross-validation was preserved, and the 
data pool acquired from 40 people was used in training, and 
data from 4 people was used in the validation. At the same time, 
the requirement for the data of people from the validation group 
excluded from the learning group was satisfied.

The classification results were expressed according to the 
nomenclature preferred by physicians, just like sensitivity Se 
and specificity Sp

	 Se =  TP
TP + FN

, � (1)

	 Sp =  TN
TN + FP

. � (2)

The metrics in the above equations are taken from the concept 
of a confusion matrix [15]. This is a simple cross-tabulation 
of the actual and recognized classes and facilitates easily cal-
culating the classifier parameters. Its diagonal cells denote the 
number of people TP correctly classified as sick and the number 
of people TN correctly classified as healthy while the off-diag-
onal cells contain the number of people classified in a wrong 
way. FP stands for healthy cases classified as sick and FN for 
sick ones classified as healthy. The confusion matrices may 
contain some additional information that is presented further 
in Section 4.

6.	 CNN – a deep learning approach

Convolutional neural networks (CNNs) are nowadays treated 
as versatile deep learning tools for automatic feature generation 
and recognition. Although primarily used in visual recognition 

contexts, they have been also successfully used in many one-di-
mensional signal processing tasks including speech, vibroacous-
tic, biomedical, and seismology applications [16‒19]. In all of 
these cases, initial processing is required to obtain an image-like 
representation of the analyzed signal. The main advantage intro-
duced by CNNs is that they shift the burden of the hand-crafted 
feature design to the system of learning along with the classi-
fication task. In other words, the nets are trained to begin from 
a raw input image to the final output of sufficiently labelled 
classes. They are successfully used in the detection, recognition, 
and semantic scene segmentation. Formally, the nets can be built 
and trained from scratch; however, they should be advanced 
enough to recognize objects properly and usually require a huge 
amount of time for training even when multiple GPUs are used. 
And yet, there is another alternative approach based on transfer 
learning that is capable of leveraging the power of a CNN. The 
idea is to take a pretrained network released by others and use 
it as an initialization for the task of interest. In this research, 
the results of using one of the simplest nets, called AlexNet, 
are presented [20]. The net has gained popularity thanks to its 
availability and numerous examples of successful use [21]. The 
network comprises 25 layers but only 8 of them are optimized 
in training: 5 convolutional layers and 3 fully connected layers. 
The net used for distinguishing PD patients from healthy people 
must be adopted to have the last layer of the same size as the 
number of classes in recognition. Moreover, a two-dimensional 
representation of a voice signal is required to feed the net. In 
general, voice signals are nonstationary, and their properties can 
be adequately described by using joint information in the time 
and frequency domain. The short-time Fourier transform and 
the square of its modulus called spectrogram is a well-known 
signal processing methodology to explore the instantaneous 
spectrum of such signals. The computations are based on dis-
crete Fourier transform performed separately on short frames 
containing segments of equal length extracted from a signal. 
Such a procedure provides a visual representation of the sig-
nal because the Fourier spectra can be plotted as a function of 
time in the form of an image. Using a CNN network supported 
with spectrogram images is quite a common approach utilized 
by many researchers [16‒18]. Most of them just use the dis-
tribution of energy over the time-frequency plane calculated 
with a fixed frame length. Some put the real and imaginary 
parts of the short-time Fourier transform into separate layers 
of the network input. Nevertheless, the length of the frame sets 
the frequency resolution and strongly affects the spectrogram 
image in which a color map is used for coding the values of the 
evolutionary spectrum as depicted in the upper row of Fig. 2, 
where three spectrograms of a different resolution described 
by three frame lengths are presented on a log scale. The frame 
lengths considered as short, medium, and long were determined 
by the FFT dimensions equal to 256, 1,024 and 4,096. The 
images shown in Fig. 2 are time-frequency representations of 
the PD voice signal from Fig. 1A. In contradiction to this con-
cept, an alternative approach is proposed in this paper. It first 
assumes finding three spectrograms of different resolutions, 
expressing them as monochrome images, and then combining 
as three-color channels forming an RGB image. Thanks to that 
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the net AlexNet in the transfer learning strategy was fed with 
images containing spectrograms of three different resolutions 
at the same time as depicted in the scheme presented in Fig. 2 
in the lower row. The comparison of results in the form of 
confusion matrices obtained with respect to the assessment and 
cross-validation scheme proposed in Section 3 are depicted in 
Fig. 3.

There is some additional information in the matrices shown 
in Fig. 3. The column on the far right represents the percentages 
of all patients recognized as belonging to each class, correctly 
(green) and incorrectly (red) classified. Naturally, the values in 
green are metrics described by (1) and (2). The metrics in the 
lowest row show the number of patients that belong (green) and 
do not belong (red) to each class related to the number of cases 
that are correctly and incorrectly assigned to that class. The cell 
in the bottom right corner shows the overall accuracy and error.

As it can be seen, the concept of using triple resolution 
spectrogram images in the deep learning approach yielded the 
best results as compared to the standard concept when only one 
resolution was used. The overall accuracy was almost 6% better 
than the best result achieved when the spectrogram frame was 
fixed to the medium value.

7.	 Feature engineering approach

The results presented in the last section devoted to the deep 
learning approach are far from being perfect and encourage the 
development of an alternative processing concept based on fea-
ture engineering. Three non-linear sound processing techniques 
were proposed as a base for this concept aimed at finding pos-
sible hand-crafted features.

Fig. 2. Strategies of forming time-frequency image data from voice to feed a CNN network: 3 separate RGB spectrogram images of different frame 
lengths (upper row) and 3 channels corresponding to spectrograms of different frame lengths forming one RGB spectrogram image (lower row)
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Fig. 3. Confusion matrices describing taxonomy of voice in Parkinson’s disease based on CNN and spectrograms: A, B, C – single resolution 
spectrograms with frames 5.8 ms, 23.2 ms, and 92.9 ms, D – triple resolution spectrogram
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The techniques are all outlined in the block diagram of the 
conducted analysis as depicted in Fig. 4. It was decided to apply 
12 filter banks for each of the methods from the block diagram.

do-time domain using the spectral logarithm for the frequency 
spectrum model, called the real cepstrum [24]. In general, 
cepstral techniques facilitate easy deconvolution of the glot-
tal excitation associated with the work of vocal folds and the 
component associated with the voice tract. Furthermore, since 
the human sense of hearing analyses the amplitude spectrum 
and very effectively intercepts voice dysfunctions, it can be 
assumed that it is enough to focus on the actual cepstrum, which 
would help us to avoid calculating the troublesome complex 
logarithm. The modulus of the cepstrum for the vowel a is 
shown in Fig. 6.

Fig. 4. Algorithms used for the acoustic analysis of voice
Fig. 6. The modulus of the cepstrum when the vowel a is analyzed

Fig. 5. Frequency scales used in non-linear voice processing

Consequently, three 12-dimensional feature vectors denoted 
further as LFCC, MFCC and GTCC were analyzed which were 
assumed to reflect the voice signal properties of the patients as 
suggested in [22, 23]. The vectors contain cepstral coefficients 
(CC ) corresponding to frequency scales the techniques use: 
linear-frequency (LF ), mel-frequency (MF), and gamma-tone 
(GT). The scales are depicted in Fig. 5 and a detailed discussion 
of the proposed features is given below with respect to the 
physiology of voice articulation.

7.1. Biologically inspired features. One of the methods in 
voice parametrization is the cepstral analysis based on the 
so-called homomorphic technique. The analysis in its classic 
form is based on transforming a signal to the so-called pseu-

It indicates the fundamental tone period T0 (approx. 5 ms) 
and pseudo-times, which characterize the vocal tract reso-
nances (formant frequency inverses), focused around zero 
pseudo-time. Because the information associated with the vocal 
tract transmission is concentrated around zero pseudo-time, this 
is the area to look for concise information on what is being 
said. It is greatly degraded when using this technique. On the 
other hand, pseudo-times beyond the laryngeal sound period 
emphasize the concise information associated with the shape of 
laryngeal pulses, and since it is closely related to the anatomical 
structure of the larynx and glottis, it carries a lot of diagnostic 
information.

The cepstral method is an algorithm that raises increasing 
hopes for clinical and practical applications. As part of a large 
meta-analysis studying the usefulness of acoustic methods in 
diagnosing dysphonia, which covered 25 publications and 87 
acoustic parameters, an international team of authors evaluated 
cepstral coefficients as the best correlating with a degree of 
dysphonia [25, 26]. A dysphonic voice is generated when any 
of the vocal system elements is disturbed. The breathing man-
ner, phonation and respiratory coordination, phonation time, 
resonator activation, voice intensity and pitch, voice scope and 
average position, its timbre, and sonorousness can be abnormal. 
Patients with Parkinson’s disease experience weakened muscles 
of the throat, soft palate, tongue, and mouth. A patient’s speech 
is characterized by respiratory, articulatory, and phonation dis-
orders resulting from the damaged subcortical nuclei (extrapy-
ramidal system), the corpus striatum, and the dorsal pallidum 
in particular [27].
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The outcome of the transformations is a number of lin-
ear-frequency cepstral coefficients (LFCC ) determined by the 
user. In this work it was set to 12.

7.2. Other voice features. A variation of the cepstral method 
is the melcepstral method providing mel-frequency cepstrum 
coefficients (MFCC ), which uses the non-linearity of sound 
perception by humans. The so-called perceptual scale used 
within this algorithm is characterized, in approximation, by 
linear mapping of low frequencies and logarithmic mapping 
of high frequencies, which results from a subjective connection 
between the frequencies of pure harmonic tones and frequen-
cies perceived by humans [28]. The mel scale was proposed in 
1937 by Stevens, Volkman, and Newman and is described by

	 fmel = 2595 ¢ log10 1 +  
f Hz

700 Hz
. � (3)

To put it simply, the MFCC method can be treated as a spectral 
band analysis conducted within the auditory system.

The third proposed algorithm (GTCC) is based, like the 
MFCC method, on the bandwidth of human hearing. The only, 
yet very important difference, is the application of another 
f ilter bank. The GTCC method involved the application of 
a band-pass f ilter designed using the gammatone function [29, 
30]. Essentially, modelling involves forming the so-called filter 
bank, which covers the auditory frequency range. The f ilter 
bank is most usually a system of gammatone f ilters at inter-
vals corresponding to the equivalent rectangular bandwidth 
or the ERB. In terms of numbers, it is equal to the bandwidth 
of an ideal rectangular f ilter with a transmittance value equal 
to the maximum transmittance of an auditory f ilter, while the 
power of the noise passing through this f ilter is equal to the 
power of the noise passing through the auditory filter [31]. The 
waveform of the dependence of an auditory f ilter equivalent 
bandwidth and the frequency is described by the subsequent 
relationship

	 ERB = 24.7 ¢ (4.37F + 1),� (4)

where F is the filter mid-band frequency expressed in kHz. 
Therefore, in order to achieve a filter distribution of the gam-
matone filter bank type, one needs to define the mid-band fre-
quencies as linearly distributed along the ERB scale, covering 
a specific frequency range with the desirable filter number.

7.3. Results of recognition. The abilities of the 12-dimen-
sional vectors LFCC, MFCC, and GTCC to differentiate 
between healthy and PD patients were examined with the 
standard machine learning method f inding the optimal sep-
arating hyperplane, i.e. a support vector machine SVM [32]. 
The conducted experiments showed that the most accurate 
results of recognition were achieved when the mapping to 
a higher dimension was performed by a cubic polynomial 
kernel. Because of a limited data sample, the resampling pro-
cedure based on 11-fold cross-validation was adopted again as 
described in Section 3. Confusion matrices found for all of the 
three vectors are depicted in Fig. 7. One can easily notice that 
this time the results are better as compared to the deep learn-
ing approach and that the vector of LFCC features appeared 
to be the best in this comparison exceeding the level 90% of 
the overall accuracy.

Moreover, it should be also noticed that the features in 
vectors were not analyzed to optimize the dimensionality of 
the space prior to the SVM recognition. The dimension of 12 
in conjunction with 80 training samples introduces a sparse 
space and seems to be very close to the common requirement 
saying that there should be at least several samples for each 
dimension.

7.4. Feature selection. To decrease the dimensionality and, 
additionally, to take the advantage of possible synergy among 
the features as well the synergy of features with the SVM 
classifier, the algorithm of their selection based on backward 
sequential search strategy was applied [32]. In the strategy, 
the combinations of features selected by removal from a full 
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Fig. 7. Confusion matrices assessing full, 12-dimensional vectors of various cepstral coefficients: A – LFCC vector, B – MFCC vector, and 
C – GTCC vector
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candidate set are assessed by a class separability criterion 
that uses the misclassification rate given by the classifier. As 
a result, specific interactions between the classifier and the 
dataset of reduced dimensionality may be revealed and con-
sidered to improve the accuracy of recognition. The results of 
such a selection are depicted in Fig. 8, where confusion matri-
ces described for new vectors of lower dimensions working 
with the SVM classifier are shown. In all cases, a significant 
improvement in overall accuracy can be observed. The highest 
score was found for a subset of seven features defined again 
by the LFCC vector and exceeded the level of 95%.

8.	 Ensemble of models

Both of the above machine learning algorithms, i.e. the deep 
learning approach and feature engineering, are strongly diverse. 
They use considerably different preprocessing of the same voice 
recordings and the assumptions behind the methods about how 
to solve the predictive modeling task are also very different. 
At the same time, some versions of the algorithms have good 
skills in the validation data set. All that creates a chance to 
combine them and use them as base models in a hybrid, stacked 
ensemble model to improve the accuracy upon the accuracy 
of the individual ones [33]. As the first base model, the SVM 
trained with vectors of seven selected LFCC coefficients was 
used as it yielded the best results among other cepstral subsets. 
The CNN fed with triple resolution spectrograms was used as 
the second base model for the same reason. The comparison of 
the prediction results between these two models in the case-re-
lation is depicted in Fig. 9 for all PD patients and Fig. 10 for 
all healthy subjects. In the case of the CNN model, the output 
of the softmax layer was used. In the figures, predictions below 
the threshold 0.5 correspond to the detection of Parkinson’s 
disease and predictions above it denote healthy subjects.

As it can be seen, there are misclassifications correspond-
ing to the confusion matrices presented in Figs. 3D and 8A; 
however, they are not correlated and the use of the fusion of 

classifiers gives the hope for better results. The architecture of 
the stacking model includes a metamodel that learns how to 
best summarize the predictions of the base models arranged in 
one layer. The metamodel is usually simple as it is to provide 
a smooth interpretation of the predictions made by the base 
models. In this work, the SVM with polynomial kernel of the 
2nd order was used for that purpose. The structure of the ensem-
ble is depicted in Fig. 11.

Fig. 10. Results of prediction of both base models for all healthy subjects
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Fig. 9. Results of prediction of both base models for all PD patients
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Fig. 8. Confusion matrices assessing vectors of selected cepstral coefficients: A – vector of 7 LFCC features, B – vector of 7 MFCC features, 
and C – vector of 8 GTCC features
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To avoid overfitting, the training data was divided into 
two folds. The base models were trained with the use of the 
data contained in the first fold. Then their predictions made 
for observations from the second fold were used in training as 
inputs to the metamodel. The results of recognition in the form 
of a confusion matrix are shown in Fig. 12. As expected, the 
hybrid model performed slightly better as compared to single 
individual models (see Figs. 3D and 8A for comparison). The 
overall accuracy was almost 97% and all PD cases were rec-
ognized properly.

Fig. 11. The structure used as the stacked ensemble model

engineering with the modern one using advanced deep neural 
classifier finding relevant features automatically. In the latter, 
the so-called transfer learning was adopted. The results of the 
comparison including various configurations of decision frame-
works with respect to the nomenclature used within the medical 
community, i.e. the results expressed in terms of sensitivity and 
specificity of the tests, are summarized in Table 1.

Table 1 
Percentage values of sensitivity (Se) and specificity (Sp) obtained in 

tests performed with various frameworks examined in this article

Framework Se [%] Sp [%]

single resolution spectrogram image 
+ CNN, short frame 5.8 ms 84.1 75.0

single resolution spectrogram image 
+ CNN, medium frame 23.2 ms 84.1 77.3

single resolution spectrogram image 
+ CNN, long frame 92.9 ms 81.8 72.7

triple resolution spectrogram image + CNN 93.2 79.5

LFCC + SVM
all 12 features 90.9 90.9

selected 7 features 97.7 93.2

MFCC + SVM
all 12 features 79.5 88.6

selected 7 features 86.4 88.6

GTCC + SVM
all 12 features 79.5 81.8

selected 8 features 88.6 90.9

stacked ensemble model 100 93.2

The application of a deep convolutional neural network to 
recognize the disease on a patient’s voice must be preceded by 
the preparation of image-like data. A very convenient method 
to do so is to use a spectrogram of the voice signal based on its 
short-time Fourier transform. However, the results reported in 
this article show that the quality of the diagnostic test depends 
on the way the image data is prepared. When the color channels 
of the image prepared for the neural network contained three 
spectrograms corresponding to various frame lengths, better 
sensitivity and specificity were obtained as compared to the 
cases when the decision was based on spectrogram images cor-
responding to one fixed resolution.

In the research, only one and relatively simple convolutional 
network was used. It was the AlexNet, which yielded the sen-
sitivity of 93.2% and specificity of 79.5%. It cannot be excluded 
that using deeper networks, just like those from the example 
of VGG and ResNet families, can produce better results. 
Research on the adaptation of such networks is the aim of the 
next steps.

Although the deep learning AlexNet approach is very attrac-
tive, it did not outperform traditional feature engineering in 
the recognition of the disease based on voice. The application 
of the cepstral coefficients found thanks to the domain knowl-
edge on voice articulation and the method of sequential feature 
selection, led to the 97.7% sensitivity and 93.2% specificity.

actual class
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Fig. 12. Confusion matrix assessing a stacked ensemble model based 
on deep learning approach and feature engineering

9.	 Conclusions

The presented material discusses the possibilities of using var-
ious methods of contemporary machine learning algorithms as 
an aid in the medical diagnosis of patients with possible Par-
kinson’s disease on the basis of their voice samples.

An attempt was undertaken to compare the traditional 
approach used in signal classification and based on feature 
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The presented material extends the findings discussed in 
the most comparable paper [13] devoted to the application of 
a convolutional neural network to Parkinson’s disease detection 
by the voice image processing. Although lower overall accu-
racy was reached: 86.4% with pretrained AlexNet vs 91.7% 
with pretrained ResNet, it was shown that better results could 
be achieved using preprocessing based on the combination of 
spectrograms of three different resolutions instead of one. It 
was also shown that the featured engineering approach based on 
biologically inspired cepstral coefficients yields better results, 
with an overall accuracy of 95%.

Besides, it was evident that the experiments conducted with 
the use of a stacked ensemble model based on selected deep 
learning image processing and cepstral feature engineering 
algorithms could further improve the results. The improvement 
was rather slight as compared to the result obtained with the 
use of LFCC features alone but we managed to reach the value 
of 96.6% of overall accuracy which is over 5% better than the 
accuracy shown in [13].

The presented method seems to be attractive for a distant 
medical examination as it potentially excludes personal contacts 
between the patient and the doctor. In further research, find-
ing the regression models predicting the extent of the disease 
is planned with the use of one of known clinical scales, e.g. 
UPDRS.
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