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Abstract. In this article, we utilize the finite Sine-Fourier transform and the Laplace trans-

form for solving fractional partial differential equations with regularized Hilfer-Prabhakar 

derivative. These transforms are used to get analytical solutions for the time fractional heat 

conduction equation (TFHCE) with the regularized Hilfer-Prabhakar derivative associated 

with heat absorption in spherical coordinates. Two cases of Dirichlet boundary conditions 

are considered by obtaining an analytical solution in each case. The effect of the parameters 

of the regularized Hilfer-Prabhakar derivative on the heat transfer inside the sphere is  

discussed using some figures. 
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1. Introduction 

Nowadays, the fractional calculus is considered as an important subfield of math-

ematics, it is widely used in modeling many physical and engineering phenomena 

[1-6]. More attention has been placed on the research of fractional differential equa-

tions (FDEs) because they can model many physical phenomena more accurately 

than the classical integer-order DEs [3-9]. FDEs are widely used in modeling many 

real-world physical processes, such as the anomalous diffusion process [10], the con-

tinuous time random walk problem [10], non-exponential relaxation processes [11], 

and the generalized Langevin problem [12].  

Many definitions for the fractional derivatives operators with singular and 

nonsingular kernels are proposed in the literature, these definitions include Riemann- 

-Liouville operator [13], Caputo operator [13], Hadamard operator [13], Atangana- 
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-Baleanu operator [6], and the regularized Hilfer-Prabhakar derivative [14-17]. 

Many methods have been used for finding exact solutions of fractional partial dif-

ferential equations (FPDEs) [18-21]. The integral transform methods are widely used 

in solving linear FPDEs. Some examples of these integral transforms are the Fourier 

transform, the Sine-Fourier transform, the finite Sine-Fourier transform and the  

Laplace transform [22, 23].  

Fourier’s law is a fundamental law in the classical heat transfer theory which 

gives the parabolic partial differential equation of the heat conduction. As a result of 

the Fourier’s law, the speed of heat flow in the medium is impractical. A generaliza-

tion of the Fourier’s law that results in a fractional heat conduction equation can be 

utilized to avoid this problem [22]. These fractional heat conduction equations are 

investigated in many papers [9, 18, 22]. When considering heat transfer in a bounded 

medium, the heat equation will be associated with some boundary conditions.  

The boundary conditions of Dirichlet, Neumann and Robin are typically used in heat 

transfer problems [22].  

In this article, we use the finite Sine-Fourier transform and Laplace transform to 

solve the TFHCE with a heat absorption term in spherical coordinates in the case of 

central symmetry [22] which is given by 

 ���,�,��	,
 �(
, �) = � ����(
, �)�
� + 2
 ��(
, �)�
 � − ��(
, �),   � > 0,   0 ≤ 
 < �, (1) 

where � is the temperature, � is the time, � > 0 is the coefficient of thermal  

diffusivity, � denotes the heat absorption and  ���,�,��	,
 �(
, �) is the regularized  

Hilfer-Prabhakar derivative of order   defined as [15] 

 ���,�,��	,
 !(�) = " (� − #)$
%�,&$
$	 ('(� − #)�)!((#))#*
� , (2) 

where +, ' ∈ �, - > 0,  ∈ (0,1) and %�,
	 (/) is the three-parameter Mittag-Leffler 

function which is given by [15] 

%�,
	 (/) = 0 1(+ + 2)1(+)1(-2 +  ) /3
2!

5

36�
. (3) 

This Mittag-Leffler function (Eq. (3)) has the following property [16]: 

%�,
� (/) = %�,
	 (0) = 1Γ( ) . (4) 

The Caputo derivative can be obtained as a special case of the regularized Hilfer- 

-Prabhakar derivative (2) [17] in the following two cases: 
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Case 1: when + = 0, in this case Eq. (2) will be transformed into (using property (4)) 

 ���,�,���,
 !(�) = 1Γ(1 −  ) " (� − #)$
!((#))#*
� =  ���
!(�), (5) 

where  ���
!(�) is Caputo fractional derivative. 

Case 2: when ' = 0, in this case Eq. (2) will be transformed into (using property (4)) 

 ���,�,��	,
 !(�) = 1Γ(1 −  ) " (� − #)$
!((#))#*
� =  ���
!(�). (6) 

So, the regularized Hilfer-Prabhakar derivative (2) can be considered as a general-

ized derivative. Using the regularized Hilfer-Prabhakar derivative in investigating 

physical and engineering phenomena enables us to obtain generalized solutions  

with many arbitrary parameters (+,  , -, ') [16, 17, 24, 25].  

Equation (1) will be considered under the following conditions: 

1. The value of the temperature � along the radial axis 
 at � = 0 (initial condition) 

is given by 

�(
, 0) = 0, (7) 

2. The value of the temperature � at 
 = � for any time (Dirichlet boundary condi-

tions) will be given in two cases 

Case 1 �(�, �) = 9:(�), (8)

where :(�) is the impulse function, whereas 9 is an arbitrary constant. 

Case 2 �(�, �) = 9�; , (9)

where < is a positive constant. 

The regularized Hilfer-Prabhakar derivatives (2) naturally come from physical 

models such as in dielectric relaxation phenomena [26, 27], in the fractional Poisson 

process [15], in fractional diffusion equation [14], in linear viscoelasticity [17, 28], 

in modeling filtration dynamics [29], as well as in the generalized Langevin equation 

[30]. 

The time-fractional diffusion equation (1) describes many important physical 

phenomena in dielectrics, semiconductors, biological systems, polymers, amorphous, 

colloids, porous and disordered media. Equation (1) is a result of the time-nonlocal 

generalization of the Fourier law associated with the “long-tail” power kernel [22]. 

This generalization can be interpreted in terms of non-integer order derivatives  

and integrals. Equation (1) takes into consideration the memory effects with respect 

to time.  
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2. Basic definitions  

Lemma 1  

1. Following [15], the Laplace transform of Hilfer-Prabhakar derivative (2) is  

given by 

 ={���,�,��	,
 !(�)} = @
(1 − '@$�)	={!(�)} − @
$&(1 − '@$�)	!(0A). (10)

2. Following [15], the Laplace transform of �
$&%�,
	 ('��) is given by 

={�
$&%�,
	 ('��)} = @�	$

(@� − ')	 . (11)

Lemma 2 [22] The finite Sine-Fourier transform applied to the coordinate 
 in the 

domain 
 ∈ [0, �] is given by  

ℱ{!(
)} = !E(F3) = " 
!(
) sin(
F3)F3 )
,J
�  (12)

with 

F3 = 2K� . (13)

Following [22], we get 

ℱ L )�
)
� !(
) + 2
 ))
 !(
)M = −F3�!E(F3) + (−1)3A&�!(�). (14)

Lemma 3 [22] The inverse of the finite sin-Fourier transform can be expressed as  

ℱ$&N!E(F3)O = !(
) = 2� 0 F3!E(F3) sin(
F3)

5

36&
. (15)

3. Exact solution of the fractional heat conduction problem 

In this section we derive the exact solution of Eq. (1) in the two cases of the 

boundary conditions given by Eq. (8) and Eq. (9). 

Performing the Laplace transform to Eq. (1) and utilizing Eq. (10), we obtain 

@
(1 − '@$�)	�P(
, @) − @
$&(1 − '@$�)	�(
, 0)
= � Q ��

�
� �P(
, @) + 2
 ��
 �P(
, @)R − ��P(
, @). (16)
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Using the initial condition (7), Eq. (16) becomes 

@
(1 − '@$�)	�P(
, @) = � Q ��
�
� �P(
, @) + 2
 ��
 �P(
, @)R − ��P(
, @). (17)

Applying the finite Sine-Fourier transform to Eq. (17) and using Eq. (14), we get 

@
(1 − '@$�)	�P ∗(F3, @) = �T−F3� �P ∗(F3, @) + (−1)3A&��P(�, @)U − ��P ∗(F3, @). (18)

Now Eq. (18) will be investigated in the two cases as follows:  

Case 1 Taking Laplace transform of the boundary condition (8) gives 

�P(�, @) = 9. (19)

Substituting Eq. (19) into Eq. (18) gives 

�P ∗(F3 , @) = �(−1)3A&�9@
(1 − '@$�)	 + �F3� + �
= �(−1)3A&�9@�	$


(@� − ')	 � 11 + (�F3� + �)@�	$
(@� − ')$	�
= �(−1)3A&�9 0(−1)V(�F3� + �)V @(VA&)(�	$
)

(@� − ')(VA&)	
5

V6�
. 

(20)

After using Eq. (11), the inverse Laplace transform of Eq. (20) is  

�∗(F3 , �) = �(−1)3A&�9 0(−1)V(�F3� + �)V�
(VA&)$&%�,(VA&)
(VA&)	 ('��)
5

V6�
. (21)

The inverse sin-Fourier transform of Eq. (21) gives the following solution of Eq. (1)  

�(
, �) = 2�9
 0 F3 0(−1)VA3A&W�F3� + �XV�
(VA&)$&%�,(VA&)
(VA&)	 ('��)sin (
F3)
5

V6�

5

36&
. (22)

To study the asymptotic behavior of the solution (22) at large �, we use the relation 

[16] 

%Y,;	 (/)~ (−/)	
Γ(< − [+) ,     / ≫ 1. (23)

Using Eq. (23), solution (22) takes the form 
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�(
, �) = 2�9
 0(−1)3A&F3 0(−1)V$	 �
$	�$&%
$	�,
$	�(]) sin(
F3)5

V6�

5

36&
, (24)

where, ] = − �F22+�
�^ �
$	�. The two-parameter Mittag-Leffler function appears in Eq. 

(24) converges to zero as � → ∞ [16]. So, solution (24) converges to zero as � → ∞. 

From Figure 2, we can also realize the convergence of Solution (22) to zero as  � → ∞. 

Remark 1: When + = 0 or ' = 0, the solution (22) will be transformed into 

�(
, �) = 2�9�
$&

 0 F3

5

36&
(−1)3A&%
,
W−W�F3� + �X�
X sin(
F3), (25)

which is the solution of Eq. (1) with conditions (7) and (8) when the fractional  

derivative is in the Caputo sense. Solution (25) is obtained in [22]. If we put  = 1 

in Eq. (25), we obtain the following solution of Eq. (1) with standard derivative [22] 

�(
, �) = 2�9
 0(−1)3A&F3
5

36&
sin(
F3) expW−W�F3� + �X�X. 

Case 2 Taking the Laplace transform of the Dirichlet boundary condition (9) gives 

�P(�, @) = 9 1(< + 1)@;A& ,   < ∈ �,   @ > 0. (26)

Substituting Eq. (26) into Eq. (18) gives 

�P ∗(F3, @) = �(−1)3A&�91(< + 1)@$(;A&)
@
(1 − '@$�)	 + �F3� + �

= �(−1)3A&�91(< + 1)@�	$
$;$&
(@� − ')	 � 11 + (�F3� + �)@�	$
(@� − ')$	�

= �(−1)3A&�91(< + 1) 0(−1)V(�F3� + �)V @(VA&)(�	$
)$;$&
(@� − ')(VA&)	

5

V6�
. 

(27)

The inverse Laplace transform of Eq. (27) can be performed using Eq. (11) to get  

�∗(F3 , �) = �(−1)3A&�91(<
+ 1) 0(−1)V(�F3� + �)V�
(VA&)A;%�,
(VA&)A;A&(VA&)	 ('��)

5

V6�
. (28)
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The inverse Sine-Fourier transform of Eq. (28) gives the following solution of Eq. (1) 

�(
, �) = 2�91(< + 1)
 0 F3 0(−1)VA3A&W�F3� +
5

V6�

5

36&
 

+ �)V�
(VA&)A;%�,
(VA&)A;A&(VA&)	 ('��)sin (
F3) 

(29)

The obtained solutions (22) and (29) of Eq. (1) for the two cases of the boundary 

conditions are obtained in the form of the series of the three parameter Mittag-Leffler 

function.  

Remark 2: When + = 0 or ' = 0, the solution (29) will be transformed into 

�(
, �) = 2�91(< + 1)�;A


 0 F3

5

36&
(−1)3A&%
,
A;A&W−W�F3� + �X�
X sin(
F3), (30)

which is the solution of Eq. (1) with conditions (7) and (9) when the fractional de-

rivative is in the Caputo sense. A special case of solution (30) is obtained in [22] 

when < = 0. If we put  = 1, < = 0 in Eq. (30), we obtain the following solution of 

Eq. (1) with standard derivative [22] 

�(
, �) = 2�9
 0(−1)3A& F3
5

36&
sin(
F3) (expW−W�F3� + �X�X − 1), 

  
a) f = g b) f = hi 

  
c) f = gii d) f = jii 

Fig. 1. Plot of the solution (22) when � = � = + = 1, � = 2, 9 = 5, ' = 3,  = -  

for different values - and � 
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a) i < f < gi 

 
 

b) gi < f < ji c) f > ji 

Fig. 2. Plot of the solution (22) when � = � = + = 1, � = 2, 9 = 5, ' = 3,  = -, 
 = 0.5 

for different values -  

  
a) f = i. m b) f = i. h 

  
c) f = n d) f = g 

Fig. 3. Plot of the solution (29) when � = � = + = 1, � = 2, < = 0 9 = 5, ' = 3,  = - 

for different values - and � 
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Figures 1 and 2 illustrate the profile of the temperature � at some values of -  

and the time � when the boundary condition is taken in the form of the Dirac delta 

function. In general, we can notice that temperature � decays with increasing time. 

Also, we can realize that, when � is small, the temperature � increases with increas-

ing the value of -. When � is large, the temperature � decreases with increasing  

the value of -. 
 

  
a) o = i. h b) o = n. h 

Fig. 4. Plot of the solution (29) when � = � = + = 1, � = 2, < = 0 9 = 5, ' = 3,  = - for different values - and 
 

Figures 3 and 4 illustrate the distribution of the temperature � at different values 

of - and the time � when the boundary condition is taken as a constant. In this case, 

when � is small, the temperature � decreases with increasing the value of -. When � 

is large, the temperature � increases with increasing the value of -. 
4. Conclusions 

The finite Sine-Fourier transform and the Laplace transform are considered as 

powerful tools in solving FDEs with regularized Hilfer-Prabhakar derivative. New 

exact solutions of the TFHCE with regularized Hilfer-Prabhakar derivative of order   are obtained in two different cases of Dirichlet boundary conditions. The results 

are obtained in terms of the threeparameter Mittag-Leffler function. The solutions 

are represented graphically in different values of - at certain values of the time and 

the coefficients ' and  . The solutions obtained in this paper generalize the results 

obtained in [22]. 
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