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Summary

Underground mining operations are a very problematic task, especially in poor geotechnical 
conditions. The right choice of excavation and support techniques leads to adequate and secure 
mining operations. This should ensure the overall stability of the underground mine with the 
best productivity and stability performance. In this paper, an empirical model for obtaining sup-
port systems for underground galleries was applied. Then, a numerical model for the evaluation 
of the performance of support measures for rock masses in the Boukhadra iron mine was intro-
duced. Extensive field and laboratory tests were performed to obtain geological, geotechnical, 
and mechanical data on the entire geologic formations of the (1105 m) level. The performance 
of the design is supported by the selection of a common support plan between RMR, Q, and 
UBC systems for each geotechnical unit. Therefore, the rock masses classification based on the 
geo-mechanical model has determined the suitable support systems. The finite element model 
(FEM) was used for the analysis of rock mass behaviour, displacements, stress, and plastic point 
distribution. The results permit the optimization of the plastic zone thickness around the gal-
lery. The outcomes of this study could improve the stability of the mine by choosing the right 
direction of excavation in consideration to the direction of the discontinuity planes. In order to 
choose between the current and the recommended mining operations, an equivalent calculation 
sequence was verified. Our study demonstrated that the consideration of discontinuity sets in 
the orientation of excavation highly improves the mining conditions with or without support.
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1.	 Introduction	

Underground extraction of raw materials is constantly facing security and productivity 
challenges [Zahri et al. 2017, Zerzour et al. 2020]. This problem concerned mining opera-
tors and geotechnical engineers [Mouici et al. 2017, Manchar et al. 2018, Zeqiri et al. 
2019, Fredj et al. 2020]. It is common that the geological and hydrogeological conditions 
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[Demdoum et al. 2015, Anis et al. 2019, Hamed et al. 2017, 2022] determine the feasibil-
ity and cost of underground work projects. These factors affect the excavation methods 
and supporting systems [Gadri et al. 2012]. The stress relaxation, deconfinement process, 
lining interaction, pore pressure variation, time effect, construction sequence, and soft 
delayed response accompanying the excavation operations lead inevitably to a progres-
sive loss in the rock matrix rigidity [Hadji et al. 2014a, Saadoun et al. 2020]. Under the 
effect of strain, tiny fissures expand in the rock structure and gradually join together until 
plastic deformation. The theory of fracture mechanics and macroscopic homogeniza-
tion responds perfectly to the advanced modelling of structures in damageable materials. 
Compared to shallow extraction, working conditions in underground mines raise more 
technical issues. The rock mass behaviour depends on the geomechanical characteristics 
and the morphometric schemes of discontinuity, and the boundary conditions of struc-
ture [Gadri et al. 2015]. Deformations and stress analysis of soil have always been a matter 
of interest to researchers [Hadji et al. 2013, Zerzour et al. 2021]. Uncertainties in rock 
behaviour are related to discontinuities, anisotropy, heterogeneity, the no-elastic mode 
of the rock mass, etc. Complications in designing underground excavation are mainly 
caused by the content constitutive laws in numerical models that do not reflect accurately 
the real rock behaviour. With the help of empirical methods, numerical modelling has 
become more precise [Raïs et al. 2017]. A  small misinterpretation in the preliminary 
stages of the design [Hadji et al. 2014b, El Mekki et al. 2017] can lead to disastrous results 
in both the construction and the operation of a tunnel. The basic parameters that influ-
ence the stability of tunnel construction must be carefully assessed and applied as early 
as the initial steps of the design phase. Rock mechanics engineering is interested in rock 
slope stability, rock bolting, foundations on rocks, tunnelling, blasting, underground and 
open pit mining, mine subsidence, dams, bridges, and highways [Dahoua et al. 2017a, b, 
2018, Saadaoui et al. 2022]. The term rock mass is applied to a large extent of rock, from 
several meters to a few kilometres, which can include diverse discontinuity sets of differ-
ent forms and natures. In underground excavation, once deformations of mined areas 
have expanded, adequate support becomes imperative. When designing a shallow tunnel 
in a poor-quality rock mass, the designer has to face a number of problems that appear 
less often in deeper tunnels [Hoek 2004]. Therefore, it is necessary to examine basic 
concepts of how a rock mass surrounding a tunnel deforms and how the support system 
acts to generate the deformation [Hoek 1998]. The dimensioning of the required support 
to stabilize a  tunnel excavation is a  four-dimensional problem. The reduction of the 
internal ‘support pressure’ results in a redistribution of stress within the model, and can 
lead to the increasing plasticity of the rock mass around the tunnel. When underground 
engineering structures are designed, empirical and numerical methods are the two main 
methods for analysing the stability of rock mass surrounding a tunnel. Rock mass clas-
sification systems are very useful tools for the preliminary design stage of a project, when 
very little information on rock mass is available. Numerical modelling is an integral part 
of modern tunnel engineering design, because it enables the assessment of rock-structure 
interaction and stability as well as assists choosing the optimum excavation method and 
support measures. An accurate selection of empirical methods for estimating the stability 
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of mining structures excavated in fissured rock masses are the main subject of this study. 
This approach is complemented by numerical assessment of the results found following 
the geo-mechanical study.

2.	 Research	area	characteristics	and	conditions	

The ferruginous deposit of Jebel Boukhadra is lying in a carbonate rock mass mount 
located in north-eastern Algeria, 45 km from the chief town of Tebessa province, near 
the Algerian-Tunisian border. This mountain is characterized by a  simple anticline 
structure in the NE-SW direction with a  periclinal termination NE. This anticline 
structure extends over 7 to 8 km in length and 3 to 5 km in width across the NE-SW 
direction (Fig. 1). It is composed mainly of Mesozoic-Cenozoic formations covered 
by a Quaternary deposit [Tamani et al. 2019, Kerbati et al. 2020]. The Triassic diapir 
contacts the Cretaceous limestone in the west, south, and southeast parts of the anti-
cline [Hamad et al. 2021]. There is not any aquifer in the mining site at the 1463 m a.s.l. 
The only aquifer in this area is located at 818 m a.s.l, well below the mine [Ncibi et al. 
2020]. Underground mining covers three mining districts (along three axes): north 
axis, south-east axis, main axis. The excavation of the Boukhadra deposit is performed 
according to the downcast method, guaranteeing the opening using exposed galleries. 
On each floor, an intermediate level or sub-level is dug, dividing the floor into three 
sub-floors. These levels are created at least every 20 m, and they are intended for drill-
ing. The transport of the blasted ore from an upper level (head level) to a lower one 
(base level) is carried out using an inclined extraction stack (average inclination is 70°). 

Stability problems (rockslides) at 1105m a.s.l. (north axis), which is the level of the 
entrance to the gallery, meant that it was necessary to dig another tunnel in order to 
extract the ore from the bottom. The latter was excavated in parallel with the main axis 
orientation. The mining in the main gallery at the 1105m a.s.l. (Fig. 2) has reached an 
advanced stage with 358 m of length, and 17 m2 of an average section through differ-
ent facies (iron ore, limestone, mineralized limestone, marly limestone, gypsiferous 
limestone, mineralized marl, yellow marl, gray marl). Currently, this gallery is the only 
access to the deposit. To prevent any possible reappearance of the instability problem, 
we decided to check the state of stability of the main gallery by studying the impact of 
the stresses induced around the walls using geotechnical tools. This way we could look 
for unstable areas and their causes, and then recommend suitable technical solutions.

The stereographic projection shows that the massif is extremely fractured, which 
complicates this work (Fig. 3). The axes of the current gallery are oriented respectively 
N 35 – 0 NE /43 m, N 52 – 0 NE /137 m, N 42 – 0 NE /86 m, N 69 – 0 E /41 m, N 78 – 0 
E/40 m, and N 95 – 0 E/11 m orientation/length of axes 1 to 6. Dominant discontinuity 
sets for the different geological formations have been grouped into four major sets, 
namely FM1 (N90–37S); FM2 (N35–55NW); FM3 (N90–56N) and FM4 (N148–60NE). In 
order to improve the stability of the gallery (1105 m a.s.l.) we have simulated a change 
of orientation of the gallery axes. These changes in orientation are based on a treatment 
of the structural characteristics of the rock mass. We have developed the analysis of 
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discontinuities as a stereographic projection using Dips 7.0. We have proposed a new 
gallery on the basis of a  geomechanical description proposed by Bieniawski [1989]. 
This description takes into account the orientation of the discontinuities with respect 
to the direction of digging of the gallery. The proposed gallery consists of four axes, 
with respectively N56-0NE/178 m, N15-0N/24 m, N63-0NE/142 m, N110-0E/11 m 
orientation/length of axes 1 to 4.

The proposed structure involves a  reduction in the number of axes (from 6 to 
4) and in the total length (from 358 m to 355 m) with an improvement of stability 
of its axes. This progress is represented by an adjustment (parameter B) that varies 
between unfavourable and average (–10 ÷ –5). However, the adjustment of the axes of 
the existing gallery varies between unfavourable and very unfavourable (–12 ÷ –10). 
The distance that needs to be supported is reduced from 114 m (excavated) to 61.5 m 
(recommended).

Source: Authors’ own study 

Fig. 3. The relation between the direction of digging of galleries and the discontinuity planes

3.	 Material	and	methods	

Ground behaviour around an excavation is generally influenced by several factors such 
as lithology, the geological structure, groundwater and the in situ stress field. Some of 
these factors have several sub-factors with widely varying properties. For instance, the 
geological structure includes joints, bedding shears and faults etc., as well as their orien-
tation, spacing, continuity, surface characteristics and filling materials etc. Lithology, 
on the other hand, may represent intact rock characteristics such as strength, elastic 
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or plastic deformability, and swelling and slaking etc. In strong discontinuous rock 
masses, the physical characteristics of geological structural features, i.e. orientation, 
persistence, spacing, aperture etc., can widely vary, and their impact on the rock mass 
can be significant. However, in weak or weathered rock, the intact rock strength may 
become more important compared to geological discontinuities. The effect of geologi-
cal structure may also depend on the size and orientation of the excavation. Similarly, 
in deep excavations in situ or induced stress field may be the governing factor of stabil-
ity, while geological structure plays only a  secondary role. Ideally, the classification 
method should assess the relative importance of these factors and represent as exactly 
as possible their relative influence on different excavations. All relevant parameters 
should be accounted for by giving adequate ratings in the system, but no parameter 
should be counted more than once as this may reduce the weight of the other relevant 
parameters. In other words, the ground should be characterised by parameters that 
are exactly congruent with the true factors and their relative influence; and one should 
be taken careful not to count the same parameter twice. Naturally occurring rocks are 
anisotropic and non-homogeneous with widely varying properties. For instance, as 
already indicated, the characteristics of geological structural features, i.e. joint spacing, 
orientation, persistence etc. that govern the behaviour of the rock mass can widely vary. 
Similarly, other factors such as groundwater and lithology etc. can also vary signifi-
cantly. The determination of representative conditions or values of these factors should 
not involve uncertainty nor subjective bias.

RMR rock mass classification system was initially developed at the South African 
Council of Scientific and Industrial Research (CSIR) by Bieniawski [1974, 1984].

 RMR basic = Σ parameters (A1+ A2 + A3 + A4 + A5)  
(1)

RMR = RMR basic + adjustment for joint orientation

Bieniawski categorized the RMR systems as following: good rock RMR = 61–80, 
fair rock RMR = 41–60, poor rock RMR = 21–40, and very poor rock with RMR < 20 
[Zahri et al. 2016]. 

The Q-system of rock mass classification was developed by Barton et al. [1974] at the 
Norwegian Geotechnical Institute (NGI), and updated to include 1000 cases [Grimstad 
and Barton 1993]. Barton [2002] compiled the Q-system again and made some changes 
to the support recommendations. 

 Q RQD
Jn

Jr
Ja

Jw
SRF

=  (2)

The first quotient (RQD/Jn), representing the structure of the rock mass, is a crude 
measure of the block or particle size [Hoek 2007].

The second quotient (Jr/Ja) represents the roughness and frictional characteristics 
of the joint walls or filling materials (representing shear strength).

The third quotient (Jw/sRF) is a  complicated empirical factor describing active 
stress.
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The Mathews-Potvin method is based mainly on field observations [Potvin 1988]. 
The stability graph is a plot of a stability number (n') against a shape factor (s), referred 
to a hydraulic radius (HR) [Suorineni 2012]. Hydraulic radius is the ratio of the stop 
surface area on the stop surface perimeter [Potvin and Hadjigeorgiou 2001].

n' is calculated according to the equation:

 n' = Q' ∙ A ∙ B ∙ c (3)

where: Q'  is a modified rock tunnelling quality index of Barton et al. [1974]. 
The rock stress factor A is defined as a function of the ratio between the unconfined 

compressive strength of the intact rock (σc) and the induced principal stress (σ1) on 
the studied exposed walls of a stop [Pagé et al. 2018, Grenon and Hadjigeorgiou 2003].

Factor B depends on the difference between the orientation of the critical joint and 
the face of the stops [Hoek et al. 1993]. C: is a gravity factor; it considers the influence 
of the inclination of the exposed surface, and the inclination of the critical joints.

To avoid subjective preferences in the classification the rock mass parameters 
should be considered quantitatively, and their variations should be accounted for in the 
assessment of rock mass. The assessment or the calculation of numerical values for the 
parameters should not be user-dependent. Possible use of lump-sum ratings should be 
avoided as this leads to subjective adjustments when proposing rating values. 

4.	 Geomechanical	classification	of	Boukhadra’s	underground	mine	

The analysis of the gallery (current & proposed) was carried out at all cross-axes. 
Drilling core specimens taken from these axes were used in order to perform rock 
mass characterization. The basic RMR, Q and UBC were estimated for all sections of 
the gallery’s axes and the values are given in Tables 1 and 2.

The RMR method classifies the rocky massif of Boukhadra as being a massif formed 
of medium quality rocks (marl), and the rest of the massif is considered as a good qual-
ity rock (limestone and iron ore), with the score of RMR89 varying between 44 and 74.

For the proposed new gallery, the rating of RMR 89 has improved thanks to the 
restoration of the direction of excavation of the gallery in relation to the plans of discon-
tinuities (46 ≤ RMR89 ≤ 76). This improvement is the result of an adaptation study of 
the adjustment parameter, which takes into consideration the direction of mining with 
respect to the planes of discontinuities. 

The Q-System classification method classifies the rocky massif of Boukhadra as 
a massif formed of rocks of very bad (marl), good (limestone: marly, mineralized and 
gypsiferous) and very good quality (limestone and iron ore), with a Q score varying 
between 0.3 and 44.8.

The absence of direct inclusion of the orientation of the gallery in relation to the 
planes of discontinuities, and the conservation of the same height of cover along 
the work (current and proposed) led to the conservation of the same results for the 
Q-System method.
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The problem of tetrahedral wedge instability in jointed rock masses at relatively 
shallow depths can be addressed in three distinct analytical steps. The first is to iden-
tify the kinematically possible modes of potential collapse in the block assemblage. 
The second is to determine the state of equilibrium of the kinematically unstable rock 
wedges identified in the rock mass. The third is to determine the support required to 
stabilise the potentially unstable rock wedges. However, during the last two decades, 
this difficulty has been overcome by using the Shi’s Block Theory [Goodman and Shi 
1985]. It is a method to identify the types of blocks that can be formed in a jointed rock 
mass and to separate those that are kinematically moveable into the excavations. It can 
handle an unlimited number of discontinuities and identify the shape and location of the 
movable blocks anywhere in the periphery of an excavation. By using the block theory, 
computer software packages were developed for the identification and analysis of the 
potentially unstable rock wedges in underground excavations. One such package devel-
oped specifically for tetrahedral rock wedge analysis for underground excavation design 
is UNWEDG. The UBC method classifies the Boukhadra massif as a massif formed of 
stable rocks (limestone and iron ore), and other unstable ones (marls), with a note of n' 
varying between 0.5 and 410.6, and the hydraulic radius (HR) – between 1.5–3.16 m. For 
the proposed gallery, the UBC method takes into consideration the dip of the disconti-
nuities as a factor influencing the stability of the underground works by neglecting the 
orientation of the surface of the discontinuities. This neglect and the conservation of the 
same height of cover along the structure (current and proposed) have led to a conserva-
tion of the stability number N' and a change in the HR parameter (1.99÷3.2), resulting in 
a shift in the state of the marls (yellow and mineralized) located in the 1st axis towards the 
stability. Support and construction procedures should neither be overly conservative nor 
optimistic and compromise safety. Ideally, the degree of safety should be known and be 
congruent with the requirements of different projects and different stages and/or sections 
of the same project. This means a pre-determinable factor of safety, which may change 
from case to case, should be included in the method. Built-in safety factors of unknown 
magnitude are not desirable. Intact rock strength (IRS) is a factor in the SRF term of the Q 
system, only if the excavation stability is affected by the in situ stress field. In contrast, IRS 
is always included in the RMR value. If the IRS changes, while all the other parameters 
remain virtually the same, several RMR values are possible for a single Q value. 

The in situ stress field is not accounted for in the RMR system in classifying a rock 
mass. In the Q system it is a factor in the SRF term if excavation instability is stress 
driven. Thus for a rock mass with a given RMR value, several different Q values are 
possible depending on the SRF value used. Joint spacing (JS) is a key parameter in the 
RMR system; the closer the JS the lower the RMR value and the wider the JS the higher 
the RMR value. This is not so in the Q system. If three or more joint sets are present and 
the joints are widely spaced, it is difficult to get the Q system to reflect the competent 
nature of a  rock mass. For widely spaced jointing, the joint set parameter Jn in the 
Q system appears to unduly reduce the resulting Q value. Thus for a single Q value, 
several RMR values are possible depending on Js. 
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RQD is used in both methods, and is a  function of joint spacing, albeit it does 
not fully represent the true nature of joint spacing. In addition to RQD, as already 
mentioned, Js is also a key parameter in the RMR method. In the Q system, although 
the number of joint sets is taken into account, spacing is not considered directly. This 
means joint spacing is counted twice in the RMR method, while the Q system uses it 
indirectly only once.

Joint orientation (JA) is accounted for directly in the RMR method by giving a rating 
between 0 and –12. In the Q system, this is considered implicitly, but no guidelines are 
provided to identify the adversely oriented discontinuities. Thus, the selection of the 
most critical discontinuity set is user-dependent. In any case no rating is given to the JA 
in the Q system. Thus, for a given Q value, different RMR values are possible depending 
on the orientation of the excavation relative to the discontinuity set orientation.

From the foregoing, it is clear that the predictions made by the two systems are 
unlikely to match perfectly for all rock mass conditions in underground excavations. 
A universally applicable single formula for linking RMR and Q value is also unlikely to 
be achieved.

5.	 Numerical	analysis	of	the	case	study	

The primary function of numerical modelling in the underground excavation design 
process is to simulate the stress distribution and the rock mass behaviour around the 
excavation and the influence of different support systems on the excavation stabil-
ity. The main benefits of numerical modelling are that both stress and displacements 
around the excavation can be computed, and different constitutive relations for the 
rock mass can be employed. The numerical models used in rock engineering assume 
that rock masses can be mathematically represented either as a continuous media with 
elastic properties or as an assemblage of discrete blocks formed by pre-existing weak-
ness planes; the blocks may be rigid or elastically deformable. The geological, geomet-
ric, physical and mechanical parameters concerning the different geological formations 
intersected by the main gallery at the 1105 m a.s.l. are collected in order to model the 
rock massif of Boukhadra using the Plaxis 3D digital code.

The FEM uses variational methods from the calculus of variations to approximate 
a solution by minimizing an associated error function. The numerical model is char-
acterized by: 
• The material model used is jointed rock, 
• The type of material behaviour is drained.

6.	 Laboratory	tests	

A very large number of samples were taken from the two galleries, to determine the 
physical and mechanical properties of the rocks necessary for the numerical study. The 
results of the tests are presented in the tables below (3 and 4). Some simple physical 
testing may also be used. 
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Table 4. Properties of the applied supports

Rock mass of Boukhadra
Rock bolt Shotcrete

Diameter E Length Spacing Thickness UCS E 

Limestone; mineralized 
limestone: marly limestone; 
gypsiferous limestone;  
iron ore

Good quality of rock mass
(Stable, No support 

recommended)

Good quality of rock mass
(Stable, No support 

recommended)

Mineralized marl 20 mm 200 GPa 5 m 1 m 50 mm 20 MPa 30 GPa

Grey marl 20 mm 200 GPa 5 m 1 m 50 mm 20 MPa 30 GPa

Yellow marl 20 mm 200 GPa 5 m 1 m 50 mm 20 MPa 30 GPa

Only limited number of parameters can be determined from the data sources avail-
able at the pre-construction stage. During construction in the mine many details can 
be detected, but time is often limited. Parameters that can be easily obtained from 
outcrops and boreholes, or quickly observed or measured in the excavation site, are 
desirable. Ideally, the parameters obtained at any stage of a project should lead to the 
same conclusions regarding the rock mass conditions and support requirements for 
excavations.

Gsi = RMR89 – 5 [Hoek 1994]

 Em = 1000 ∙ [σc  ⁄ 100 ]0.5 ∙ 10(Gsi – 10)/40 (σc < 100 MPa) [Hoek and Brown 1997] 
(4)

7.	 Numerical	simulation	

After carrying out the calculations of the displacements around the walls of the 
gallery using the Plaxis 3D digital tool, it can be observed that there are facies present-
ing a certain instability in the form of large deformations, and other facies showing 
stability with only small deformations. The stability analysis by the numerical method 
showed that the displacements around the current gallery vary between 259E-6 and 
192.1E-4 m. However, the latter varies between 230.4E-6 and 102.1E-4 m along the 
proposed gallery marking some improvement in stability. The reinforcement of the 
walls of the gallery by bolts and a concrete ring presented an improvement in the state 
of the stability of the gallery. The installation of the support resulted in a change of 
stresses, and critical displacements from the roof to the slab. The comparison made 
between the different developed approaches showed absolute agreement between the 
results obtained by the empirical methods and those given by the numerical method 
analyzing the state of stability of the structure. Thus, efficiency of the support design 
recommended for stabilizing unstable places (Table 5, Fig. 4).
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Source: Authors’ own study 

Fig. 4. The FEM 3D-Plaxis model of the proposed gallery
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Table 5. Total displacements

Rock mass  
of Boukhadra

Current gallery Proposed gallery

Utot (m)  
unsupported

Utot (m)  
supported

Utot (m)  
unsupported

Utot (m)  
supported

Limestone 259E-6 × 230.4E-6 ×

Mineralized limestone 973.8E-6 × 932.6E-6 ×

Marly limestone 158.4E-5 × 141.8E-5 ×

Gypsiferous limestone 923.5E-6 × 805E-6 ×

Iron ore 307.5E-6 × 283.4E-6 ×

Mineralized marl 62.52E-4 220.3E-5 38.02E-4 186.9E-5

Grey marl 101.1E-4 341.6E-5 101.1E-4 341.6E-5

Yellow marl 192.1 E-4 664.7E-5 102.1E-4 494.3E-5

8.	 Conclusions	

Amongst the several rock mass classification methods developed for application in 
underground excavation engineering, two have stood out. These are known as rock 
mass rating (RMR) and tunnelling quality index (Q), introduced by Bieniawski [1973] 
and Barton et al. [1974], respectively. Over the years, the two methods have been 
revised and updated so as to improve their reliability as support design tools, yet the 
two methods are known to have limitations, and their reliability has long been a subject 
of considerable debate. Nevertheless, attempts to assess their reliability in a systematic 
manner have been limited. Further, some practitioners in the field of rock engineering 
continue to use these methods as the sole methods of support design for underground 
rock excavations.
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This study assumed that the reliability of the RMR and Q methods can be assessed 
by comparing their support predictions with those derived by other applicable meth-
ods and also with the actual support installed. Such an assessment can best be carried 
out during the excavation of an underground opening, because representative data can 
be collected by direct observation of the excavated ground conditions and by monitor-
ing the performance of the support installed. In this context, the geotechnical data 
obtained during the construction of several case tunnels were reviewed and the two 
classification methods were applied.

In contrast, the rational or theoretical approach to underground excavation design 
uses explicit models representing the behaviour of rock masses developed based on 
the principles of the mechanics of materials. The application of this approach requires 
access to accurate information on the rock mass properties, groundwater conditions 
and in situ stress condition, and is often time-consuming and costly.

While both approaches serve the same purpose, the classification methods are used 
if there is insufficient information to establish an explicit model or if time and cost limi-
tations prevent the use of other models. A classification method should be applicable 
to a wide range of ground conditions, opening sizes and shapes, different construction 
procedures and support types. Although some experience in underground excavation 
design and construction may be a prerequisite, the application process of classification 
methods should not require a high level of skills. After a few applications, a user should 
be able to easily and confidently judge the situation and make required decisions. 
Simplicity of form along with clarity and un-ambiguity of the terminology used is also 
important. The conventional drill-and-blast method of excavation proved problematic 
for part of the gallery because the blasting caused damage to the rock mass. Despite 
the fact that the RMR system suggested drilling and blasting excavation methods for 
the entire gallery, jackhammer techniques will be proposed for more than 350 m thus 
greatly reducing unnecessary damage to the rocky massif.
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