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Abstract Sound synthesis using mathematical modelling of musical instruments is a method particularly 
well suited for live performance using a physical controller. Depending on model complexity, it may be able 
to reproduce various subtle phenomena related to excitation and real time control of an instrument, 
providing an intuitive tool for a musician. A variant of physical modelling synthesis, referred to as the 
simulation of infeasible instruments, uses a model of an object that does not have a physical counterpart. 
Such model has some properties of a real object, which makes it still intuitive for a musician. However, other 
features, such as geometry, or material properties, are intentionally altered in such manner, that it could 
not function in reality. These infeasible features introduce new properties to the sound it produces. The 
study presents a few such models with a discussion regarding their implementation and control issues in  
a real-time sound synthesizer. 
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1. Introduction 

Contemporary sound synthesizers, able to produce musical sounds, are often considered a kind of musical 
instruments. Where they differ from traditional instruments is a precise, more fundamental control over  
a timbre of produced sound [1]. Various synthesis methods achieve this goal in different ways, allowing to 
target specific use-cases. 

One of main use-cases is a live performance, where a synthesizer is producing sound in real time, and  
a musician uses a dedicated device to control its operation. The controller may simply be a piano-like 
keyboard. However, if a musician wants to achieve some specific kind of control over produced sound, 
usually for expressive purposes, other devices may be utilised. Some are based on existing instruments, 
other can mix features of various instruments with different, less conventional ideas like EEG, EMG, or 
computer vision. 

While designing a synthesizer for the purpose of artistic sound experiments, it might be a good idea to 
provide it with intuitive control – meaningful for a musician familiar with various traditional instruments. 
It would allow to use and combine prior musical knowledge and performance practice to achieve new 
effects without a steep learning curve. A method of synthesis particularly well suited for such purpose is to 
design and operate a mathematical model of a musical instrument, or its part, and solve it numerically to 
produce sound. It is often carried out using the finite difference method (FDM) [2, 3], digital waveguides [4-
6], modal synthesis [7-10], or – less frequently – the finite element method (FEM) [11]. In this approach 
parameters to control are the quantities describing a model or its operation [12]. Sound signal parameters 
are controlled indirectly, unlike in case of other synthesis methods. This, in turn, allows to easily map these 
quantities to controller gestures, if a controller is based on a similar instrument. The operator of  
a synthesizer can pluck, blow, strike, push, or touch, instead of adjusting amplitude envelopes and filter 
resonance, or fine tuning some more intricate characteristics. 

Sound synthesis using mathematical modelling of musical instruments is a way to achieve realistic 
performances, with a natural-sounding expression. However, it can be extended to the area of sound 
experiments, while still maintaining advantage of intuitive musical control. If a model is altered up to the 
point where it could not function in reality, but still has some characteristics connecting it to the instrument 
it was based upon, it could be referred to as an infeasible instrument [1]. It is most natural to keep the 
excitation of a model similar to a real instrument. However, its geometry, dimensionality, material 
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properties, or movement patterns can be changed beyond physical plausibility, in order to introduce new 
characteristics to the sound it produces. 

Initial ideas of this kind have been mentioned in works of Roads [13], Djoharian [14], or Leonard and 
Cadoz [15]. A motivation and formulation of assumptions, as well as several models of infeasible 
instruments have been discussed in Ref. [1]. The same work proposed a general technique of implementing 
some of more computationally-intensive models, such as multi-dimensional objects, using parallel 
processing. However, feasibility of operating and controlling such models remained to be proven. This 
paper presents an actual attempt to design and implement a synthesizer working in real time, based on the 
finite difference method, to simulate multi-dimensional membranes, and other objects based on  
a similar principle. 

2. Models of instruments 

2.1. Finite difference method 

Among various methods of numerical simulation, the finite difference method (FDM) has advantages that 
make it a method of choice when it comes to sound synthesis. It approximates partial differential equations 
with finite differences, and restricts spatial domain of simulation to a grid with a finite number of points 
representing a displacement or other physical aspect [1]. Numerical solution is calculated recursively in 
discrete time steps. Every step produces a single signal sample, and any point of a grid can be considered 
its source, because the whole grid is accessible at any point of time. Similarly, it is possible to affect any 
point of a model at any point of time. These properties allow to design interactive models of instruments 
operating in real time. 

In general, spatial and temporal sampling intervals of FD models are related through stability condition 
such as Courant-Friedrichs-Lewy (CFL) [16]. Thus for a given sampling frequency a synthesizer is required 
to work with, a model has to have at least a given number of spatial grid points. It increases computational 
cost of model operation in higher sampling frequencies. 

Depending on the object modelled, various boundary conditions may be applied for objects that are e.g. 
clamped (fixed), open, or supported. Boundary conditions can be applied to model geometry of an object 
and some interconnections. Objects simulated with FDM may be excited to vibrate using various techniques, 
such as coupling with other vibrating or moving objects (e.g. mallets or bows), but simple excitation model 
can be implemented by applying particular initial conditions for grid points displacement or velocity, 
usually with some realistic spatial distribution. 

2.2. Hyper-membrane 

A membrane may be considered a two-dimensional extension of a string. Even though they differ only in 
dimensionality, they produce sounds with very distinct properties. Therefore, one might wonder, how 
would it sound if it was possible to add more dimensions to a membrane, creating an object that might be 
referred to as a hyper-membrane. 

General properties of such hypothetical object were discussed in Ref. [1], where it was stated that  
N-dimensional membrane: 

• has N+1 spatial dimensions, 
• along one of its dimensions is small, while along the remaining N is large in relation to the wavelength, 
• is clamped along all of its boundaries, 
• is stretched in N ‘large’ dimensions, which provides elasticity, 
• can be excited and vibrates along (N+1)-st ‘small’ dimension. 
Even a three-dimensional membrane is physically infeasible. It would have to vibrate along fourth 

dimension, and its clamping along boundaries would make it inaccessible for excitation or for sound 
radiation outside. However, more interesting objects begin with four-dimensional membranes. 

A generalised, simple N-dimensional membrane can be described using the wave equation 
supplemented with a simple loss model, such as [1]: 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝛾𝛾2Δ𝑁𝑁𝑁𝑁𝑢𝑢 − 2𝜎𝜎0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , (1) 

with spatial variables scaled to object dimensions, where u is a membrane displacement, γ is a scaled wave 
velocity, σ0 controls decay time T60: 
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𝑇𝑇60 =
6 ln(10)

𝜎𝜎0
 , (2) 

and ΔNDu is a generalised N-dimensional Laplacian with xi being subsequent spatial coordinates: 

Δ𝑁𝑁𝑁𝑁𝑢𝑢 = �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥𝑖𝑖2

𝑁𝑁

𝑖𝑖=1

 . (3) 

Hyper-membrane is clamped on all of its rectangular boundaries, which imposes the Dirichlet boundary 
conditions. In order to produce percussive sound a membrane has to be struck. The most basic way to 
simulate it is to impose initial conditions with spatial distribution such as the ‘raised cosine’ [2], which in N 
dimensions assumes the following form:  

𝑐𝑐𝑟𝑟𝑟𝑟(𝐱𝐱) = �
𝑐𝑐0
2
�1 + cos �

𝜋𝜋𝑟𝑟𝑁𝑁𝑁𝑁
𝑟𝑟ℎ𝑤𝑤

��           𝑟𝑟𝑁𝑁𝑁𝑁 ≤ 𝑟𝑟ℎ𝑤𝑤
0                                              𝑟𝑟𝑁𝑁𝑁𝑁 > 𝑟𝑟ℎ𝑤𝑤

  , (4) 

where c0 is a peak displacement, its centre is given by x, rhw controls width of the distribution, and rND is an 
Euclidean distance in N-dimensional space from a peak location. 

In the actual sound synthesizer described in this paper Eq. (1) is approximated with an explicit 
differential scheme, as given in Ref. [1]. Laplacian from Eq. (3) is approximated using an operator with 
adjacent neighbours only, without diagonals. Therefore calculation assumes a form of recursion where 
future solution in a particular grid point is calculated on the basis of solutions in (2N+1) points from  
a current time step (central and nearest neighbours along N axes), and one (central) from a previous time 
step. Two coefficients are calculated for both central points, and one common for the neighbours. 

2.3. Other models 

Principles discussed in Sects. 2.1 and 2.2 can be applied to design other models of infeasible instruments. 
One can design hyper-plates by choosing a different equation instead of Eq. (1) to introduce stiffness – e.g. 
on a basis of the Kirchhoff model [17], and by changing boundary conditions. But even the same model may 
be extended by implementing more sophisticated models of membrane excitation, or by switching 
coordinate system to a different one, such as spherical, to design hyperspheres. 

A very interesting case of an infeasible instrument can be designed on a basis of simple two-dimensional 
membrane by applying boundaries with a loop. Even though some loops may have physical representations, 
combining different loops on various boundaries is close to impossible in real objects. Assuming two 
dimensions p and q, grid sizes Np and Nq, and grid point coordinates given by (lp, lq), the basic bi-directional 
loop along p requires to enable the following substitution in the FD grid: 

𝑢𝑢(−1,𝑙𝑙𝑞𝑞) ≜ 𝑢𝑢(𝑁𝑁𝑝𝑝−1,𝑙𝑙𝑞𝑞)

𝑢𝑢(𝑁𝑁𝑝𝑝,𝑙𝑙𝑞𝑞) ≜ 𝑢𝑢(0,𝑙𝑙𝑞𝑞)
  . (5) 

A perpendicular loop is applied as follows: 
𝑢𝑢(−1,𝑙𝑙𝑞𝑞) ≜ 𝑢𝑢(𝑙𝑙𝑞𝑞,𝑁𝑁𝑞𝑞−1)

𝑢𝑢(𝑙𝑙𝑝𝑝,𝑁𝑁𝑞𝑞) ≜ 𝑢𝑢(0,𝑙𝑙𝑝𝑝)
  . (6) 

Applying only one substitution from the pairs above will change a bi-directional loop into one-
directional, even less feasible in a real object. One can also twist coordinate lq while looping along p, which 
in a two-dimensional grid produces a vibrating Möbius strip. Spectra of such looped membranes are 
presented and discussed in Ref. [1]. 

Finally, all the objects mentioned can be supplemented with another infeasible property: an evolution 
of normally constant characteristic. It can be applied to material parameters, an instrument shape,  
or a fast relative movement of an instrument and a readout point [1]. 

3. Sound synthesizer 

3.1. Implementation assumptions 

Models of infeasible instruments presented in Sect. 2 have been previously proposed in Ref. [1]. They were 
initially implemented and tested to evaluate properties of sounds they are able to produce. However, these 
implementations were not designed to calculate output signal in real time, thus they were not fully 
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functional performance synthesizers, even though propositions regarding such implementations were 
provided. In this study a functional synthesizer has been implemented using a numerical model and 
directives provided in Ref. [1]. 

A four-dimensional hyper-membrane, as given in Eqs. (1)-(4), has been chosen for implementation.  
It was assumed that the instrument will be used as a percussion, therefore user needs to be able to control: 

• exact moment of excitation (in order to perform rhythmic patterns), 
• location of excitation on the membrane in all four dimensions simultaneously (to control sound 

timbre as in traditional membranophones), 
• width of excitation spatial distribution (to further control sound timbre, as by switching drum sticks) 
• strike velocity (to control musical dynamics). 
It was to be established if the synthesizer can actually operate in real time, and what is the current limit 

of simulation parameters, assuming operation on a personal computer. 

3.2. Hardware 

The synthesizer requires two hardware elements to operate: 
• a sound-enabled personal computer to perform numerical simulations and to produce a sound signal, 
• a controller able to trigger membrane excitation, and continuously control location of an excitation 

along four axes simultaneously. 
Control requirements can be met by more sophisticated MIDI controllers, e.g. with at least four sliders. 

However, quicker changes can be attained using a gamepad with two analogue thumbsticks, each one 
continuously controlling two axes (Fig. 1). A standard gamepad is equipped with twelve binary buttons that 
can trigger synthesizer events, or can be combined with thumbsticks movement to add more layers of 
continuous control. 

 

Figure 1. Gamepad used as a control device. 

3.3. Design 

An implementation design of the synthesizer follows guidelines given in Ref. [1], and is similar to a design 
applied earlier in a synthesizer based on a model of normal, two-dimensional membrane, as described in 
Ref. [18]. It consists of two programs operating in parallel, and communicating through a network (Fig. 2). 
One is responsible for handling and interpreting events generated by the physical controller, here  
– a gamepad. The other performs numerical simulation and during this process generates an audio signal.  

The controller program is actually a patch for the PureData graphical audio programming environment 
(Fig. 3). PureData is able to handle events from a broad range of different controllers, including MIDI 
controllers, computer vision controllers, gamepads, and other human interface devices (HUDs). It sends 
controller data using a network and the UDP protocol. This allows to physically separate the controller 
program from the simulation program, e.g. for a more convenient stage performance.  

An FD simulation has a parallel nature – in theory all grid points in the same time step could be updated 
simultaneously. In order to exploit this possibility, the actual simulation is performed using the OpenCL [19] 
and a parallel processing device such as a graphics processing unit (GPU) or a multi-core central processing 
unit (CPU). The main simulation program itself is written in the C language for performance reasons, and it 
invokes the OpenCL kernel for parallel parts of the algorithm, that is for updating state of grid points. The 
OpenCL kernel is executed once for every time step, which is a performance limitation, but an efficient way 
to update a whole grid at the same time, using less processing elements than grid points, is yet to be 
determined due to severe limitations on communication between processing elements in the OpenCL. In a 
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current implementation the OpenCL kernel is executed by the main program in sequence, which 
synchronizes grid points in each time step, for a given number of time steps, to fill an audio buffer of 
predefined size. At the same time the program listens and collects control commands sent by the PureData 
patch to update the model before calculating next audio buffer. 

 

Figure 2. Outline of an implementation design of the synthesizer. 

 

Figure 3. The controller program (main window) as a PureData patch. 

In current version the parameters, including relative proportions of lengths of membrane sides, initial 
excitation size, velocity, and position, sampling frequency, and audio buffer length, or their initial values, if 
the value can be controlled by a user, are set through a configuration file. 

4. Evaluation of operation 

To determine if the synthesizer is able to perform in real time it was tested using a personal computer 
equipped with the AMD Ryzen 3700X CPU (8 cores, 16 threads), 32 GB of RAM memory, and the Nvidia 
Geforce 2070 Super GPU for the OpenCL calculations. Both programs, control and simulation, were running 
simultaneously on the same computer.  

During tests it was established that a fluent operation, without dropped audio buffers (Fig. 4), was 
possible for a relatively low sampling frequency of 12 kHz with an audio buffer length set to at least 256 
samples. In this case the stability condition determined a grid size of 28x20x17x15 elements (for a γ value 
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of 250.0). Operation with 16 kHz resulted in some dropped buffers, but it might be possible to use this 
frequency even with current hardware after applying some program optimisations. 

 

Figure 4. Waveform and spectrogram of a signal fragment recorded from the synthesizer. 

5. Conclusions  

Simulation of infeasible instruments is a technique of sound synthesis aimed at artistic sound experiments. 
It allows to hear and play instruments that cannot exist in reality. The scope of this paper was to present  
a possible implementation of such synthesizer, based on concepts and algorithms from previous works, and 
to determine if it was able to operate in real time. In this particular case it was a model of four-dimensional 
membrane. 

The study carried out has determined that such operation is possible using a contemporary personal 
computer, although with a sampling frequency limited to 12 kHz. However, even with such limit the 
simulator is functional and produces sounds that may be considered interesting. Further optimisations in  
a parallel execution the algorithm shall allow to move the limit of sampling frequency towards higher values. 

Concluding, it is interesting to observe how numerical simulations can be applied to explore areas of 
sounds partially unknown, and partially familiar, due to roots in some existing objects. Presented 
synthesizer design can be relatively easily adapted for other infeasible instruments mentioned in this paper, 
or for some combinations of their features. 
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