
Article citation info:  
Bouaouiche K, Menasria Y, Khalifa D. Detection of defects in a bearing by analysis of vibration signals. Diagnostyka. 

2023;24(2):2023203. https://doi.org/10.29354/diag/162230.  

1 

1 

  

DIAGNOSTYKA, 2023, Vol. 24, No. 2 
e-ISSN 2449-5220 

DOI: 10.29354/diag/162230 

 

 

DETECTION OF DEFECTS IN A BEARING BY ANALYSIS OF VIBRATION 

SIGNALS 
 

Karim BOUAOUICHE 1,*, Yamima MENASRIA 1 , Dalila KHALFA 1 

1 Electromechanical engineering laboratory, Badji Mokhtar University, Annaba, Algeria 
* Corresponding author, e-mail: karimbouaouiche@gmail.com 

  
Abstract  

This work presents the analysis of vibration signals by an approach consists of several mathematical tools 

more elaborate such as the Hilbert transform, kurtogram, which allows the detection of vibration defects in a 

simple and accurate way. The steps or methods inserted in the process one complementary to the other as scalar 

indicators generally used in monitoring to follow the evolution of the functioning of a machine when an 

abnormal functioning it must make a diagnosis to detect the failing element through the use of a process. The 

determination of the defective organs at an optimal time is a very important operation in the industrial 

maintenance, which keeps the equipment in a good condition and ensures the assiduity of work. To see the 

effectiveness of fault detection by the proposed approach by analyzing the real vibration signals of a bearing 

type 6025-SKF available on the Case Western Reserve University platform.  
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List of Symbols/Acronyms 

 

𝐴 – Angle of contact; 

CEEMDAN–Complete ensemble empirical mode 

decomposition with adaptive noise; 

CWRU – Case western reserve university; 

𝐷 – Diameter of rolling element; 

𝐷𝑚  – Pitch diameter; 

EMD – Empirical mode decomposition; 

𝐸𝑗– Operator; 

FFT – Fast Fourier Transform;  

𝐹𝑏𝑒 – Fault frequency of outer race;  

𝐹𝑏𝑖 – Fault frequency of inner race; 

𝐹𝑐𝑎 – Fault frequency of cage; 

𝐹𝑒𝑟 – Fault frequency of rolling element; 

𝐹𝑟 – Rotational speed; 

𝐹𝐷– Fault frequencies; 

IMF – Intrinsic mode function; 

N – Sample size; 

𝑛𝑖(𝑡) –White noise; 

𝑃𝑒𝑎𝑘– Peak value; 

R– Real party; 

𝑢𝑘– Modal functions; 

VMD – Varational mode decomposition; 

𝜔𝑘– Center frequency; 

𝑥(𝑡) – Vibration signal; 

𝑥𝑖– Samples; 

𝑥̅– Mean; 

𝑧 – Number of rolling elements; 

𝛿(𝑡) – Dirac distribution; 

*– Convolution; 

∝– Quadratic penalty factor; 

𝜆– Lagrange multiplier; 

τ– Time shift parameter; 

𝜀𝑖– SNR (Signal to Noise Ratio); 
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1. INTRODUCTION  

 

Conditional maintenance consists of several 

techniques applied to the industrial environment, but 

the vibration signal analysis is a better technique for 

diagnosing bearings, gears, and other components of 

rotating machines [1]. Bearing a critical component 

used to support the load and responsible for 40 to 

45% of machine failures, bearing defects are 

characterized as inner ring defects, outer ring defect, 

defect of the rolling element and defect of the cage 

[2]. Each defect creates a pulse in the vibratory 

signal spectrum, the pulse produced in the bearing at 

a specific frequency called the default frequency 

depends on the rotation speed and geometric 

parameters of the bearing [2].  

 The vibration produced when the bearing 

subjected to internal forces [3]. And the vibration 

magnitude signal measured with a measuring chain 

consisting of a sensor, a data system, for the 

distinguished sensors three types: the accelerometer 

that measures acceleration is used in case of high 

operating speed, speed sensor used when average 

operating speed, motion sensor worn in case of low 

speed [4].  

The vibration signal often processed in the time 

domain, frequency domain, and time-frequency 

domain, the temporal analysis performed by the 

calculation of scalar indicators such as RMS, 

kurtosis, and Crest factor [5]. And the frequency 

analysis made by the Fourier transform which allows 

to see the variation of a signal according to the 
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frequency also the time-frequency analysis 

examined the variation of the frequency according to 

the time is accomplished by transformations such as 

the transform of Hilbert Huang, the transform of 

Fourier to short term [6]. 

Monitoring and detecting faults in a bearing 

requires the acquisition and processing of signals 

through mathematical tools [7] such as signal 

decomposition by CEEMDAN or VMD, methods 

that analyse the non-stationary and non-linear signal 

[8]. Envelope analysis is a more efficient method to 

demodulate vibratory signals, and is composed by 

Hilbert transform and band pass filtering, 

demodulation of signals intended for the elimination 

of high frequency components [9]. 

In this study, we proposed a new approach to the 

treatment of vibratory signals, the integrated 

approach of several methods organized in the form 

of stages each complementary to the other which 

finally ensure the determination of the frequency of 

defects of the bearing components. The methods of 

signal processing are known, but the organization of 

the methods to achieve an effective diagnostic result 

must be tested and differently for each author. 

 

2. METHODS AND MATERIALS  

 

The proposed approach to represent in the 

flowchart (Fig 1) and consist of four steps. 

 

Fig. 1. Proposed approach 

 

The vibration signal is an input parameter to the 

proposed approach, the signals measured by a 

measurement chain that allows the storage of 

vibration data in the form of MATLAB files. 

- Step 1: calculation of scalar indicators when the 

values differ from the values of the healthy state 

(vibration signature) deduces the exceeding 

danger thresholds, using a set of indicators 

represented as follows [10]: 

- Root Mean Square : 

𝑅𝑀𝑆 = √
1

𝑁
∑ (𝑥𝑖)2𝑁

𝑖=1   
(1) 

- Kurtosis : 

𝐾𝑢 =
1

𝑁
∑ (𝑥𝑖−𝑥)4𝑁

𝑖=1

(
1

𝑁
∑ (𝑥𝑖−𝑥)2𝑁

𝑖=1 )2
  

(2) 

- Crest factor : 

𝐹𝑐 =
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
              (3)                                            

- Step 2: signal decomposition by two methods 

variational mode decomposition (VMD) and 

Complete ensemble empirical mode 

decomposition with adaptive noise CEEMDAN, 

there are several methods, but we will choose two 

algorithms the first CEEMDAN and an 

improvement of the EMD algorithm illustrated as 

follows [8]: 

1. Decomposes 𝑥(𝑡) + 𝜀𝑜𝑛𝑖(𝑡) by EMD in 

(i=1, 2,...., m) realization to get the first 

mode : 𝐼𝑀𝐹1(𝑡) =
1

𝑚
∑ 𝐼𝑀𝐹1

𝑖(𝑡)𝑚
𝑖=1  

2. Calculate the first residual for k=1 as in the 

equation : 𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1(𝑡) 

3. The second mode obtained by 

decomposition of  𝑟1(𝑡) + 𝜀1. 𝐸1(𝑛𝑖(𝑡))  

𝐼𝑀𝐹2(𝑡) =
1

𝑚
∑ 𝐸1(𝑟1(𝑡) + 𝜀1. 𝐸1(𝑛𝑖(𝑡)))𝑚

𝑖=1   

4. For k=1, 2,..., K :  𝑟𝑘(𝑡) + 𝜀𝑘. 𝐸𝑘(𝑛𝑖(𝑡)) 

𝐼𝑀𝐹𝑘+1(𝑡) =
1

𝑚
∑ 𝐸1(𝑟𝑘(𝑡) + 𝜀𝑘 . 𝐸𝑘(𝑛𝑖(𝑡)))

𝑚

𝑖=1
 

The components obtained after the 

decomposition of the signal called intrinsic mode 

function (IMF), for empirical mode decomposition 

(EMD) method, each function (IMF) must satisfy the 

following two conditions [11]: 

- All maxima are positive, and all minima are 

negative. 

- The local average is approximately equal to zero. 

The second VMD algorithm processes the signal 

decomposition in variational model and translates it 

into a solution with the constraint that the sum of the 

IMF be equal to the input signal [12]: 

- The variational model is expressed by the 

following equation: 

𝑚𝑖𝑛{𝑢𝑘}{𝜔𝑘} = {∑  

𝐾

𝑘=1

‖𝜕𝑡[(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]𝑒−𝑗𝜔𝑘𝑡‖

2

2
} 

(4) 

- The saddle point of the Lagrange function 

𝐿({𝑢𝑘}, {𝜔𝑘}, 𝜆) is found as the optimal solution 

of the variational model : 

𝐿({𝑢𝑘}, {𝜔𝑘}, 𝜆) =∝ ∑  

𝐾

𝑘=1

 ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

+ ‖𝑥(𝑡) − ∑ 𝑢𝑘(𝑡)

𝐾

𝑘=1

    ‖2
2+    

< 𝜆(𝑡), 𝑥(𝑡) − ∑ 𝑢𝑘(𝑡)

𝐾

𝑘=1

> 

(5) 
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After the decomposition of the vibratory signal 

realizes the selection of the optimal intrinsic mode 

function, defining two criteria for the selection the 

first is the value of cross correlation between the 

original signal and the IMF, the second criterion is 

the value of kurtosis. 

The optimal IMF indicates a maximum cross-

correlation value as well as a kurtosis value greater 

than 3. 

The kurtosis used to define the impulsiveness of 

a signal when the value of kurtosis superior to three, 

signals it of impulse form and in the case the kurtosis 

inferior to three signals, it almost sinusoidal to the 

causes all IMF of kurtosis inferior to three are 

eliminated [13]. 

The cross correlation function between two 

signals (x, IMF) defined by the following equation 

[14]: 

𝑅𝑥,𝐼𝑀𝐹(𝜏) = ∫ 𝑥(𝑡) × 𝐼𝑀𝐹(𝑡 − 𝜏)𝑑𝑡
+∞

−∞

 
(6) 

- Step 3: calculate the kurtogram of the vibratory 

signal for defining the resonance frequency that 

will used in the band pass filtering. 

The kurtogram is a graphical representation of 

spectral kurtosis values as a function of frequency f 

and bandwidth (∆𝑓) [15]. 

The spectral kurtosis 𝐾𝑥(𝑓) of a non-

stationary signal 𝑥(𝑡) defined as the fourth-

order normalized spectral momentum [15]: 

𝑥(𝑡) = ∫ 𝐻(𝑡, 𝑓) × 𝑒𝑗2𝜋𝑓𝑡

1
2

−1
2

𝑑𝑍𝑥(𝑓) 

(7) 

𝐾𝑥(𝑓) =
< |𝐻(𝑡, 𝑓) |4 >

< |𝐻(𝑡, 𝑓) |2 >2
− 2 

(8) 

𝑑𝑍𝑥(𝑓) : Orthogonal spectral increment. 

𝐻(𝑡, 𝑓) : It is the complex envelope of 𝑥(𝑡) at 

frequency (𝑓), can estimated by the short term 

Fourier transform [15]. 

The initial and final value of the interval with 

maximum spectral kurtosis values in the kurtogram 

is the filter pass frequency. 

- Step 4: determining the envelope spectrum of the 

selected IMF and filtered signal, Hilbert 

transform and Fourier transform define the 

envelope spectrum of a signal 𝑥(𝑡). 

The Hilbert transform defined by the formula 

follows [16]: 

𝐻[𝑥(𝑡)] = 𝑥(𝑡) ∗
𝑗

𝜋𝑡
 

(9) 

This transform is a convolution between 

𝑥(𝑡) and the signal  
𝑗

𝜋𝑡
 [16]. 

The analytical signal associated with 𝑥(𝑡) noted 

[16]: 

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)]  
 

(10) 

𝑧(𝑡) = 𝑏(𝑡) × (cos(𝜃(𝑡)) + 𝑗𝑠𝑖𝑛(𝜃(𝑡)) (11) 

𝑧(𝑡) = 𝑏(𝑡) × 𝑒𝑗𝜃(𝑡) (12) 

Therefore: 

𝑥(𝑡) = 𝑅{𝑧(𝑡)} (13) 

𝑥(𝑡) = 𝑏(𝑡)cos (𝜃(𝑡)) (14) 

The absolute value |𝑏(𝑡)| is the envelope 𝐸(𝑡) of 

the signal 𝑥(𝑡) and 𝜃(𝑡) is the phase modulation 

[16]: 

𝐸(𝑡) = |𝑏(𝑡)| = |𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)]| (15) 

The Fourier transform identifies the spectrum of the 

envelope 𝐸(𝑡): 

𝐸(𝑓) = ∫ 𝐸(𝑡) × 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

 
(16) 

According to the proposed approach in obtaining 

three envelope spectra, one of the filtered signal is 

the other of the optimal IMF obtained by the 

CEEMDAN algorithm and the last one of the IMF 

obtained by VMD. In interpreting the envelope 

spectra, the relationship between the peak frequency 

and the defect frequency of the bearing components 

is sought. 

The Case Western Reserve University (CWRU) 

platform consists of a test on the of ball bearing type 

6025-SKF supports the shaft of a rotating electric 

motor and subjected to different speeds and loads as 

well as the actual signals for the bearing available in 

the form of MATLAB files. 

Taking the signals of the healthy state and the 

inner race defects when the bearing is rotating at a 

speed of 1750 rpm and subjected to a load of 1491.4 

watt, the defect size is 0.1778 mm [17]. 

Frequencies of defects of bearing components 

defined by mathematical formulas depend on 

geometrical parameters [10] 

 
Table 1. The frequencies of defects 

Components Formulas 

Inner race 
𝐹𝑏𝑖 =

𝑧 × 𝐹𝑟

2
(1 +

𝐷

𝐷𝑚
cos(𝐴)) 

Outer race 
𝐹𝑏𝑒 =

𝑧 × 𝐹𝑟

2
(1 −

𝐷

𝐷𝑚
cos(𝐴)) 

Cage 
𝐹𝑐𝑎 =

𝐹𝑟

2
(1 −

𝐷

𝐷𝑚
cos(𝐴)) 

Rolling 

element 𝐹𝑒𝑟 =
𝐷𝑚 × 𝐹𝑟

2𝐷
(1 −

𝐷2

𝐷𝑚2 𝑐𝑜𝑠2(𝐴)) 

 

In CWRU, the fault frequencies (𝐹𝐷) of the 

bearing 6025-SKF components is the multiple of the 

operating speed (Fr=1750 rpm) in Hz with the 

coefficients represented in the table 2 [17]: 

 
Table 2. The values of the frequencies 

Components Coefficient 𝐹𝐷(𝐻𝑧) 

Inner race 5.4152 𝐹𝑏𝑖 = 157.943 

Outer race 3.5848 𝐹𝑏𝑒 = 104. 556 

Cage 0.39828 𝐹𝑐𝑎 = 11.616 

Rolling element 4.7135 𝐹𝑒𝑟 = 137. 477 

 

Finally, on applying the proposed approach on 

the selected signals to see the efficiency of the fault 

detection. 

 

3. RESULTS AND DISCUSSIONS 

 

Vibratory signals measured by accelerometers 

placed at the level of the electric motor, have 

distinguished two bearings, the first replaces next to 
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the motor driver and the other next to the fan, we’ll 

take the bearing signals next to the trainer and the 

sampling frequency 12 kHz [17]. 

The CWRU bearing data set is long, varied and 

complex [18]. 

The signals inserted in the MATLAB code are: 

- 99. mat: healthy state to identify the signature. 

- 107. mat: defect of the inner race of size 0.1778 

mm. 

 

3.1. Vibration signature  

The three scalar indicators used indicate the 

following values: 

- Root Mean Square : RMS=0.0644  

- Kurtosis: Ku=2.925 

- Crest factor: Fc=3.484  

The time signal and the spectrum of the healthy 

state represented on Fig 2. 

 

Fig. 2. Signal and spectrum of the healthy 

state 

 

When applying steps 2, 3 and 4 of the proposed 

approach on the signal of the healthy state (99.mat), 

have obtained the following results: 

- The kurtogram indicates a maximum value of 

spectral kurtosis (𝐾𝑚𝑎𝑥 = 0.1) has the centered 

frequency (𝑓𝑐 = 1500 𝐻𝑧) and width 𝐵𝜔 =
3000 𝐻𝑧, so the two pass-band filter 

frequencies 𝐹𝑝1 = 1 𝐻𝑧, 𝐹𝑝2 = 3000 𝐻𝑧. 

- The CEEMDAN algorithm gives 14 IMF, and 

the optimal function number six shows a 

maximum value of cross-correlation (6.28) and 

kurtosis (3.56). 

- In the VMD algorithm defines the number of 

IMF=5 and the parameter ∝= 2000, based on 

the decomposition of the signal, the function of 

number five is optimal since illustrates a 

maximum value of cross-correlation (0.05) and 

kurtosis (3.20). 

The envelope spectra do not have peaks as 

shown in Figs 3, 4 and 5. 

The information of the healthy state of the 

bearing called the vibration signature and all the 

vibratory defects modify this signature. 

 

 

Fig. 3. Filtered vibratory signal 

 

 

Fig. 4. Optimal IMF of CEEMDAN 

 

 

Fig. 5. Optimal IMF of VMD 

 

3.2. Signal of the faulty state  

The values of the scalar indicators different at the 

signature that reflects the exceeding of the danger 

threshold: 

- 𝑅𝑀𝑆 = 0.298  
- Kurtosis : 𝐾𝑢 = 5.536 

- Crest factor : 𝐹𝑐 = 5.131 

The spectrum is very rich with the information, 

but the form complicates it is difficult to interpret 

grace to this cause applying another technique. 
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Fig. 6. Signal of the failing state 

 

3.2.1. Kurtogram of the defaulting state   

The kurtogram of the failed signal shows a 

maximum value of spectral kurtosis 𝐾𝑚𝑎𝑥 = 0.4, at 

level (𝑘 = 2) at the centered frequency 𝑓𝑐 =
3750 𝐻𝑧 and width 𝐵𝜔 = 1500 𝐻𝑧 , as shown in Fig 

7. 

 

Fig. 7. Kurtogram of the defaulting state 

 

Consider the frequency 𝑓𝑐 as a resonance 

frequency. 

From the resonance frequency and width 

determined by the kurtogram on defining the two 

pass frequencies (𝐹𝑝) of the Buttrworth type band 

pass filter:𝐹𝑝1 = 3000 𝐻𝑧, 𝐹𝑝2 = 4500 𝐻𝑧, the 

filtered vibratory signal is represented in the Fig. 8. 

 

Fig. 8. Band-pass filtering of vibration signal 

 

3.2.2. Signal decomposition    

Decomposition by VMD: By defining the 

number of intrinsic mode functions IMF=5 and the 

parameter ∝= 2000. 

 

Fig. 9. The IMF obtained by VMD 

 

Decomposition by CEEMDAN: the CEEMDAN 

algorithm gives 14 intrinsic mode functions 

(IMF=14): 

 

Fig. 10. The IMF obtained by CEEMDAN 

 

3.2.3. Selection of optimal IMF 

Optimal IMF obtained by CEEMDAN: the first 

function (IMF=1) is optimal since it consists of a 

maximum cross-correlation value (911.3) and the 

kurtosis  𝐾𝑢 = 5.31 > 3. 

Optimal IMF obtained by VMD: third function 

(IMF=3) is optimal since it consists of a maximum 

cross-correlation value (271.51) and the kurtosis  

𝐾𝑢 = 3.7 > 3. 
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Table 3. Kurtosis and correlation values 

IMF Correlation Kurtosis 

1 911.3 5.31 

2 104.6 4.63 

3 6.57 6.34 

4 29.9 4.65 

5 8.52 5.57 

6 2.8 4.35 

7 0.7 4.66 

8 0.2 3.5 

9 0.08 4 

10 0.03 3.24 

11 0.06 3.06 

12 0.02 2.92 

13 0.01 2.14 

14 0.03 1.4 

 
Table 4. Cross-correlation and kurtosis values 

IMF Correlation Kurtosis 

1 49.37 2.16 

2 116.38 2.49 

3 271.51 3.7 

4 155.09 3.68 

5 244.88 3.77 

 

3.2.4. Spectrum of envelope 

Finally obtained three envelope spectra 

represented in Figs 11, 12 and 13, the envelope 

spectra show the same peak amplitude at frequency 

𝑓 = 157.5 𝐻𝑧, this value very close to the fault 

frequency of the inner race 𝐹𝑏𝑖 = 157.9 𝐻𝑧. 

 

Fig. 11. Envelope spectrum of the filtered 

signal 

 

4. CONCLUSION 

 

In this paper, by proposing a set of methods 

organized in the form of processing steps of 

vibration signals to detect the defects of the bearing, 

we analyzed the signal of the bearing in a healthy 

state and in faulty state.   

The Hilbert and Fourier transform is very 

important in the diagnosis of the bearing, which 

allows the simplicity of the form of the vibration 

signal. 

Signal decomposition is a very significant step 

that allows the division of a signal into several 

functions, and the selection of useful functions 

according to criteria such as cross-correlation 

ensures the removal of undesirable functions and 

finally improves the quality of the useful signal. 

 

 

Fig. 12. Envelope spectrum of the optimal 

IMF obtained by CEEMDAN 

 

 

Fig. 13. Envelope spectrum of the optimal 

IMF obtained by VMD 

 

The healthy state information is a reference value 

used for fault detection and all vibratory faults 

change the healthy state data. 
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