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Abstract

The Weibull distribution is one of the important distributions used in reliability theory and life-testing experiments. The
generalised versions of the Weibull distribution give a more flexible model for these studies. The Weibull–G family of
distributions is one of the extended versions extensively studied. In this paper, we have studied moments properties of
generalised order statistics for the said distribution in terms of a single moment, product moments and characterisation.
Several examples and special cases are presented. The results can be applied to all distributions belonging to this family.
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1. Introduction

Order statistics (OSs) and related general models of ordered random variables (ORVs) are important in
statistical theory and its applications. Kamps [17] introduced the concept of generalised order statistics
(GOS) and showed that all well-known models of ORVs such as record values (RVs), OSs, Pfeifer’s
records, progressive type II censored order statistics (PT2COS), sequential order statistics (SOS), etc.
are the submodels of GOS in the distributional and theoretical sense. There is no doubt that GOS and
different models of ORVs will continue to arouse the interest of many researchers working in the fields
of theoretical statistics and applications.

Recurrence relations for moments of GOS and characterisation through it for various distributions
have been investigated by several authors in the literature. For a detailed review of the literature,
see [2, 3, 6–12, 14, 18–28] and references therein. Furthermore, Alawady et al. [5] studied the con-
comitants of GOS from the iterated Farlie–Gumbel–Morgenstern-type bivariate distribution, while Abd
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Elgawad et al. [1] and Alawady et al. [4] studied the concomitants of GOS from the bivariate Camba-
nis family of distributions. Jamal and Chesneau [16] studied the moment properties of order statistics,
reverse order statistics, and upper record values of the power Ailamujia distribution.

1.1. Definition of GOS

Let n ≥ 2 be a given integer and m̃ = (m1,m2, . . . , mn−1) ∈ Rn−1, k ≥ 1 be the parameters such that

γi = k + n− i+
n−1∑
j=i

mj ≥ 0 for 1 ≤ i ≤ n− 1

Random variables (RVs) X1,n,m̃,k, X2,n,m̃,k, . . . , Xn,n,m̃,k are said to be GOS from an absolutely con-
tinuous population with a cumulative distribution function (CDF) F (), and probability density function
(PDF) f() if their joint PDF is of the form

k
n−1∏
j=1

γj

( n−1∏
i=1

[
1− F (xi)

]mif(xi)
)[

1− F (xn)
]k−1

f(xn) (1)

in the cone F−1(0) < x1 ≤ x2 ≤ . . . ≤ xn < F−1(1).
The particular cases of the model (1) are given below:
• If m1 = m2 = · · · = mn−1 = 0, and k = 1, then γr = n − r + 1, 1 ≤ r ≤ n − 1. In this case,

model (1) reduces to the joint density of the OSs.

• By choosing n = m, mi = Ri for i = 1, 2, . . . , m−1 and k = Rm+1, γr = m− r+1+
m∑
i=r

Ri,

1 ≤ r ≤ m, whereRi is a set of prefixed integers that shows random removal Ri in the ith failure of
the surviving items of an experiment. Model (1) reduces to the joint density based on PT2COS.

• If m1 = m2 = . . . mn−1 = −1 and k = 1, then γr = 1, 1 ≤ r ≤ n − 1. In this case, model (1)
reduces to the joint density of upper RVs.

• If mi = (n − i + 1)αi − (n − i)αi+1 − 1 and k = αn, α ∈ R+, i = 1, 2, . . . , n − 1, then
γr = (n− r + 1)αr, 1 ≤ r ≤ n− 1. Model (1) reduces to the joint density of the SOS.

Here, we may consider two cases.
Case I. γi ̸= γj , i, j = 1, 2, . . . , n− 1, i ̸= j

In view of (1), the PDF of rth GOS Xr,n,m̃,k is given as in [18]

fr,n,m̃,k(x) = Cr−1f(x)
r∑

i=1

ai(r)[F̄ (x)]γi−1 (2)

where

Cr−1 =
r∏

i=1

γi, γi = k + n− i+
n−1∑
j=i

mj > 0, ai(r) =
r∏

j=1
j ̸=i

1

(γj − γi)
, 1 ≤ i ≤ r ≤ n

The joint PDF of Xr,n,m̃,k and Xs,n,m̃,k, 1 ≤ r < s ≤ n, is given as in [18]
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fr,s,n,m̃,k(x, y) = Cs−1

s∑
j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj
[

r∑
i=1

ai(r)[F̄ (x)]γi

]
f(x)

F̄ (x)

f(y)

F̄ (y)
, x < y (3)

where

a
(r)
j (s) =

s∏
t=r+1
t̸=j

1

(γt − γj)
, r + 1 ≤ j ≤ s ≤ n

Case II. mi = m, i = 1, 2, . . . , n− 1

The PDF of rth GOS Xr,n,m,k is given as in [17]

fr,n,m,k(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)gr−1

m (F (x)) (4)

where

Cr−1 =
r∏

i=1

γi, γi = k + (n− i)(m+ 1)

hm(x) =


− 1

m+ 1
(1− x)m+1, m ̸= −1

log
( 1

1− x

)
, m = −1

and

gm(x) = hm(x)− hm(0) =

x∫
0

(1− t)mdt, x ∈ [0, 1)

The joint PDF of Xr,n,m,k and Xs,n,m,k, 1 ≤ r < s ≤ n, is given as in [25]

fr,s,n,m,k(x, y) =
Cs−1

(r − 1)! (s− r − 1)!
[F̄ (x)]mgr−1

m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(x)f(y), −∞ ≤ x < y ≤ ∞
(5)

1.2. Weibull–G family of distributions

Bourguignon et al. [13] proposed a wider Weibull–G family of distributions being one of the most im-
portant distributions used in reliability theory. The CDF of the Weibull–G family of distribution is

F (x) = 1− exp

[
−α

(
G(x)

Ḡ(x)

)β
]
, α, β > 0 (6)

and the corresponding PDF is given by

f(x) = αβg(x)
(G(x))β−1(
Ḡ(x)

)β+1
exp

[
−α

(
G(x)

Ḡ(x)

)β
]

(7)

where G(x) refers to the base distribution and Ḡ(x) = 1−G(x).
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In view of (6) and (7), the relation between the survival function (SF) and PDF of this family of
distributions can be seen as

F̄ (x) =

[
1

αβλ(x)

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

] (
Ḡ(x)

)β+l+1
f(x) (8)

where F̄ (x) = 1− F (x) is the SF and λ(x) =
g(x)

G(x)
is the inverse failure rate (IFR).

The paper is organised as follows. Section 2 demonstrates a single moment of GOS for the Weibull–G
family of distributions, as given in (6). In addition, some examples and special cases are discussed. The
properties of product moments are studied in Section 3, while the characterisation results are presented
in Section 4. In Section 5, a brief conclusion is given.

2. Single moment

Before coming to the main result, we reproduce the lemma given by Athar and Islam [7].

Lemma 1. For Case I with PDF given in (2) and 2 ≤ r ≤ n, n ≥ 1, k1 = 1, 2 . . .

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
= k1Cr−2

∞∫
−∞

xk1−1

r∑
i=1

ai(r)
[
F̄ (x)

]γi dx (9)

Proof. For γi ̸= γj , i, j = 1, 2, . . . , n− 1, i ̸= j, Athar and Islam [7] have shown that

E
[
ξ(Xr,n,m̃,k)

]
− E

[
ξ(Xr−1,n,m̃,k)

]
= Cr−2

∞∫
−∞

ξ′(x)
r∑

i=1

ai(r)
[
F̄ (x)

]γi dx (10)

where ξ(x) is a Borel measurable function of x ∈ (−∞,∞).

Let ξ(x) = xk1 , then Lemma 1 can be established in view of (10). □

Theorem 1. Assume that Case I is satisfied. For the Weibull–G family of distributions as given in (6)
and n ∈ N, m̃ ∈ R, k > 0, 1 ≤ r ≤ n, k1 = 1, 2, . . .

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1
αβγr

∞∑
l=0

Γ (β + l)

Γ (β)Γ (l + 1)
E
[
Bβ+l+1(Xr,n,m̃,k)

]
(11)

where Bβ+l+1 =
xk1−1

λ(x)

(
Ḡ(x)

)β+l+1.

Proof. Based on (8) and (9), we have the following

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1Cr−1

γr

∞∫
−∞

xk1−1

r∑
i=1

ai(r)
[
F̄ (x)

]γi−1
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×

[
1

αβλ(x)

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

(
Ḡ(x)

)β+l+1

]
f(x)dx

=
k1Cr−1

αβγr

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

∞∫
−∞

[
Bβ+l+1(Xr,n,m̃,k)

] r∑
i=1

ai(r)
[
F̄ (x)

]γi−1
f(x)dx

Therefore, we reached (11). Hence, the proof of Theorem 1 is completed. □

Corollary 1. For Case II and the condition as stated in Theorem 1

E
[
Xk1

r,n,m,k

]
− E

[
Xk1

r−1,n,m,k

]
=

k1
αβγr

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Bβ+l+1(Xr,n,m,k)

]
(12)

Proof. Since for γi ̸= γj, i ̸= j = 1, 2, . . . , n − 1 but mi = m

ai(r) =
1

(m+ 1)r−1
(−1)r−i 1

(i− 1)!(r − i)!

Therefore, PDF given in (2) reduces to (4). Thus, relation (12) can be obtained by replacing m̃ with m

in (11). □

Remark 1. If mi = 0, i = 1, 2, . . . , n− 1 and k = 1, then the relation for a single moment of OS for
Weibull–G family of distribution is given as

E
[
Xk1

r:n

]
− E

[
Xk1

r−1:n

]
=

k1
αβ(n− r + 1)

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Bβ+l+1(Xr:n)

]
where E(Xk1

r:n) is the k1th moment of rth OS.

Remark 2. Let mi → −1; i = 1, 2, . . . , n− 1, then single moment of kth upper RVs is obtained as

E[Xk1
U(k)(n)

]− E[Xk1
U(k)(n−1)

] =
k1
αβk

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E[Bβ+l+1(XU(k)(n))]

where E[Xk1
U(k)(n)

] is the k1th moment of sequence of kth upper RVs.

2.1. Examples

2.1.1. Weibull–uniform distribution (WU)

Suppose the parent distribution is a uniform distribution in the interval (0, θ). Thus, its CDF and PDF are

G(x; θ) =
x

θ
, 0 ≤ x ≤ θ

and
g(x; θ) =

1

θ
, 0 ≤ x ≤ θ
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Thus, the CDF and PDF of WU distribution, respectively, given by

F (x; α, β, θ) = 1− exp

[
−α

(
x

θ − x

)β
]
, 0 ≤ x ≤ θ, α, β > 0 (13)

f(x; α, β, θ) =
αβθ

(θ − x)2

(
x

θ − x

)β−1

exp

[
−α

(
x

θ − x

)β
]
, 0 ≤ θ, α, β > 0 (14)

Now, it is easy to see that

Bβ+l+1(x) =
xk1−1

λ(x)

(
Ḡ(x)

)β+l+1
= xk1

(
1− x

θ

)β+l+1

=

β+l+1∑
u=0

(−1)u
(
β + l + 1

u

)
1

θu
xk1+u

Now, using (11), we get

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1
αβθuγr

∞∑
l=0

β+l+1∑
u=0

(−1)u
Γ (β + l)

ΓβΓ (l + 1)

(
β + l + 1

u

)
E
[
X

(k1+u)
r,n,m̃,k

]
2.1.2. Weibull–Weibull distribution (WW)

Consider the base distribution to be the Weibull distribution. The CDF and PDF of the Weibull distribu-
tion are given by

G(x;λ, θ) = 1− e−λxθ

, x > 0;λ, θ > 0

and
g(x;λ, θ) = θλxθ−1e−λxθ

, x > 0;λ, θ > 0

Now, the CDF and PDF of the WW distribution can be written as

F (x;α, β, λ, θ) = 1− exp

[
−α

(
eλx

θ − 1
)β

]
, x > 0;α, β > 0 (15)

and

f(x;α, β, λ, θ) = αβλθxθ−1
(
1− e−λxθ

)β−1

exp

[
λβxθ − α

(
eλx

θ − 1
)β

]
(16)

Further, we have

Bβ+l+1(x) =
xk1−1

λ(x)

(
Ḡ(x)

)β+l+1

= xk1−1 (1− e−λxθ
)

λθxθ−1e−λxθ e
−λxθ(β+l+1) =

xk1−θ

λθ

[
e−λxθ(β+l) − e−λxθ(β+l+1)

]

=
1

λθ

[
∞∑
a=1

(−1)a
[λ(β + l)]a

a!
xk1+θ(a−1) −

∞∑
b=1

(−1)b
[λ(β + l + 1)]b

b!
xk1+θ(b−1)

]
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Now, in the view of (11), we get

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1
αβθλγr

∞∑
l=0

Γ (β + l)

Γ (β)Γ (l + 1)

×

{
∞∑
a=1

(−1)a
[λ(β + l)]a

a!
E
[
X

k1+θ(a−1)
r,n,m̃,k

]

−
∞∑
b=1

(−1)b
[λ(β + l + 1)]b

b!
E
[
X

k1+θ(b−1)
r,n,m̃,k

]}

2.1.3. Weibull–Pareto distribution (WP)

Let the base distribution be the Pareto distribution with CDF and PDF given by

G(x; θ, ρ) = 1− ρθx−θ, ρ < x < ∞; ρ > 0, θ > 1

and
g(x; θ, ρ) = θρθx−(θ+1), ρ < x < ∞; ρ > 0, θ > 1

Thus, the CDF and PDF of the WP distribution are

F (x;α, β, θ, ρ) = 1− exp
[
−α

(
ρ−θxθ − 1

)β]
, ρ < x < ∞, α, β, ρ > 0; θ > 1 (17)

and
f(x;α, β, θ, ρ) = αβθρ−θxθ−1

(
ρ−θxθ − 1

)β−1
exp

[
−α

(
ρ−θxθ − 1

)β] (18)

Also, Bβ+l+1(x) is computed as follows

Bβ+l+1(x) =
xk1−1

λ(x)

(
Ḡ(x)

)β+l+1
= xk1−1 (1− ρθx−θ)

θρθx−(θ+1)

(
ρθx−θ

)β+l+1

= θ−1
[
ρθ(β+l)xk1−θ(β+l) − ρθ(β+l+1)xk1−θ(β+l+1)

]
Now, using (11), we have

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1
αβθγr

∞∑
l=0

Γ (β + l)

Γ (β)Γ (l + 1)

×
{
ρθ(β+l)E

[
X

k1−θ(β+l)
r,n,m̃,k

]
− ρθ(β+l+1)E

[
X

k1−θ(β+l+1)
r,n,m̃,k

]}
2.1.4. Weibull extreme value distribution (WE)

Consider the base distribution to be the extreme value distribution with CDF and PDF given by

G(x) = 1− e−ex , −∞ < x < ∞

and
g(x) = e(x−ex), −∞ < x < ∞
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Thus, the CDF and PDF of WE distribution are given, respectively, by

F (x;α, β) = 1− exp
[
−α

(
ee

x − 1
)β]

, −∞ < x < ∞;α, β,> 0 (19)

and
f(x;α, β) = αβe(βe

x+x)
(
1− e−ex

)β−1
exp

[
−α

(
ee

x − 1
)β] (20)

Furthermore, we require the following computation

Bβ+l+1(x) =
xk1−1

λ(x)

(
Ḡ(x)

)β+l+1
= xk1−1 (1− e−ex)

e(x−ex)

(
e−ex

)β+l+1

= xk1−1e−x
[
e−ex(β+l) − e−ex(β+l+1)

]
= xk1−1e−x

[
∞∑
b=0

(−1)b
(ex(β + l))b

b!
−

∞∑
c=0

(−1)c
(ex(β + l + 1))c

c!

]

=
∞∑
b=0

∞∑
m=0

(−1)b
(β + l)b

b!

(b− 1)m

m!
xk1+m−1

−
∞∑
c=0

∞∑
h=0

(−1)c
(β + l + 1)c

c!

(c− 1)h

h!
xk1+h−1

Thus, from (11), we can write

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1
αβγr

∞∑
l=0

Γ (β + l)

Γ (β)Γ (l + 1)

×

{
∞∑
b=0

∞∑
m=0

(−1)b
(β + l)b

b!

(b− 1)m

m!
E
[
Xk1+m−1

r,n,m̃,k

]

−
∞∑
c=0

∞∑
h=0

(−1)c
(β + l + 1)c

c!

(c− 1)h

h!
E
[
Xk1+h−1

r,n,m̃,k

]}

3. Product moments

Lemma 2. For Case I with PDF as given in (3) and 1 ≤ r < s ≤ n, n ≥ 1, k > 0, k1, k2 = 1, 2, . . .

E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
= k2Cs−2

∫ ∞

−∞

∫ ∞

x

xk1yk2−1

[
s∑

c=r+1

a(r)c (s)

[
F̄ (y)

F̄ (x)

]γc]

×

[
r∑

h=1

ah(r)[F̄ (x)]γh

]
f(x)

F̄ (x)
dydx

(21)
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Proof. Athar and Islam [7] have shown that

E
[
ξ{Xr,n,m̃,k, Xs,n,m̃,k}

]
− E

[
ξ{Xr,n,m̃,k, Xs−1,n,m̃,k}

]
= Cs−2

∫ ∞

−∞

∫ ∞

x

∂

∂y
ξ(x, y)

[
s∑

c=r+1

a(r)c (s)

[
F̄ (y)

F̄ (x)

]γc]

×

[
r∑

h=1

ah(r)[F̄ (x)]γh

]
f(x)

F̄ (x)
dydx

(22)

The lemma can be established by letting ξ(x, y) = xk1yk2 in (22). □

Theorem 2. Let Case I be satisfied. For the Weibull–G family of distributions as given in (6) and
n ∈ N, m̃ ∈ R, K > 0, 1 < s ≤ k1, k2 = 1, 2 . . .

E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
=

k2
αβγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Aβ+l+1{Xr,n,m̃,k, Xs,n,m̃,k}

] (23)

where

Aβ+l+1(x, y) = xk1yk2−1 1

λ(y)

(
Ḡ(y)

)β+l+1
and λ(y) =

g(y)

G(y)

Proof. Using (8) and (21), we get the following

E
[
Xk1

r,n,m̃,k.X
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,k.X
k2
s−1,n,m̃,k

]
=

k2Cs−1

αβγs

∫ ∞

−∞

∫ ∞

x

xk1yk2−1

[
s∑

c=r+1

a(r)c (s)

[
F̄ (y)

F̄ (x)

]γc][
r∑

h=1

ah(r)[F̄ (x)]γh

]

× f(x)

F̄ (x)

f(y)

F̄ (y)

1

λ(y)

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

(
Ḡ(y)

)β+l+1
dydx

=
k2Cs−1

αβγs

∫ ∞

−∞

∫ ∞

x

Aβ+l+1(x, y)

[
s∑

c=r+1

a(r)c (s)

[
F̄ (y)

F̄ (x)

]γc]

×

[
r∑

h=1

ah(r)[F̄ (x)]γh

]
f(x)

F̄ (x)

f(y)

F̄ (y)
dydx

This yields (23). Therefore, the proof of Theorem 2 is complete. □
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Corollary 2. For Case II and the condition as stated in Theorem 2

E
[
Xk1

r,n,m,kX
k2
s,n,m,k

]
− E

[
Xk1

r,n,m,kX
k2
s−1,n,m,k

]
=

k2
αβγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Aβ+l+1{Xr,n,m,k, Xs,n,m,k}

] (24)

Proof. Since for γh ̸= γc; c ̸= h = 1, 2, . . . , n− 1 but mh = m

a
(r)
h (s) =

1

(m+ 1)s−r−1
(−1)s−h 1

(h− r − 1)!(s− h)!

Therefore, joint PDF of Xr,n,m̃,k and Xs,n,m̃,k given in (3) reduces to (5). Thus, relation (24) can be
established by replacing m̃ with m in (23). □

Remark 3. If mh = 0;h = 1, 2, . . . , n − 1 and k = 1, then the relation for product moment of OSs
for Weibull–G family of distribution is given by

E
[
Xk1

r:nX
k2
s:n

]
− E

[
Xk1

r:nX
k2
s−1:n

]
=

k2
αβγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Aβ+l+1{Xr:n, Xs:n}

]
Remark 4. Let mh → −1;h = 1, 2, . . . , n − 1, then the product moment of the kth upper RVs is
given as

E[Xk1
U(k)(n)

Xk2
U(k)(m)

]− E[Xk1
U(k)(n)

Xk2
U(k)(m−1)

]

=
k2
αβk

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E[Aβ+l+1(XU(k)(n), XU(k)(m))]

3.1. Examples

3.1.1. Weibull–uniform distribution (WU)

For the given CDF in (13), we obtain

Aβ+l+1(x, y) =
xk1yk2−1

λ(y)

(
Ḡ(y)

)β+l+1

= xk1yk2
(
1− y

θ

)β+l+1

=

β+l+1∑
u=0

(−1)u
(
β + l + 1

u

)
1

θu
xk1yk2+u

Thus, in view of (23), it is easy to see that

E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
=

k2
αβθuγs

∞∑
l=0

β+l+1∑
u=0

(−1)u
Γ (β + l)

Γ (β)Γ (l + 1)

(
β + l + 1

u

)
E
[
Xk1

r,n,m̃,kX
k2+u
s,n,m̃,k

]
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3.1.2. Weibull–Weibull distribution (WW)

For the CDF given in (15), we get

Aβ+l+1(x, y) =
xk1yk2−1

λ(y)

(
Ḡ(y)

)β+l+1
= xk1yk2−1 (1− e−λyθ)

λθyθ−1e−λyθ

(
e−λyθ

)β+l+1

=
xk1yk2−θ

λθ

[
e−λyθ(β+l) − e−λyθ(β+l+1)

]

=
1

λθ

{
∞∑
a=1

(−1)a
[λ(β + l)]a

a!
xk1yk2+θ(a−1)

−
∞∑
b=1

(−1)b
[λ(β + l + 1)]b

b!
xk1yk2+θ(b−1)

}

Therefore, using (23), we obtain

E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
=

k2
αβθλγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

{
∞∑
a=1

(−1)a
[λ(β + l)]a

a!
E
[
Xk1

r,n,m̃,kX
k2+θ(a−1)
s,n,m̃,k

]

−
∞∑
b=1

(−1)b
[λ(β + l + 1)]b

b!
E
[
Xk1

r,n,m̃,kX
k2+θ(b−1)
s,n,m̃,k

]}

3.1.3. Weibull–Pareto distribution (WP)

From the CDF in (17), we have

Aβ+l+1(x, y) =
xk1yk2−1

λ(y)

(
Ḡ(y)

)β+l+1
= xk1yk2−1 (1− ρθy−θ)

θρθy−(θ+1)

(
ρθy−θ

)β+l+1

= θ−1
[
ρθ(β+l)xk1yk2−θ(β+l) − ρθ(β+l+1)xk1yk2−θ(β+l+1)

]
Now, using (23), it is easy to see that

E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
=

k2
αβθγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

{
ρθ(β+l)E

[
Xk1

r,n,m̃,kX
k2−θ(β+l)
s,n,m̃,k

]
− ρθ(β+l+1)E

[
Xk1

r,n,m̃,kX
k2−θ(β+l+1)
s,n,m̃,k

]}
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3.1.4. Weibull–extreme value distribution (WE)

For the given CDF in (19), we obtain

Aβ+l+1(x, y) =
xk1yk2−1

λ(y)

(
Ḡ(y)

)β+l+1
= xk1yk2−1 (1− e−ey)

e(y−ey)

(
e−ey

)β+l+1

=xk1yk2−1e−y
[
e−ey(β+l) − e−ey(β+l+1)

]
=xk1yk2−1e−y

[
∞∑
b=0

(−1)b
(ey(β + l))b

b!
−

∞∑
c=0

(−1)c
(ey(β + l + 1))c

c!

]

=
∞∑
b=0

∞∑
m=0

(−1)b
(β + l)b

b!

(b− 1)m

m!
xk1yk2+m−1

−
∞∑
c=0

∞∑
h=0

(−1)c
(β + l + 1)c

c!

(c− 1)h

h!
xk1yk2+h−1

Thus, in view of (23), we have

E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
=

k2
αβγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

{
∞∑
b=0

∞∑
m=0

(−1)b
(β + l)b

b!

(b− 1)m

m!
E
[
Xk1

r,n,m̃,kX
k2+m−1
s,n,m̃,k

]

−
∞∑
c=0

∞∑
h=0

(−1)c
(β + l + 1)c

c!

(c− 1)h

h!
E
[
Xk1

r,n,m̃,k.X
k2+h−1
s,n,m̃,k

]}

4. Characterisation

In this section, the characterisation of the Weibull–G family of distributions, which is defined in (6), is
discussed through recurrence relations between the moments of GOS.

Theorem 3. Fix a positive integer k, and let k1 be a non-negative integer. A necessary and sufficient
condition for a random variable X to be distributed with PDF given in (7) is that

E
[
Xk1

r,n,m̃,k

]
− E

[
Xk1

r−1,n,m̃,k

]
=

k1
αβγr

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Bβ+l+1(Xr,n,m̃,k)

]
(25)

where Bβ+l+1(x) =
xk1−1

λ(x)

(
Ḡ(x)

)β+l+1.
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Proof. The necessary part follows from (11). On the other hand, assume the relation in (25) holds.
Now, using (2) and (9) in (25), we get

k1Cr−2

∫ ∞

−∞
xk1−1

r∑
i=1

ai(r)
[
F̄ (x)

]γi dx =
k1Cr−1

αβγr

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

∫ ∞

−∞

xk1−1

λ(x)

(
Ḡ(x)

)β+l+1
r∑

i=1

ai(r)
[
F̄ (x)

]γi−1
f(x)dx

This implies

k1Cr−1

αβγr

∫ ∞

−∞
xk1−1

r∑
i=1

ai(r)
[
F̄ (x)

]γi−1

×

{
αβF̄ (x)−

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

(
Ḡ(x)

)β+l+1

λ(x)
f(x)

}
dx = 0

(26)

Applying the extension of Müntz–Szász theorem (see, for example, [15]) to (26), we obtain

F̄ (x)

f(x)
=

1

αβλ(x)

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

(
Ḡ(x)

)β+l+1

Thus, f(x) has a PDF as given in (7). Therefore, Theorem 3 holds. □

Theorem 4. Fix a positive integer k and let k1, k2 are non-negative integers. A necessary and sufficient
condition for a random variable X to be distributed with PDF as stated in (7) is that

[E
[
Xk1

r,n,m̃,kX
k2
s,n,m̃,k

]
− E

[
Xk1

r,n,m̃,kX
k2
s−1,n,m̃,k

]
=

k2
αβγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)
E
[
Aβ+l+1{Xr,n,m̃,k, Xs,n,m̃,k}

] (27)

where Aβ+l+1(x, y) = xk1yk2−1

(
Ḡ(y)

)β+l+1

λ(y)
.

Proof. The necessary part follows from (23). Now, suppose the relation in (27) is satisfied. Thus in
view of (3) and (21), we have

k2Cs−2

∫ ∞

−∞

∫ ∞

x

xk1yk2−1

[
s∑

c=r+1

a(r)c (s)

(
F̄ (y)

F̄ (x)

)γc
][

r∑
h=1

ah(r)[F̄ (x)]γh

]
f(x)

F̄ (x)
dydx
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=
k2Cs−1

αβγs

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

∫ ∞

−∞

∫ ∞

x

xk1yk2−1

(
Ḡ(y)

)β+l+1

λ(y)

[
s∑

c=r+1

a(r)c (s)

[
F̄ (y)

F̄ (x)

]γc]

×

[
r∑

h=1

ah(r)[F̄ (x)]γh

]
f(x)

F̄ (x)

f(y)

F̄ (y)
dydx

This implies

k2Cs−1

αβγs

∫ ∞

−∞

∫ ∞

x

xk1yk2−1

[
r∑

h=1

ah(r)[F̄ (x)]γh

][
s∑

c=r+1

a(r)c (s)

[
F̄ (y)

F̄ (x)

]γc] f(x)

F̄ (x)

×

{
αβ −

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

(
Ḡ(y)

)β+l+1

λ(y)

f(y)

F̄ (y)

}
dydx = 0

(28)

Applying the extension of Müntz–Szász theorem (see, for example, [15]) to (28), we have

F̄ (y)

f(y)
=

1

αβλ(y)

∞∑
l=0

Γ (β + l)

ΓβΓ (l + 1)

(
Ḡ(y)

)β+l+1

Thus, f(y) is a PDF as stated in (7) and Theorem 4 is satisfied. □

5. Conclusions

The Weibull–G family of distributions with two additional shape parameters is proposed by Bourguignon
et al. [13]. It includes a broad family of continuous distributions and gives a better fit to generated distri-
butions. The GOS is a unified approach for several ORVs, like OSs, RVs, SOS etc. The main purpose of
this study is to find moments of GOS for several continuous distributions belonging to this class. More-
over, the characterisation of a probability distribution is essential, plays an important role in statistical
studies, and has significant applications in natural and applied sciences. Thus, the characterisation of this
general class of distribution is also studied using moment properties.
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