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INTRODUCTION

In numerical analyses of elastic-plastic prob-
lems including metal forming processes, classical 
plasticity theory or unified plasticity one might be 
applied. The first ones enable to describe the be-
haviour of materials under loading in macro scale 
only without considering the micro-mechanism 
occurring in a material during deformation which 
is the goal of unified plasticity approaches. The 
change of a material microstructure gives the full 
explanation of plastic deformation process [1–2]. 
In turns, unified plasticity models assume not 
only the change of the material shape under load-
ing in a macro scale, but also the change of its 
microstructure, strain hardening and anisotropy 
caused by the plastic deformation mechanisms, 
e.g. slip and twinning [3]. These models describe 
the elastic-plastic behaviour of materials linking 

different scales of the problem – from macro- to 
micro- or even to nano- levels (Figure 1).

The important issue in modelling of material 
polycrystalline microstructure is the description 
of the interaction between particular grains. A va-
riety of micromechanical models have been pro-
posed so far. In Taylor model [4], the strain is the 
same in all grains and equals to the global strain. 
It is assumed that every grain deforms in the same 
way as the representative volume element. How-
ever, the equilibrium equations on grain boundar-
ies are not satisfied in this approach. The Sachs 
model [5] assumes that the stress state for all 
grains is the same and equals the global stress state 
of the material which causes the discontinuity of a 
displacement. In another model based on the self-
consistent approach [6], every grain is considered 
as an ellipsoidal heterogeneity which is placed in 
a uniform space representing the polycrystalline 
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structure. The multiplicative decomposition of 
the total deformation gradient into elastic and 
plastic parts assuming also twinning is described 
by Khan et al. [7]. Other more advance microme-
chanical models assume that some components 
of stress or strain states are the same or use the 
homogenization theory for the determination of 
stress and strain distributions in crystals [8–9]. 
For example, a micromorphic model of crystal 
plasticity by combining the microcurl model with 
the minimal gradient-enhancement of the harden-
ing law has been proposed by Ryś et al. [10]. In 
this approach, the condition for the plastic flow 
was introduced using the assumed compatibility 
of actual and virtual dissipation rates. The crystal 
plasticity model with one yield surface expressed 
by the homogeneous yield function of degree 2n 
was described by Kowalczyk-Gajewska et al. 
[11]. The constitutive model formulated within 
the large-strain crystal plasticity framework is 
presented by Kowalczyk-Gajewska et al. [12]. 
More information about crystal plasticity models 
is contained in papers [13–15].

Metals considered in this paper are polycrys-
talline materials in which the elementary volume 
element consists of a large amount of grains with 
a crystalline structure [16]. The single crystal 
constitutes a three-dimensional arrangement 
of atoms – FCC (face centered cubic), BCC 
(body centered cubic) or HCP (hexagonal close 
packed) [17]. Mechanical properties of metals, 
especially the ability to plastic deformation, de-
pend on their crystalline structure. The crystal 
plasticity (CP) theory gives the explanation of 
many mechanical phenomena on the continuum 
body level and enables to estimate quantitative 
evaluation of mechanical properties [18].The 
dislocation slip (considered in this paper) and 
the twinning (not included here) are the main 
mechanisms of the plastic deformation in met-
als. Anisotropic slip occurs only on selected 

crystalline planes and in selected directions 
within these planes (slip systems). The slip sys-
tems are preferred in directions most densely 
packed by atoms. Depending on the crystalline 
structure, polycrystals have different number of 
slip systems defined by n and m normalized vec-
tors. The n vector is normal to the slip plane and 
m vector is parallel to the slip direction [19]. The 
slip systems are related with the crystalline net-
work of a metal [20]. The number of slip planes, 
directions and slip systems for three main crys-
talline structures are summarized in Table 1. The 
FCC structure considered in this paper is defined 
by four slip planes and for three slip directions 
on these planes, which gives twelve- slip systems 
(Figure 2) [21]. The plastic deformation occurs 
more easily in crystals with higher number of the 
slip systems, especially when they are located 
more favorably against the direction of a load.

The slip does not change the orientation of a 
crystalline structure and all atoms in a lattice main-
tain the same distance with each other (Figure 3).

The plastic deformation caused by the dislo-
cation slip is a result of a shear posed by the shear-
ing stress – resolved shear stress (𝜏𝜏!"") . Accord-
ing to the Schmidt law, the slip occurs when shear 
stresses on selected slip plane and in selected slip 
direction reach the critical value – the critical re-
solved shear stress (𝜏𝜏!"##)  [22]. The condition 
which determines the occurrence of a slip in se-
lected slip system is as follows (Eq. 1) [23]:

𝜏𝜏!"" > 𝜏𝜏#!"" (1)

where:

𝜏𝜏!"" = 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 (2)

where: 𝜎𝜎  – a tensile stress,
 𝜆𝜆  – an angle between tensile axis and the 

slip direction (Figure 4),

Fig. 1. The idea of a multi-scale crystal plasticity
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 𝜙𝜙  – an angle between tensile angle and the 
slip plane normal. The part 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  in 
Eq. 2 defines the Schmidt factor (𝑆𝑆!  ). It 
is worth highlighting that the dislocation 
slip is not activated in all slip systems si-
multaneously. The slip starts in the sys-
tem for which the Schmidt factor has the 
highest value. Another slip systems might 
be initiated later on under further loading.

The deformation caused by the dislocation 
motion also leads to the rotation of a material to-
gether with the shearing [24].

The aim of this research work is a numeri-
cal elastic-plastic analysis of polycrystalline 
anisotropic material –C11000 copper alloy of 
FCC (A1) crystalline structure commonly used 
in many industrial applications and character-
ized by the minimum Cu weight concentration of 
99%. The morphology was defined by means of 
the Voronoi tessellation. The random distribution 
of grains orientation was assumed. The numeri-
cal calculations of an uniaxial loading and a shear 
test including elastic and plastic parameters for 

a copper was performed by the FEPX software. 
The constitutive equations of a single crystal 
plasticity theory assume dislocation slip as the 
only mechanism of a plastic deformation. The 

Fig. 2. Slip planes and slip directions for 
FCC structure considered in this paper

Table 1. Crystalline structures and their number of slip planes, directions and systems

Crystalline structure Number of slip planes Number of slip directions Number of slip systems
FCC (face centered cubic) – A1 4 3 12

BCC (body centered cubic) – A2
6 2 12

12 1 12
24 1 24

HCP (hexagonal close packed) – A3
1 3 3
3 1 3
6 1 6

a)

b)

Fig. 3. The comparison of the lattice crystal orientation during a slip (a) and a twinning (b)
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modelling assuming both slip and twinning are 
described in papers [25–27]. The benchmark tests 
were performed for different model shapes –cu-
bic and paddy shapes. The results obtained show 
the potential of crystal plasticity modelling as a 
numerical tool to solve a wide range of engineer-
ing problems, e.g modeling of materials forming 
processes, severe plastic deformation (SPD) anal-
yses, super plasticity problems etc. considering 
phenomena occurring in materials in macro- and 
nano- scales. Such an analysis provides a more 
complete description of the material behavior 
than classical macromechanical plasticity theory 
at a small scale.

CONSTITUTIVE EQUATIONS OF  
A CRYSTAL PLASTICITY THEORY

The viscoplastic crystalline plastic model 
considering 12 slip systems for a single crystal 
with FCC structure is applied here. The consti-
tutive equations based on the CP theory are as 
follows:
1. The multiplicative decomposition of the defor-

mation gradient 𝐹𝐹  into its elastic 𝐹𝐹!  and plastic 
components 𝐹𝐹!  (Eq. 3):

𝐹𝐹 = 𝐹𝐹!𝐹𝐹" (3)

The elastic deformation gradient includes the 
elastic stretching and rigid body rotation [28]. The 
plastic part 𝐹𝐹!  which occurs after removing the 
load, describes the plastic shear of the material 

(see Figure 5 fora uniaxial example) [29]. The 
plastic deformation gradient also contains infor-
mation about the dislocations arising in the slip 
systems [30].
2. The macroscopic velocity gradient for a mate-

rial point of a crystal grain can be additively 
decomposed into the elastic and plastic com-
ponents, 𝐿𝐿!   and 𝐿𝐿! , respectively, as follows 
(Eq. 4–6):

𝐿𝐿 = 𝐿𝐿! + 𝐿𝐿" (4)

where:

𝐿𝐿! = �̇�𝐹!(𝐹𝐹")#$ (5)

𝐿𝐿! = 𝐹𝐹"�̇�𝐹!(𝐹𝐹!)#$(𝐹𝐹")#$ (6)

where: the dot means time derivative.

3. The Euler’s velocity gradient tensor 𝐿𝐿  might 
be decomposed into a symmetric deformation 
velocity tensor 𝐷𝐷  and the antisymmetric spin 
tensor 𝛺𝛺  (Eq. 7–9):

𝐿𝐿 = 𝐷𝐷 + 𝛺𝛺 (7)

where:

𝐷𝐷 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝐿𝐿) =
1
2
(𝐿𝐿 + 𝐿𝐿!) (8)

Fig. 5. Elastic-plastic deformation of a 
single crystal during an uniaxial test

Fig. 4. Definition of the resolved shear stress
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𝛺𝛺 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐿𝐿) =
1
2
(𝐿𝐿 − 𝐿𝐿!) (9)

Subsequently, deformation velocity gradi-
ent and spin tensors can be decomposed into a 
lattice contribution elastic part and plastic one 
(Eq. 10–11).

𝐷𝐷 = 𝐷𝐷! + 𝐷𝐷" (10)

𝛺𝛺 = 𝛺𝛺! + 𝛺𝛺" (11)

The plastic spin tensor 𝛺𝛺!  is derived from the 
crystal slip and the elastic spin one 𝛺𝛺!  can be de-
fined in line with Eq. 12:

𝛺𝛺! = 𝑅𝑅 ∙ �̇�𝑅"  (12)

where: 𝑅𝑅  – a rigid body rotation of a crystalline 
lattice, 

 𝛺𝛺!  – describes the evolution of the orien-
tation of the crystallographic lattice [31].

4. It is assumed that the plastic deformation 
caused by the dislocation slip changes neither 
the geometry nor the orientation of a crystal 
and the lattice undergoes the only elastic de-
formation [32]. Using the polar decomposition, 
the elastic part of a deformation gradient can 
be written as a multiplication of a rigid body 
tensor 𝑅𝑅!  and the right stretching tensor 𝑈𝑈!  
(Eq. 13).

𝐹𝐹! = 𝑅𝑅!𝑈𝑈! (13)

As mentioned before, the crystal plasticity 
connects problems of different scales. The plas-
tic velocity gradient is calculated as a sum of slip 
rates on all slip systems and this way links the 
macro- and micro- scales (Eq. 14) [25, 33].

𝐿𝐿! = # �̇�𝛾"𝑚𝑚" ⊗
#

"$%

𝑛𝑛" = # �̇�𝛾"𝑆𝑆"
#

"$%

 (14)

where: �̇�𝛾!   – denotes the shearing rate on the 𝛼𝛼  
slip system, 

 𝑚𝑚!   – a slip direction, 
 𝑛𝑛!   – a slip plane normal, 

 𝑆𝑆!   – the Schmidt tensor for the 𝛼𝛼  slip 
system, 

 𝑛𝑛  – a total number of slip systems. It is 
assumed that 𝑚𝑚!   and 𝑛𝑛!   are orthogonal 
(Eq. 15):

𝑚𝑚! ∙ 𝑛𝑛! = 0 (15)

Assuming the connection between macro- 
and micro- scales, the plastic deformation veloc-
ity gradient 𝐷𝐷!  and the plastic spin 𝛺𝛺!  tensors 
can be expressed as follows (Eq. 16–17) [34]:

𝐷𝐷! =
1
2
(𝐿𝐿! + 𝐿𝐿!") = )𝑝𝑝# ∙ �̇�𝛾#

$

#%&

 (16)

𝛺𝛺! =
1
2
(𝐿𝐿! − 𝐿𝐿!") = )𝜔𝜔# ∙ �̇�𝛾#

$

#%&

 (17)

where: 	𝑝𝑝!   and 𝜔𝜔!   – symmetric and asymmetric 
tensors defining the Schmidt tensor on a 
selected α  slip system.

Similarly, the elastic deformation velocity 
gradient associated with the stretching and the 
elastic (lattice) spin can be defined by the follow-
ing (Eq. 18–19) [34]:

𝐷𝐷! =
1
2
(𝐿𝐿! + 𝐿𝐿!") = 𝐷𝐷 −*𝑝𝑝# ∙ �̇�𝛾#

$

#%&

 (18)

𝛺𝛺! =
1
2
(𝐿𝐿! − 𝐿𝐿!") = 𝛺𝛺 −)𝜔𝜔# ∙ �̇�𝛾#

$

#%&

 (19)

The numerical calculations of elastic-plastic 
problems based on the CP theory using equations 
above (Eq. 3–19) are time-consuming and com-
plex, and require a lot of computation steps. The 
complexity of crystal plasticity FEM (CPFEM) 
approaches is shown in Figure 6. The calculations 
are made iteratively in a loop. Depending on the 
method applied (explicit or implicit), the aim of 
increment is the calculation of stress required to 
reach the final deformation gradient and/or the 

determination of the Jacobian matrix 𝐽𝐽 =
𝜕𝜕Δ𝜎𝜎
𝜕𝜕Δ𝜀𝜀   

(the implicit method only) [35].
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One can see in Figure 6 that the plastic ve-
locity deformation gradient expressed by a shear 
rate in the slip systems is required to update the 
stress tensor. On the other hand, the second Piola-
Kirchoff stress tensor 𝑆𝑆  is calculated from 𝐿𝐿! , 𝐹𝐹!  
and 𝐹𝐹!  tensors (Eq. 20):

𝑆𝑆 = 𝐶𝐶𝐸𝐸! =
1
2𝐶𝐶

((𝐹𝐹!)"𝐹𝐹! − 𝐼𝐼) (20)

where: 𝐶𝐶  – the elasticity tensor, 
 𝐸𝐸!  – the symmetric elastic strain tensor, 
 𝐼𝐼  – the identity matrix.

The yield condition for a single crystal is 
defined by the classical Schmidt law or by the 
regulated Schmidt one [36–37]. According to the 
first one, a single crystal yields when the resolved 
shear stress 𝜏𝜏!""  reaches the 𝜏𝜏!"##	 critical value 
and is defined as follows (Eq. 21):

max(𝜏𝜏!"") = 𝜏𝜏#!""  and �̇�𝜏!"" = 0  (21)

In line with the regulated Schmidt law, the 
yield condition is expressed in the following 
(Eq. 22):

𝑓𝑓(𝜎𝜎) − 𝑚𝑚 =()
𝜏𝜏!""
𝜏𝜏#!""

+
$%
−𝑚𝑚 = 0 

 
and 𝑓𝑓(𝜎𝜎) = 𝑚𝑚 , 𝑓𝑓̇ = 0  

(22)

where: 𝑚𝑚  and 𝑛𝑛  – material constants.

Strain hardening of a material is the result of 
an increase in the slip resistance. According to 
Dawson et al. [38], the shear rate for a slip system 
evaluates as follows (Eq. 23):

�̇�𝛾! = �̇�𝛾" $
|𝜏𝜏!|
𝑔𝑔! (

#

𝑠𝑠𝑔𝑔𝑠𝑠(𝜏𝜏!) (23)

where: �̇�𝛾!  – a reference shear strain rate on the 𝛼𝛼  
slip system, 

 𝜏𝜏!   – a resolved shear stress on the 𝛼𝛼  slip 
system, 

 𝑘𝑘  – the rate sensitivity coefficient, 
 𝑔𝑔!   – the critical shear stress on the 𝛼𝛼  ac-

tivated slip system to govern the isotropic 
hardening of the crystal.

The shear rate, including also the effect of a 
backstress associated with the kinematic harden-
ing, is written by the following (Eq. 24):

�̇�𝛾! = �̇�𝛾"𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏! − 𝑥𝑥!) ,
|𝜏𝜏! − 𝑥𝑥!|

𝑠𝑠! .
#

 (24)

where: 𝑥𝑥!   – a backstress which characterizes the 
nonlinear kinematic (directional) harden-
ing of the crystal on the 𝛼𝛼	 slip system. Its 
evolution defined by Walker and Chab-
oche is expressed as (Eq. 25) [39]:

𝑥𝑥 = 𝑎𝑎�̇�𝛾! − 𝑐𝑐[1 − 𝑒𝑒"(1 − exp(−𝑒𝑒#𝛾𝛾))]𝑥𝑥!|�̇�𝛾!| − 𝑑𝑑𝑥𝑥!̇   
𝑥𝑥 = 𝑎𝑎�̇�𝛾! − 𝑐𝑐[1 − 𝑒𝑒"(1 − exp(−𝑒𝑒#𝛾𝛾))]𝑥𝑥!|�̇�𝛾!| − 𝑑𝑑𝑥𝑥!̇  

(25)

where: 𝑎𝑎  – the initial hardening modulus of a slip 
system, 

 𝑐𝑐  – the nonlinear hardening parameter, 
 𝑐𝑐!  and 𝑐𝑐!  – describe the cyclic hardening 

saturation.

The evolution of a slip system strength (𝑔𝑔!) ) for 
a given activated slip is the following (Eq. 26) 
[40]:

Fig. 6. Diagram showing calculations during the stress determination using the crystal plasticity theory
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�̇�𝑔! = ℎ" %
𝑔𝑔#(�̇�𝛾) − 𝑔𝑔!

𝑔𝑔#(�̇�𝛾) − 𝑔𝑔"
*
$

𝑔𝑔"	 (26)

where: ℎ!  – the fixed-state hardening rate scal-
ing coefficient, 𝑔𝑔!  – the initial slip system 
strength and 𝑛𝑛  is a non-linear Voce hard-
ening exponent.

The slip system saturation strength 𝑔𝑔!(�̇�𝛾 ) is 
as follows (Eq. 27) [41]:

𝑔𝑔!(�̇�𝛾) = 𝑔𝑔!" '
�̇�𝛾
�̇�𝛾!"
(
#$

 (27)

where: 𝑔𝑔!"  – the initial slip system saturation 
strength, 

 𝑚𝑚′  – a saturation strength rate scaling 
exponent, 

 �̇�𝛾!"  – the initial saturation slip system 
shear rate, 

 �̇�𝛾  – a sum of �̇�𝛾!   values.

The constitutive equations presented above 
are implemented in open source FEPX software 
used here in numerical computations of selected 
elastic-plastic problems.

NUMERICAL MODELLING OF 
CRYSTAL PLASTICITY

Numerical simulations presented in this pa-
per were carried out for the C11000 copper alloy 
modelled as a polycrystalline material with the 
FCC structure. Its elastic and plastic parameters 
taken from literature are contained in Table 2.

The crystal plasticity finite element simula-
tions were carried out using NEPER as a pre- and 
post- processor, and FEPX as a solver. In NEPER 
program, the geometry is modelled by polycrystals 
obtained by means of 3D Voronoi tessellation. Fi-
nite element mesh generated by NEPER, as well 
as the analysis data and boundary conditions are 
applied as input files to FEPX program. This finite 
element solver allows modelling macro- and nano- 
mechanical behaviours of large polycrystalline 
aggregates with complex microstructures assum-
ing their crystallographic characteristics, e.g. slip 
systems, hardening and anisotropy of grains. The 
FEPX acts as a simulation tool for a NEPER. The 
stages of elastic-plastic analyses used in this paper 
are presented in Figure 7.

The crystal plasticity (CP) constitutive phe-
nomenological model with elastic part based on 
the generalized Hook’s law and plastic part assum-
ing flow and hardening rules, as well as the yield 
condition (see equations above) was used here.

Numerical simulations were done for a cubic 
and a paddy-like geometrical models. Different 
numbers of grains (400 and 800 grains) with the 
random morphology, size and random crystal ori-
entations were applied here. For geometries men-
tioned above, an uniaxial loading test and shear 
test were done.

BENCHMARK TESTS

In the first benchmark test, the cubic repre-
sentative volume element (RVE) of dimensions 1 
× 1 × 1 mm was used. Two cases were investi-
gated where the RVE was divided into 400 and 
800 grains as shown in Figure 8. The grain size 
was differential in the range of 30–150 μm. Each 
grain is a monocrystalline, i.e. all finite elements 
inside a grain have the same crystal orientations. 
The finite element meshes consisting of tetrahe-
dral elements are shown in Figure 9. Details of 
FEM models are included in Table 3.

In the tension test the following boundary 
conditions corresponding to the specimen mount-
ing in the testing machine are applied:
 ux = uy = uz = 0 on the bottom face (z = 0),

 ux = uy = 0, uz = 0.02 mm (corresponds to the 
axial strain of 2%) on the upper face (z = 1).

The 𝜎𝜎!!  stress acting on the loading direc-
tion for 400 and 800 grain models is shown in 
Figure 10. One can see that the distribution of 
stress is not regular. On the bottom and upper fac-
es the influence of applied boundary conditions 

Table 2. Elastic and plastic parameters for a C11000 
copper alloy used in this research

Elastic parameters
E [MPa] 1.66 ∙ 105

ν [-] 0.33
Plastic parameters

m [-] 0.05

 [1/s] 1
h0 [MPa] 200
g0[MPa] 210
gs0[MPa] 330

n [-] 1
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Fig. 7. The stages of numerical analyses used in this paper

a) b)

Fig. 8. RVE divided into 400 (a) and 800 (b) grains

a) b)

Fig. 9. FEM meshes for RVE with 400 (a) and 800 (b) grains
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can be observed. In the middle part of the mate-
rial the majority of the stresses are in the range 
340–425 MPa.

As the result of homogenization, the mac-
roscopic stress-strain curve was computed. The 
homogenized stress is found as the sum of verti-
cal reactions divided by the actual cross section 
(computed with the assumption of the volume 
conservation). The macroscopic stress-strain re-
lationship is shown in Figure 11.

The distribution of equivalent plastic strain 
for samples with a different number of grains is 
presented in Figure 12. The strain is mostly in the 
range 0.018–0.02 and the strong influence of ap-
plied boundary conditions is clearly seen. Inho-
mogeneous distribution of the equivalent plastic 
strain was noted. Some of grains show higher 
plastic strains than others, which is associated 
with the anisotropy of the material.

As another benchmark test, 400 and 800 
grains samples (the same as in the previous task) 
are subjected to shear which was modelled as a 
compression in x direction with the stress value 
of –180 MPa and as a tension in z direction with 

+180 MPa stress value (the coordinate system is 
the same as in the tension test). This way pure 
shear state is obtained in the specimen. Boundary 
conditions of triaxial type in FEPX are applied. 
In this type of BCs, normal velocities on x = 0, y 
= 0, z = 0 faces are zeros (the triple symmetry is 
assumed). In this example material data are the 
same as in the previous tension test.

The distribution of von Mises stress (H-M-H 
stress) for both samples with different number of 
grains is shown in Figure 13. Usually effective 
stresses are in the range 280–315 MPa. The stress 
distribution is more regular than in the previous 

Table 3. FEM models data – the cubic RVE

Feature
Number of grains

400 800
Number of nodes 67 966 132 650
Number of elements 75 802 149 759

a) b)

Fig. 10. Distribution of 𝜎𝜎!!  stress in 400 (a) and 800 (b) grains samples

Fig. 11. Macroscopic stress-strain curve
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tension test. The influence on boundary condi-
tions is negligible.

In further benchmark test a paddy-like shape 
sample of overall dimensions 1.0 × 0.2 × 4.0 mm 
was subjected to tension load. Once again, in the 
tessellation process 400 and 800 grains were gen-
erated. Finite element meshes for both samples are 
shown in Figure 14. The detailed data of FEM mod-
els is contained in Table 4. The global coordinate 

system, boundary conditions and material data are 
the same as in the tension benchmark test.

The stress and equivalent plastic strain dis-
tributions are presented in Figures 15 and 16. In 
both 400 and 800 grain models, strain localization 
next to the notch is visible. The results obtained for 
denser mesh are more reliable. It is very interesting 
that for both samples shearing bands can be clearly 
observed (contours sloped at 45 angle).

a) b)

Fig. 13. Distribution of H-M-H stress for 400 (a) and 800 (b) grains samples

a) b)

Fig. 12. Distribution of equivalent plastic strain (PEEQ) for 400 (a) and 800 (b) grains samples
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CONCLUSIONS

In this paper numerical simulations of an uni-
axial loading and a shear test were done using the 
crystal plasticity finite element method (CPFEM). 
The change of the microstructure and dislocation 
slip as the mechanism of the plastic deformation 
are considered here. Benchmark tests presented 
here were performed for the C11000 copper alloy 
of FCC crystalline structure. Numerical calcula-
tions were done for a different number of grains 
assuming its random distribution and orientation. 
Three benchmark tests are made: the tension and 
shearing test of the cube sample and the tension 

test of paddy-like sample. Stress and equivalent 
plastic strain distributions are presented. Addi-
tionally, macroscopic response as the stress-strain 
curve was also generated as the result of homog-
enization. The results obtained show the inhomo-
geneity of stress and strain in samples associated 
with the anisotropy of grains.

The main conclusions resulting from includ-
ed benchmark tests are summarized as follows. 
The CPFEM software enables to solve elastic-
plastic problems taking into consideration the 
mechanism of the plastic deformation – in this 
paper a dislocation slip. The inhomogeneous be-
haviour of the material under loading (tension or 
shear) was noted. It is caused by the anisotropy 
of material resulting from different crystals ori-
entation. The application of a crystal plasticity 
theory in solving elastic-viscoplastic problems 
gives a more realistic description of material be-
haviour under loading. However, this is a time-
consuming process which in practice should be 

Table 4. FEM models data – paddy-like shape sample

Feature
Number of grains

400 800
Number of nodes 73 899 140 284
Number of elements 79 851 153 448

a) b)

Fig. 14. Meshes for 400 (a) and 800 (b) grains samples
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executed on powerful workstations. Experimen-
tal validation of crystal plasticity models may 
not be limited to verify the results obtained in 
macro scale only (e.g. homogenization of stress-
strain curve). It should also contain comparisons 
of experimental and numerical data in the nano-
scale. The change of crystals orientations after 
deformation plotted in the form of pole figures 
is a good example. Unfortunately, the electron 
back scatter diffraction (EBSD) equipment is not 
available for the authors. For this reason experi-
mental verification of numerical results in nano-
scale is out of scope of this paper.

In this paper the potential of crystal plas-
ticity theory in solving elastic-plastic problems 
has been presented on relatively simple bench-
mark tests. Computations have been executed 
on PC computer and they have taken from one 
hour (400 grains cube subjected to tension) 
to twelve hours (paddy-like sample with 800 
grains). However, it is worth noting that the 

results are valuable. It is very important that 
even simple models can predict a properly 
materials elastic-plastic response. Here, for 
instance, even 400 grains paddy-like sample 
presents shearing bands.

Open source software for crystal plastic-
ity finite element method available on the in-
ternet is usually restricted to make analyses of 
simple shape models (cube, cylinder) for which 
simple boundary conditions and simple loads 
can be applied. It is not possible to apply, e.g. 
contact conditions typical in simulations of 
material processing. In the future research au-
thors intend to develop crystal plasticity user 
material procedures which will be linked with 
the commercial FEM software. This way more 
sophisticated elastic-plastic problems (rolling, 
extrusion etc.) may be solved. The results of 
benchmark tests presented in this paper will be 
used as reference solutions in the validation of 
developed user material programs.

a) b)

Fig. 15. Distribution of H-M-H stress for 400 (a) and 800 (b) grains samples
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