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Abstract
The void fraction is one of the most important parameters characterizing a multiphase flow. The prediction
of the performance of any system operating with more than single phase relies on our knowledge and ability
to measure the void fraction. In this work, a validated simulation study was performed in order to predict the
void fraction independent of the flow pattern in gas-liquid two-phase flows using a gamma ray 60Co source
and just one scintillation detector with the help of an artificial neural network (ANN) model of radial
basis function (RBF). Three used inputs of ANN include a registered count under Compton continuum and
counts under full energy peaks of 1173 and 1333 keV. The output is a void fraction percentage. Applying
this methodology, the percentage of void fraction independent of the flow pattern of a gas-liquid two-phase
flow was estimated with a mean relative error less than 1.17%. Although the error obtained in this study
is almost close to those obtained in other similar works, only one detector was used, while in the previous
studies at least two detectors were employed. Advantages of using fewer detectors are: cost reduction and
system simplification.

Keywords: two-phase flow, gamma ray attenuation, scintillation detector, void fraction, artificial neural
network.
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1. Introduction

A great demand in the world for oil and gas has been the main motivation for petroleum
companies to continually look for approaches to enhance oil and gas production techniques. The
objectives have included making marginal fields more cost-effective, establishing production fa-
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cilities in difficult physical environments, reducing the development cost and improving the en-
ergy efficiency of new fields. The multiphase flow-meters play an important role in the mentioned
fields and every try which leads to improvement in this technique is of great importance.

The void fraction is a key parameter characterizing a gas-liquid two-phase flow. To date, var-
ious methods such as volumetric, electrical, optical, ultrasonic and nuclear radiation techniques
have been introduced for measuring the void fraction. By comparing all the measurement meth-
ods, it can be seen that the gamma ray attenuation method has been widely used because of its
advantages, such as its non-intrusiveness and greater reliability. However, this method has some
disadvantages, such as physical health problems and safety.

In recent years, a large number of researchers have investigated the use of gamma ray at-
tenuation in determination of the void fraction in gas-liquid two-phase flows. Abro et al. per-
formed a simulation study in order to determine the type of flow regime and the void fraction
in gas-liquid two-phase flows using EGS4 software package and ANN. Their simulation ge-
ometry included three detectors and one 241Am source. Using this geometry, they could distin-
guish all the three ideal flow regimes (annular, stratified and homogenous) and also determine
the void fraction with an error of less than 3% [1]. Roshani et al. used validated simulations
and an ANN in order to recognize the type of flow regime and then estimate the void fraction
in gas-liquid two-phase flows [2]. Their simulation configuration included a 137Cs source and
two scintillation NaI detectors. They used the total count in the scattering detector, the full en-
ergy peak and photon counts of Compton edge in the transmission detector as the three inputs
of the ANN. By using this methodology, they could correctly recognize all three flow regimes
– stratified, homogenous and annular – and also predict the void fraction of each phase in a
range of 5–95% with an error of less than 1.1%. Adineh et al. carried out an experimental study
of measuring the void fraction for a modelled two-phase flow inside a vertical pipe by using
gamma rays [3]. They modelled three types of typical flow regimes, i.e. homogenous, strati-
fied and annular ones, in a vertical pipe by using polyethylene phantoms. Their experimental
setup consisted of a 137Cs source and two scintillation NaI detectors. For three modelled flow
regimes, all transmitted and scattered gamma rays in all directions were measured by setting the
gamma ray source and the detector around the pipe. They also used the MCNP code to provide
an appropriate correction coefficient for measuring the void fraction and to improve the accuracy
and validation of experimental results. Nazemi et al. designed an experimental setup in order to
predict the void fraction in gas-liquid two-phase flows independent of the type of flow regime
[4]. They employed one radioactive source and two NaI detectors for registering the transmit-
ted photons. The counts registered in both detectors were used as inputs of an ANN model of
a multi-layer perceptron (MLP). Applying this methodology, the void fraction percentage was
estimated with a mean relative error less than only 1.4%. More studies on radiation-based mul-
tiphase flow-meters and also application of ANN in nuclear engineering can be found in the
references [5–27].

As it was mentioned, in all previous works two or more detectors were used in order to
measure the void fraction in gas-liquid two-phase flows. Using fewer detectors is advantageous
in industrial nuclear gauges since it offers both cost reduction and improved simplicity. In this
work we used one source and one detector to determine the void fraction in gas-liquid two-phase
flows independent of the type of flow regime. This geometry was proposed in our recently pub-
lished work [28] for identifying the flow regime. Unfortunately, in that paper it was demonstrated
that it is not possible to recognize all the flow regimes in gas-liquid two-phase flows using one
detector, one radioactive source and an ANN model of MLP. In fact, in the presented paper we
will demonstrate that it is possible to predict the void fraction independent of the flow pattern,
although recognizing the flow regime is not possible.
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2. Materials and method

2.1. Monte Carlo simulation

In this study, the Monte Carlo N-Particle (MCNP) code, version X, was used. MCNP is a
useful tool for radiation transport, mainly in situations where physical measurements are imprac-
ticable or inconvenient. The detection configuration consists of one NaI(Tl) scintillator detector
which is placed diametrically to a 60Co source. For simulating the NaI(Tl) scintillator detec-
tor, the crystal itself was considered as a homogeneous cylinder. The dimensions of detector are
25.4 mm in thickness and 25.4 mm in diameter. A collimated (a cubic collimator 0.6 cm wide,
2 cm high and 10 cm long) gamma-ray point source was also simulated in order to produce a
narrow beam. A Pyrex-glass pipe composed of a test section with 2.5 mm thickness and the
maximum outside diameter of 100 mm, was simulated as the main pipe. The detector was placed
at the distances of 10 cm and 30 cm from the centre of pipe and the source, respectively. The
simulation configuration is shown in Fig. 1. It should be noted that the simulation geometry has
been benchmarked with the laboratory experiments in our previous works [2, 14, 15].

Fig. 1. The simulated geometry.

Air with a density of 0.00125 g/cm3 was used as the air phase in all simulations. Also, gasoil
with a density of 0.826 g/cm3 and the chemical formula C12H23 was used as the liquid phase.
Three flow regimes (stratified, annular and homogenous) in gas-liquid two-phase flows were
simulated (more details about simulation of flow regimes can be found in [28]). These three
flow regimes are the basic regimes in gas-liquid two-phase flows and other flow regimes are
incorporated in these patterns. In each flow regime, void fractions with the values in a range of
5–95% and steps of 5%, were simulated in order to provide the data sets required for testing and
training the ANN. In fact, 57 simulations were carried out. Three simulated flow regimes are
shown in Fig. 2.

a) b) c)

Fig. 2. Simulated two-phase flow regimes: a) Stratified; b) Homogenous; c) Annular.
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The MCNP-X Monte Carlo computer code provides also a special data treatment suitable for
gamma-ray spectrum data acquisition, which is the Gaussian energy broadening (GEB) (card
FTn) option. It is used to fit the full energy peak shape of the gamma-ray spectrum to a Gaussian
response of an experimental measurement [29]. The technique consists of using an “FT8 GEB”
card in the input file of MCNP code and calculating the full width at half maximum (FWHM) of
the full energy peak of gamma rays with different energies in the laboratory. It should be noted
that the counts registered in the detector were calculated per one source particle in the MCNP-
X code using Pulse Height Tally F8. The desired FWHM, which should be determined by the
user-provided constants (a, b, and c), has a nonlinear response relative to energy according to the
equation (1) [29]:

FWHM = a+b
√

E + cE2, (1)

where E is an incident gamma-ray energy. The units of “a”, “b” and “c” parameters are MeV,
MeV1/2, and MeV−1, respectively. To determine “a”, “b” and “c” parameter values, one 25.4×
25.4 mm scintillator NaI detector and 3 gamma emitter radioactive sources of 241Am (energy
59.5 keV), 137Cs (energy 662 keV) and 60Co (energies 1173 and 1333 keV) including four
gamma energies in a range of 59.5–1333 KeV, were used. The experimental spectra for 241Am,
137Cs and 60Co sources are shown in Fig. 3. At first, FWHM of each photo peak was calculated in
terms of number of channels which should be converted in terms of energy (MeV) by using (2):

FWHM (MeV) =
FWHM(channel)×Energy of peak (MeV)

Channel’s number of peak(channel)
. (2)

Fig. 3. The experimental spectra registered in the 25.4×25.4 mm scintillator NaI detector
for the radioactive sources of 241Am, 137Cs and 60Co.

FWHMs of each photo peak are shown in Table 1.
As shown in Fig. 4, after obtaining the experimental FWHM values for each photo peak,

FWHM (MeV) was plotted as a function of energy of photo peaks (MeV). A non-linear fitting
function was implemented for this curve in order to determine the values of “a”, “b” and “c”.
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Table 1. Calculated full widths at half maximum (FWHMs) for photo peaks with energies of 60, 662, 1173
and 1333 keV in the 25.4×25.4 mm NaI detector.

Energy of photo peak (keV) FWHM (number of channels) FWHM (energy with unit of MeV)

59.5 6.45 0.0061

662 26.83 0.0455

1173 37.51 0.0671

1333 38.59 0.0694

Fig. 4. Calculation of GEB card parameters using FWHM values obtained for different
energies and a non-linear fitting function.

The values of “a”, “b” and “c” parameters are shown in Table 2. They were calculated with
the GEB command in the input file of MCNP code to take account of the energy resolution of
the 25.4×25.4 mm scintillator NaI detector in the simulations.

Table 2. The values of required parameters calculated with the GEB
command in the input file of MCNP codein order to take account of the

energy resolution.

Parameters Value

a (MeV) 0.0109

b (MeV1/2) 0.0696

c (MeV−1) 0.0226

In each void fraction value, three features (count under Compton continuum and counts under
photo peaks with energies of 1173 and 1333 keV) were extracted from the gamma-ray spectrum
registered in the detector. In the case of count under Compton continuum, only Compton contin-
uum related to gamma with energy of 1173 keV and Compton edge of 963 keV, was considered.
The counts registered in the detector versus the void fraction are shown in Fig. 5 for three flow
regimes: annular, homogenous and stratified.
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a)

b)

c)

Fig. 5. Registered counts versus void fraction for annular, homogenous and stratified flow
regimes: a) count under Compton continuum; b) count under photo peak with energy of

1173 keV; c) count under photo peak with energy of 1333 keV.
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2.2. Radial basis function network

Artificial neural networks (ANNs) are applied to simulating system performance, especially
in the case of simulating complex systems, while a limited volume of experimental data is avail-
able. A neural network includes many neurons as processing elements, which are connected by
synaptic weights [30]. The radial basis function (RBF) ANNs are the feed-forward types of
networks with three layers, usually with a Gaussian activation function for each neuron in the
hidden layer and a linear transfer function in the output layer [31]. The numbers of neurons
in the input and output layers depend on the numbers of input and output data, respectively.
Simple structure, fast training process, good ability in controlling input noise, suitable general-
ization capability, and ability of online learning in comparison with other feed-forward ANNs
are some advantages of the RBF networks [32]. The conventional structure of an RBF is shown
in Fig. 6. An RBF measures the distance between the input vectors and the weight vectors and
is typically considered to be a Gaussian function. Thus, the output of this network can be given
by [33]:

Y =
L

∑
j=1

Wj f j =
L

∑
j=1

Wj exp
(
− 1

2σ2 ∥I −C j∥2
)
, (3)

where C j is the centre vector for the jth hidden node determined by the K-means clustering
method, ∥I −C j∥ is the Euclidean norm and σ2 is the variance of the Gaussian function.

Fig. 6. The conventional structure of an RBF.

The used inputs are three features extracted from the gamma spectrum (counts under full
energy peaks of 1.173 and 1.333 MeV and count under Compton continuum) for the designed
RBF model, as shown in Fig. 7. The output of the architecture includes the void fraction percent-
age of gas. The designed architecture is shown in Fig. 8. The designed network includes only
three neurons in the hidden layer. Therefore, it can be concluded that it is an optimized RBF
network.

As it can be seen from Table 3, the required training-data set was created from all of three
regimes and divided into two overall sets: 70% as training data and 30% as testing data. The
configuration of the designed RBF network is presented in Table 4.
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Fig. 7. The inputs and output of an RBF model.

Fig. 8. The architecture of the designed RBF model.

Table 3. The training-data set created from all of three regimes.
Annular regime Homogenous regime Stratified regime

void Compton 1.17 peak 1.33 peak void Compton 1.17 peak 1.33 peak void Compton 1.17 peak 1.33 peak
5 3.64E-01 2.09E-02 1.62E-02 5 3.35E-01 1.92E-02 1.49E-02 5 3.42E-01 1.97E-02 1.52E-02

10 3.81E-01 2.20E-02 1.69E-02 10 3.43E-01 1.97E-02 1.53E-02 10 3.52E-01 2.03E-02 1.57E-02

15 3.95E-01 2.28E-02 1.75E-02 15 3.52E-01 2.02E-02 1.57E-02 15 3.61E-01 2.08E-02 1.61E-02

20 4.07E-01 2.35E-02 1.80E-02 20 3.60E-01 2.07E-02 1.60E-02 20 3.69E-01 2.13E-02 1.64E-02

25 4.18E-01 2.42E-02 1.85E-02 25 3.69E-01 2.13E-02 1.64E-02 25 3.77E-01 2.18E-02 1.68E-02

30 4.28E-01 2.48E-02 1.89E-02 30 3.78E-01 2.18E-02 1.68E-02 30 3.85E-01 2.23E-02 1.71E-02

35 4.37E-01 2.53E-02 1.93E-02 35 3.88E-01 2.24E-02 1.72E-02 35 3.93E-01 2.28E-02 1.75E-02

40 4.46E-01 2.59E-02 1.97E-02 40 3.97E-01 2.30E-02 1.77E-02 40 4.00E-01 2.32E-02 1.78E-02

45 4.54E-01 2.64E-02 2.00E-02 45 4.07E-01 2.36E-02 1.81E-02 45 4.08E-01 2.37E-02 1.81E-02

50 4.62E-01 2.69E-02 2.04E-02 50 4.17E-01 2.42E-02 1.85E-02 50 4.16E-01 2.42E-02 1.85E-02

55 4.70E-01 2.74E-02 2.07E-02 55 4.28E-01 2.48E-02 1.90E-02 55 4.24E-01 2.47E-02 1.88E-02

60 4.77E-01 2.78E-02 2.11E-02 60 4.38E-01 2.55E-02 1.94E-02 60 4.33E-01 2.52E-02 1.92E-02

65 4.85E-01 2.83E-02 2.14E-02 65 4.49E-01 2.62E-02 1.99E-02 65 4.41E-01 2.57E-02 1.96E-02

70 4.92E-01 2.87E-02 2.17E-02 70 4.60E-01 2.68E-02 2.04E-02 70 4.51E-01 2.63E-02 2.00E-02

75 5.00E-01 2.92E-02 2.20E-02 75 4.72E-01 2.75E-02 2.09E-02 75 4.60E-01 2.68E-02 2.04E-02

80 5.06E-01 2.96E-02 2.23E-02 80 4.83E-01 2.82E-02 2.14E-02 80 4.70E-01 2.75E-02 2.08E-02

85 5.13E-01 3.00E-02 2.26E-02 85 4.95E-01 2.89E-02 2.19E-02 85 4.81E-01 2.81E-02 2.13E-02

90 5.20E-01 3.04E-02 2.29E-02 90 5.07E-01 2.97E-02 2.25E-02 90 4.93E-01 2.89E-02 2.18E-02

95 5.26E-01 3.08E-02 2.32E-02 95 5.20E-01 3.05E-02 2.30E-02 95 5.08E-01 2.98E-02 2.24E-02
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Table 4. The configuration of the designed RBF network.

ANN type RBF

No. of neurons in the input layer 3

No. of neurons in the hidden layer 3

No. of neurons in the output layer 1

Spread 0.4

Target Error 0

Activation function Gaussian

3. Results

The results predicted with the designed RBF model compared with the real results can be
explained as regression diagrams for the training and testing processes. The regression diagrams
for the training and testing procedures are shown in Figs. 9 and 10, respectively.

Fig. 9. Regression diagrams for the training procedure.

Table 5 shows the obtained defined errors for the designed RBF model. The defined errors
contain mean absolute error percentage (MAE %), mean relative error percentage (MRE %) and
root mean square error (RMSE), which has been calculated as [21]:

MRE% = 100× 1
N

N

∑
i=1

∣∣∣∣Xi(Re)−Xi(Pr)
Xi(Re)

∣∣∣∣ , (4)

RMSE =


N

∑
i=1

(Xi(Re)−Xi(Pr))2

N


0.5

, (5)
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Fig. 10. Regression diagrams for the testing procedure.

MAE% =
1
N

N

∑
i=1

|Xi(Re)−Xi(Pr)| , (6)

where N is the number of data and ‘X(Re)’ and ‘X(Pr)’ denote the real data and the RBF-
predicted data, respectively. As can be seen from Table 5, the obtained errors for the test data
are small, which is acceptable when considering only one detector.

Table 5. The obtained defined errors of the designed MLP network.

Defined Errors Train Test

MAE% 5.18 3.73

MRE% 1.17 0.37

RMSE 6.12 4.54

One of the significant advantages of the proposed RBF model is its simplicity and precision.
Therefore, the designed model is a good tool of predicting the void fraction from the mentioned
features with an acceptable accuracy.

4. Conclusion

In this research, a simple RBF neural network has been applied to estimate the void fraction
in a gas-liquid two-phase flow. Using just one detector and predicting the void fraction inde-
pendent of the flow regime’s type are advantages of the presented methodology. First, with the
help of MCNP code, three main flow regimes (annular, stratified and homogenous) with various
void fractions were modelled. After that, in each void fraction three features from the registered
spectrum of 60Co were extracted. Then, the extracted features including counts under full energy
peaks of 1.173 and 1.333 MeV and count under Compton continuum were used as inputs of the
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RBF network and the void fraction was considered as the output. Finally, the RBF model could
predict the void fraction with an MRE of less than 1.3% that is acceptable in the field of multi-
phase flow-meters. However, this value of MRE is almost close to 1.4% that was obtained in our
previous work [4], in which the void fraction was predicted independent of the flow regime us-
ing two detectors. An advantage of presented methodology is the use of just one detector which
causes cost reduction of the measuring system.
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