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Analysis, adaptive control and synchronization
of a novel 4-D hyperchaotic hyperjerk system

and its SPICE implementation

SUNDARAPANDIAN VAIDYANATHAN, CHRISTOS VOLOS, VIET-THANH PHAM and KAVITHA MADHAVAN

A hyperjerk system is a dynamical system, which is modelled by an nth order ordi-
nary differential equation with n  4 describing the time evolution of a single scalar vari-
able. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a
system of n first order ordinary differential equations with n  4. In this research work, a
4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties
have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as
L1 = 0.1448,L2 = 0.0328,L3 = 0 and L4 = −1.1294. The Kaplan-Yorke dimension of the
novel hyperjerk system is obtained as DKY = 3.1573. Next, an adaptive backstepping controller
is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters.
Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos syn-
chronization of the identical novel hyperjerk systems with three unknown parameters. Finally,
an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in
detail to confirm the feasibility of the theoretical hyperjerk model.

Key words: hyperchaos, hyperjerk system, adaptive control, backstepping control, syn-
chronization.

1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behaviour in de-
terministic nonlinear dynamical systems. For the motion of a dynamical system to be
chaotic, the system variables should contain nonlinear terms and it must satisfy three
properties: boundedness, infinite recurrence and sensitive dependence on initial condi-
tions [1]. The Lyapunov exponent of a dynamical system is a quantity that characterizes
the rate of separation of infinitesimally close trajectories. The sensitive dependence on
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initial conditions of a dynamical system is characterized by the presence of a positive
Lyapunov exponent. A positive Lyapunov exponent reflects a direction of stretching and
folding and along with phase-space compactness indicates the presence of chaos in a
dynamical system. An n-dimensional dynamical system has a spectrum of n Lyapunov
exponents and the maximal Lyapunov exponent (MLE) of a chaotic system is defined as
the largest positive Lyapunov exponent of the system.

The first famous chaotic system was accidentally discovered by Lorenz, when he
was designing a 3-D model for atmospheric convection in 1963 [2]. Subsequently,
Rössler discovered a 3-D chaotic system in 1976 [3], which is algebraically simpler
than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with
two quadratic nonlinearities, while Rössler’s system is a seven-term chaotic system with
just one quadratic nonlinearity. Some well-known paradigms of 3-D chaotic systems are
Arneodo system [4], Sprott systems [5], Chen system [6], Lü-Chen system [7], Liu sys-
tem [8], Cai system [9], T-system [10], etc. Many new chaotic systems have been also
discovered like Li system [11], Sundarapandian systems [12, 13], Vaidyanathan sys-
tems [14, 15, 16, 17, 18, 19, 20, 21], Pehlivan system [22], Jafari system [23], Pham
system [24], etc.

Chaos theory has applications in several fields of science and engineering such as
oscillators [25], lasers [26], chemical reactions [27], biology [28], ecology [29], neu-
ral networks [30], robotics [31], fuzzy logic [32], electrical circuits [33], cryptosys-
tems [34, 35], etc. Chaos communications is an application of chaos theory which is
aimed to provide security in the transmission of information performed through telecom-
munications technologies [36, 37, 38]. For implementation of chaos communication sys-
tems, two chaotic oscillators are required as a transmitter (or master) and receiver (or
slave). At the transmitter, a message is added onto a chaotic signal and then, the message
is masked in the chaotic signal. When chaos synchronization is used, a basic scheme of
a communications device is made by two identical chaotic systems, where one chaotic
system is used as the transmitter, and the other chaotic system as the receiver. They are
connected in a configuration where the transmitter drives the receiver in such a way that
identical synchronization of chaos between the two oscillators is achieved. For the pur-
pose of transmission of information, at the transmitter, a message is added as a small
perturbation to the chaotic signal that drives the receiver. In this way, the message trans-
mitted is masked by the chaotic signal. When the receiver synchronizes to the transmitter,
the message is decoded by a subtraction between the signal sent by transmitter and its
copy generated at the receiver by means of the synchronization of chaos mechanism.

A hyperchaotic system is generally defined as a chaotic system with at least two
positive Lyapunov exponents [39]. Thus, the dynamics of a hyperchaotic system are ex-
pended in several different directions simultaneously. Thus, the hyperchaotic systems
have more complex dynamical behaviour and hence they have miscellaneous applica-
tions in engineering such as secure communications [40], cryptosystems [41], encryp-
tion [42], electrical circuits [43], etc.

The minimum dimension for an autonomous, continuous-time, hyperchaotic system
is four. Since the discovery of a first 4-D hyperchaotic system by Rössler in 1979 [44],
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many 4-D hyperchaotic systems have been found in the literature such as hyperchaotic
Lorenz system [45], hyperchaotic Lü system [46], hyperchaotic Chen system [47], hy-
perchaotic Wang system [48], hyperchaotic Newton-Leipnik system [49], hyperchaotic
Jia system [50], hyperchaotic Vaidyanathan systems [51, 52], etc. In mechanics, if the
scalar x(t) represents the position of a moving object at time t, then the first derivative,
ẋ(t), represents the velocity, the second derivative, ẍ(t), represents the acceleration and
the third derivative,

...x (t), represents the jerk or jolt [53]. In mechanics, a jerk system
is described by an explicit third order ordinary differential equation describing the time
evolution of a single scalar variable x according to the dynamics

d3x
dt3 = f

(
d2x
dt2 ,

dx
dt

,x
)

(1)

A particularly simple example of a jerk system is the famous Coullet system [54]
given by

d3x
dt3 +a

d2x
dt2 +

dx
dt

= g(x) (2)

where g(x) is a nonlinear function such as g(x) = b(x2 − 1), which exhibits chaos for
a = 0.6 and b = 0.58. A generalization of the jerk dynamics is given by the dynamics

d(n)x
dtn = f

(
d(n−1)x
dtn−1 , . . . ,

dx
dt

,x

)
, (n 4) (3)

An ordinary differential equation of the form (3) is called a hyperjerk system since it
involves time derivatives of a jerk function [55].

In this paper, we propose a 4-D novel hyperchaotic hyperjerk system by adding a
quadratic nonlinearity to the Chlouverakis-Sprott hyperjerk system [56]. First, we detail
the fundamental qualitative properties of the novel hyperchaotic hyperjerk system. We
show that the novel hyperjerk system is dissipative. Then we derive the Lyapunov ex-
ponents and Kaplan-Yorke dimension of the novel hyperchaotic hyperjerk system. The
study of control of a chaotic system investigates methods for designing feedback control
laws that globally or locally asymptotically stabilize or regulate the outputs of a chaotic
system. Next, this paper derives an adaptive backstepping control law that stabilizes the
novel hyperjerk system, when the system parameters are unknown. The backstepping
control method is a recursive procedure that links the choice of a Lyapunov function
with the design of a controller and guarantees global asymptotic stability of strict feed-
back systems [57, 58]. This paper also derives an adaptive backstepping control law that
achieves global chaos synchronization of the identical 4-D novel hyperchaotic hyper-
jerk systems with unknown parameters. Chaos synchronization problem deals with the
synchronization of a couple of systems called the master or drive system and the slave
or response system. To solve this problem, control laws are designed so that the out-
put of the slave system tracks the output of the master system asymptotically with time.
Because of the butterfly effect, the synchronization of chaotic systems is a challenging
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problem in the chaos literature even when the initial conditions of the master and slave
systems are nearly identical because of the exponential divergence of the outputs of the
two systems in the absence of any control. All the main adaptive results in this paper
are proved using Lyapunov stability theory. MATLAB simulations are depicted to illus-
trate the phase portraits of the novel hyperchaotic hyperjerk system with two positive
Lyapunov exponents, adaptive stabilization and synchronization results for the novel 4-
D hyperchaotic hyperjerk system. Finally, an electronic circuit realization of the novel
hyperchaotic hyperjerk system using SPICE is presented to confirm the feasibility of the
theoretical model.

2. A 4-D novel hyperchaotic hyperjerk system

In [56], Chlouverakis and Sprott discovered a simple hyperchaotic hyperjerk system
given by the dynamics

d4x
dt4 +

d3x
dt3 x4 +A

d2x
dt2 +

dx
dt

+ x = 0 (4)

In system form, the differential equation (4) can be expressed as
ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −Ax3 − x4
1x4

(5)

When A = 3.6, the hyperjerk system (5) exhibits hyperchaos with Lyapunov exponents
L1 = 0.132,L2 = 0.035,L3 = 0 and L4 =−1.25.

The Kaplan-Yorke dimension [59, 60] of a chaotic system of order n is defined as

DKY = j+
L1 + · · ·+L j

|L j+1|
(6)

where L1  L2  · · · Ln are the Lyapunov exponents of the chaotic system and j is the
largest integer for which L1 +L2 + . . .+L j  0. (Kaplan-Yorke conjecture states that for
typical chaotic systems, DKY ≈ DL, the information dimension of the system.) Thus, the
Kaplan-Yorke dimension of the hyperjerk system (5) is easily calculated a DKY = 3.13.

In this work, we propose a novel hyperjerk system by adding a quadratic nonlinearity
to the Chlouverakis-Sprott hyperjerk system (5) and with a different set of values for the
system parameters. Our novel hyperjerk system is given in system form as

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −bx2
1 −ax3 − cx4

1x4

(7)
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where a,b and c are positive parameters. In this paper, we shall show that the system (7)
is hyperchaotic when the parameters a,b and c take the values

a = 3.7, b = 0.2, c = 1.5 (8)

For the parameter values in (8), the Lyapunov exponents of the novel hyperjerk system
(7) are obtained as

L1 = 0.1448, L2 = 0.0328, L3 = 0, L4 =−1.1294 (9)

From the LE spectrum given in (9), it is easily seen that the maximal Lyapunov ex-
ponent (MLE) of our novel hyperchaotic hyperjerk system (7) is L1 = 0.1448, which
is greater than the MLE of the Chlouverakis-Sprott hyperchaotic hyperjerk system (5).
Also, the Kaplan-Yorke dimension of the novel hyperjerk system (7) is calculated as
DKY = 3.1573, which is greater than the Kaplan-Yorke dimension of the Chlouverakis-
Sprott hyperjerk system (5). This shows that the novel hyperchaotic hyperjerk system (7)
exhibits more complex behaviour than the Chlouverakis-Sprott hyperchaotic hyperjerk
system (5).

For numerical simulations, we take the initial values of the novel hyperjerk system
(7) as x1(0) = 0.1,x2(0) = 0.1,x3(0) = 0.1 and x4(0) = 0.1. Figs. 1-4 depict the 3-D
projections of the 4-D novel hyperjerk system (7) on (x1,x2,x3), (x1,x2,x4), (x1,x3,x4)
and (x2,x3,x4) spaces respectively.
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Figure 1: 3-D projection of the 4-D novel
hyperjerk system on (x1,x2,x3) space.
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Figure 2: 3-D projection of the 4-D novel
hyperjerk system on (x1,x2,x4) space.
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Figure 3: 3-D projection of the 4-D novel
hyperjerk system on (x1,x3,x4) space.
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Figure 4: 3-D projection of the 4-D novel
hyperjerk system on (x2,x3,x4) space.

3. Analysis of the 4-D novel hyperjerk system

3.1. Equilibrium Points

The equilibrium points of the 4-D novel hyperjerk system (7) are obtained by solving
the equations

f1(x1,x2,x3,x4) = x2 = 0
f2(x1,x2,x3,x4) = x3 = 0
f3(x1,x2,x3,x4) = x4 = 0
f4(x1,x2,x3,x4) = −x1 − x2 −bx2

1 −ax3 − cx4
1x4 = 0

 (10)

We take the parameter values as in the hyperchaotic case (8). Thus, the equilibrium
points of the system (7) are characterized by the equations

x1(1+0.2x1) = 0, x2 = 0, x3 = 0, x4 = 0 (11)

Solving the system (11), we get the equilibrium points of the system (7) as

E0 =


0
0
0
0

 and E1 =


−5
0
0
0

 (12)
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To test the stability type of the equilibrium points E0 and E1, we calculate the Jacobian
matrix of the novel hyperjerk system (7) at any point xxx ∈ R4 as

J (Rx) =


0 1 0 0
0 0 1 0
0 0 0 1

−1−0.4x1 −6x3
1x4 −1 −3.7 −1.5x4

1

 (13)

We note that

J0
∆
= J(E0) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −3.7 0

 (14)

which has the eigenvalues

λ1,2 = 0.1550±1.8674i, λ3,4 =−0.1550±0.5107i (15)

This shows that the equilibrium point E0 is a saddle-focus point. Next, we note that

J1
∆
= J(E1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 −1 −3.7 −937.5

 (16)

which has the eigenvalues

λ1 =−937.5, λ2 = 0.1, λ3,4 =−0.0005±0.0009i (17)

This shows that the equilibrium point E1 is also a saddle-focus point. Hence, the novel
hyperjerk system (7) has two equilibrium points E0 and E1 defined by (12), which are
both saddle-foci. Hence, E0 and E1 are both unstable equilibrium points.

3.2. Lyapunov exponents and Kaplan-Yorke dimension

For the parameter values a = 3.7,b = 0.2 and c = 1.5, the Lyapunov exponents of
the novel hyperjerk system (7) are numerically obtained using MATLAB as

L1 = 0.1448, L2 = 0.0328, L3 = 0 and L4 =−1.1294 (18)

Since the LE spectrum in (18) has two positive Lyapunov exponents, the novel hyperjerk
system (7) is hyperchaotic. Since L1 +L2 +L3 +L4 = −0.9518 < 0, it follows that the
novel hyperjerk system (7) is dissipative. Also, the Kaplan-Yorke dimension of the novel
hyperchaotic hyperjerk system (7)is obtained as

DKY = 3+
L1 +L2 +L3

|L4|
= 3.1573, (19)

which is fractional.
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4. Adaptive control of the 4-D novel hyperjerk system with unknown parameters

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 4-D novel hyperjerk system with unknown pa-
rameters. Thus, we consider the 4-D novel jerk chaotic system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −bx2
1 −ax3 − cx4

1x4 +u

(20)

where a,b and c are unknown constant parameters, and u is a backstepping control law
to be determined using estimates â(t), b̂(t) and ĉ(t) for a,b and c, respectively. The
parameter estimation errors are defined as:

ea(t) = a− â(t)
eb(t) = b− b̂(t)
ec(t) = c− ĉ(t)

(21)

Differentiating (21) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = − ˙̂c(t)

(22)

Next, we shall state and prove the main result of this section.

Theorem 7 The 4-D novel hyperjerk system (20), with unknown parameters a,b and c,
is globally and exponentially stabilized by the adaptive feedback control law,

u(t) =−4x1 −9x2 − [9− â(t)]x3 −4x4 + b̂(t)x2
1 + ĉ(t)x4

1x4 − kz4, (23)

where k > 0 is a gain constant,

z4 = 3x1 +5x2 +3x3 + x4 (24)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by
˙̂a(t) = −x3z4
˙̂b(t) = −x2

1z4

˙̂c(t) = −x4
1x4z4

(25)
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Proof We prove this result via backstepping control method and Lyapunov stability
theory. First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (26)

where
z1 = x1 (27)

Differentiating V1 along the dynamics (20), we get

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2) (28)

Now, we define
z2 = x1 + x2 (29)

Using (29), we can simplify the equation (28) as

V̇1 =−z2
1 + z1z2 (30)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(31)

Differentiating V2 along the dynamics (20), we get

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3) (32)

Now, we define
z3 = 2x1 +2x2 + x3 (33)

Using (33), we can simplify the equation (32) as

V̇2 =−z2
1 − z2

2 + z2z3 (34)

Thirdly, we define a quadratic Lyapunov function

V3(z1,z2,x3) =V2(z1,z2)+
1
2

z2
3 =

1
2
(
z2

1 + z2
2 + z2

3
)

(35)

Differentiating V3 along the dynamics (20), we get

V̇3 =−z2
1 − z2

2 − z2
3 + z3(3x1 +5x2 +3x3 + x4) (36)

Now, we define
z4 = 3x1 +5x2 +3x3 + x4 (37)
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Using (37), we can simplify the equation (36) as

V̇2 =−z2
1 − z2

2 − z2
3 + z3z4 (38)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,z4,ea,eb,ec) =V3(z1,z2,z3)+
1
2

z2
4 +

1
2

e2
a +

1
2

e2
b +

1
2

e2
c (39)

which is a positive definite function on R7. Differentiating V along the dynamics (20),
we get

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4(z4 + z3 + ż4)− ea ˙̂a− eb
˙̂b− ec ˙̂c (40)

Eq. (40) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4S− ea ˙̂a− eb
˙̂b− ec ˙̂c (41)

where
S = z4 + z3 + ż4 = z4 + z3 +3ẋ1 +5ẋ2 +3ẋ3 + ẋ4 (42)

A simple calculation gives

S = 4x1 +9x2 +(9−a)x3 +4x4 −bx2
1 − cx4

1x4 +u (43)

Substituting the adaptive control law (23) into (43), we obtain

S =−(a− â(t))x3 − (b− b̂(t))x2
1 − (c− ĉ(t))x4

1x4 − kz4 (44)

Using the definitions (22), we can simplify (44) as

S =−eax3 − ebx2
1 − ecx4

1x4 − kz4 (45)

Substituting the value of S from (45) into (41), we obtain

V̇ =−z2
1 − z2

2 − z2
3 − (1+k)z2

4 +ea(−x3z4 − ˙̂a)+eb(−x2
1z4 − ˙̂b)+ec(−x4

1x4z4 − ˙̂c) (46)

Substituting the update law (25) into (46), we get

V̇ =−z2
1 − z2

2 − z2
3 − (1+ k)z2

4, (47)

which is a negative semi-definite function on R7. From (47), it follows that the vector
Rz(t) = (z1(t),z2(t),z3(t),z4(t)) and the parameter estimation error (ea(t),eb(t),ec(t))
are globally bounded, i.e.[

z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)
]
∈ L∞ (48)
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Also, it follows from (47) that

V̇ ¬−z2
1 − z2

2 − z2
3 − z2

4 =−∥z∥2 (49)

That is,
∥z∥2 ¬−V̇ (50)

Integrating the inequality (50) from 0 to t, we get

t∫
0

|Rz(τ)|2 dτ¬V (0)−V (t) (51)

From (51), it follows that Rz(t) ∈ L2. From Eq. (20), it can be deduced that Ṙz(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that Rz(t)→R0 exponentially as t → ∞ for
all initial conditions Rz(0) ∈ R4. Hence, it is immediate that Rx(t)→ R0 exponentially
as t → ∞ for all initial conditions Rx(0) ∈ R4. This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (20) and (25),
when the adaptive control law (23) is applied. The parameter values of the novel hyper-
jerk system (20) are taken as in the hyperchaotic case, viz. a = 3.7,b = 0.2,c = 1.5,
and the positive gain constant as k = 8. Furthermore, as initial conditions of the
novel hyperjerk system (20), we take x1(0) = 5.1, x2(0) = −8.5, x3(0) = 4.9 and
x4(0) =−7.6. Also, as initial conditions of the parameter estimates, we take â(0) = 8.3,
b̂(0) = 5.4 and ĉ(0) = 10.2. In Fig. 5, the exponential convergence of the controlled
states x1(t),x2(t),x3(t) is depicted, when the adaptive control law (23) and (25) are im-
plemented.
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Figure 5: Time-history of the controlled states x1(t),x2(t),x3(t),x4(t)
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5. Adaptive synchronization of the identical 4-D novel hyperjerk systems with
unknown parameters

In this section, we use backstepping control method to derive an adaptive control law
for globally and exponentially synchronizing the identical 4-D novel hyperjerk systems
with unknown parameters.

As the master system, we consider the 4-D novel hyperjerk system given by
ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −bx2
1 −ax3 − cx4

1x4

(52)

where x1,x2,x3,x4 are the states of the system, and a,b,c are unknown constant param-
eters. As the slave system, we consider the 4-D novel hyperjerk system given by

ẏ1 = y2

ẏ2 = y3

ẏ3 = y4

ẏ4 = −y1 − y2 −by2
1 −ay3 − cy4

1y4 +u

(53)

where y1,y2,y3,y4 are the states of the system, and u is a backstepping control to be
determined using estimates â(t), b̂(t) and ĉ(t) for a,b and c, respectively.

We define the synchronization errors between the states of the master system (52)
and the slave system (53) as 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

e4 = y4 − x4

(54)

Then the error dynamics is easily obtained as
ė1 = e2

ė2 = e3

ė3 = e4

ė4 = −e1 − e2 −ae3 −b(y2
1 − x2

1)− c(y4
1y4 − x4

1x4)+u

(55)

The parameter estimation errors are defined as:
ea(t) = a− â(t)
eb(t) = b− b̂(t)
ec(t) = c− ĉ(t)

(56)
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Differentiating (56) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)
ėc(t) = − ˙̂c(t)

(57)

Next, we shall state and prove the main result of this section.

Theorem 8 The identical 4-D novel hyperjerk systems (52) and (53) with unknown pa-
rameters a,b and c are globally and exponentially synchronized by the adaptive control
law

u(t) =−4e1 −9e2 − [9− â(t)]e3 −4e4 + b̂(t)
(
y2

1 − x2
1
)
+ ĉ(t)

(
y4

1y4 − x4
1x4
)
− kz4 (58)

where k > 0 is a gain constant,

z4 = 3e1 +5e2 +3e3 + e4, (59)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by
˙̂a(t) = −e3z4
˙̂b(t) = −

(
y2

1 − x2
1
)

z4

˙̂c(t) = −
(
y4

1y4 − x4
1x4
)

z4

(60)

Proof We prove this result via backstepping control method and Lyapunov stability
theory. First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (61)

where
z1 = e1 (62)

Differentiating V1 along the error dynamics (55), we get

V̇1 = z1ż1 = e1e2 =−z2
1 + z1(e1 + e2) (63)

Now, we define
z2 = e1 + e2 (64)

Using (64), we can simplify the equation (63) as

V̇1 =−z2
1 + z1z2 (65)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(66)
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Differentiating V2 along the error dynamics (55), we get

V̇2 =−z2
1 − z2

2 + z2(2e1 +2e2 + e3) (67)

Now, we define
z3 = 2e1 +2e2 + e3 (68)

Using (68), we can simplify the equation (67) as

V̇2 =−z2
1 − z2

2 + z2z3 (69)

Thirdly, we define a quadratic Lyapunov function

V3(z1,z2,x3) =V2(z1,z2)+
1
2

z2
3 =

1
2
(
z2

1 + z2
2 + z2

3
)

(70)

Differentiating V3 along the error dynamics (55), we get

V̇3 =−z2
1 − z2

2 − z2
3 + z3(3e1 +5e2 +3e3 + e4) (71)

Now, we define
z4 = 3e1 +5e2 +3e3 + e4 (72)

Using (72), we can simplify the equation (71) as

V̇2 =−z2
1 − z2

2 − z2
3 + z3z4 (73)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,z4,ea,eb,ec) =V3(z1,z2,z3)+
1
2

z2
4 +

1
2

e2
a +

1
2

e2
b +

1
2

e2
c (74)

which is a positive definite function on R7. Differentiating V along the error dynamics
(55), we get

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4(z4 + z3 + ż4)− ea ˙̂a− eb
˙̂b− ec ˙̂c (75)

Eq. (75) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4S− ea ˙̂a− eb
˙̂b− ec ˙̂c (76)

where
S = z4 + z3 + ż4 = z4 + z3 +3ė1 +5ė2 +3ė3 + ė4 (77)

A simple calculation gives

S = 4e1 +9e2 +(9−a)e3 +4e4 −b
(
y2

1 − x2
1
)
− c
(
y4

1y4 − x4
1x4
)
+u (78)
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Substituting the adaptive control law (58) into (78), we obtain

S =− [a− â(t)]e3 −
[
b− b̂(t)

](
y2

1 − x2
1
)
− [c− ĉ(t)]

(
y4

1y4 − x4
1x4
]
− kz4 (79)

Using the definitions (57), we can simplify (79) as

S =−eae3 − eb
(
y2

1 − x2
1
)
− ec

(
y4

1y4 − x4
1x4
)
− kz4 (80)

Substituting the value of S from (80) into (76), we obtain V̇ = −z2
1 − z2

2 − z2
3 − (1+ k)z2

4 + ea(−e3z4 − ˙̂a)

+eb

[
−
(
y2

1 − x2
1
)

z4 − ˙̂b
]
+ ec

[
−
(
y4

1y4 − x4
1x4
)

z4 − ˙̂c
] (81)

Substituting the update law (60) into (81), we get

V̇ =−z2
1 − z2

2 − z2
3 − (1+ k)z2

4, (82)

which is a negative semi-definite function on R7. From (82), it follows that the vector
Rz(t) = (z1(t),z2(t),z3(t),z4(t)) and the parameter estimation error (ea(t),eb(t),ec(t))
are globally bounded, i.e.[

z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)
]
∈ L∞ (83)

Also, it follows from (82) that

V̇ ¬−z2
1 − z2

2 − z2
3 − z2

4 =−∥z∥2 (84)

That is,
∥z∥2 ¬−V̇ (85)

Integrating the inequality (85) from 0 to t, we get

t∫
0

|Rz(τ)|2 dτ¬V (0)−V (t) (86)

From (86), it follows that Rz(t) ∈ L2. From Eq. (55), it can be deduced that Ṙz(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that Rz(t)→R0 exponentially as t → ∞ for
all initial conditions Rz(0) ∈ R4. Hence, it is immediate that Re(t)→ R0 exponentially
as t → ∞ for all initial conditions Re(0) ∈ R4. This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (52) and (53).
The parameter values of the novel hyperjerk systems are taken as in the hyperchaotic
case, viz. a = 3.7,b = 0.2,c = 1.5 and the positive gain constant as k = 8. Also, as initial
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Figure 6: Synchronization of the states
x1(t) and y1(t).
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Figure 7: Synchronization of the states
x2(t) and y2(t).
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Figure 8: Synchronization of the states
x3(t) and y3(t).
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Figure 9: Synchronization of the states
x4(t) and y4(t).

conditions of the master system (52), we take x1(0) = 3.2, x2(0) = 2.1, x3(0) = −0.8
and x4(0) = 4.3. As initial conditions of the slave system (53), we take y1(0) = 2.5,
y2(0) = −1.9, y3(0) = −0.4 and y4(0) = 1.7. Furthermore, as initial conditions of the
parameter estimates â(t), b̂(t) and ĉ(t), we take â(0) = 6.4, b̂(0) = 3.9 and ĉ(0) = 5.1.

In Figs. 6-9, the complete synchronization of the identical 4-D novel hyperchaotic
hyperjerk systems (52) and (53) is shown, when the adaptive control law and the pa-
rameter update law are implemented. Also, in Fig. 10, the time-history of the complete
synchronization errors e1(t),e2(t),e3(t),e4(t), is shown.
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Figure 10: Time-history of the synchronization errors e1,e2,e3,e4.

Figure 11: Circuit diagram for realizing the novel hyperjerk system (7).

6. SPICE implementation of the novel hyperjerk system

In this section, an electronic circuit modelling the novel hyperjerk system (7) is in-
troduced. The circuit in Fig. 11 is designed by using operational amplifiers [12, 22]
where the state variables x1, x2, x3, and x4 of system (7) are associated with the voltages
across the capacitors C1, C2, C3, and C4, respectively. It is noting that it does not require
the proportional compression transformation of state variables because chaotic attractors
are in the dynamical range of operational amplifiers (see Figs. 1, 2). By applying Kirch-
hoff’s laws to the designed electronic circuit, its nonlinear equations are derived in the
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following form

dvC1
dt = 1

R1C1
vC2

dvC2
dt = 1

R2C2
vC3

dvC3
dt = 1

R3C3
vC4

dvC4
dt =− 1

R4C4
vC1 − 1

R5C4
vC2 − 1

R6C4
v2

C1
− 1

R7C4
vC3 − 1

100R8C4
v4

C1
vC4

(87)

where vC1 , vC2 , vC3 , and vC4 are the voltages across the capacitors C1, C2, C3, and C4,
respectively. Equations (87) match Eqs. (7) when the circuit components are selected as
follows: R1 = R2 = R3 = R4 = R5 = R = 100kΩ, R6 = 500kΩ, R7 = 27.027kΩ, R8 =
0.667kΩ, and C1 = C2 = C3 = C4 = 1nF . The power supplies of all active devices are
±15VDC and the operational amplifiers TL084 are used.

The proposed circuit is implemented by using the electronic simulation package Ca-
dence OrCAD. The obtained results are reported in Figs. 12 – 17 which display the
(vC1 ,vC2), (vC1 ,vC3), (vC2 ,vC3), (vC1 ,vC4), (vC2 ,vC4), and (vC3 ,vC4) phase portraits respec-
tively.

Figure 12: 2-D projection of the designed
electronic circuit in (vC1 ,vC2)–plane ob-
tained from Cadence OrCAD.

Figure 13: 2-D projection of the designed
electronic circuit in (vC1 ,vC3)–plane ob-
tained from Cadence OrCAD.

7. Conclusion

In this paper, a new hyperjerk system, which is rarely reported in the literature, is
proposed. It is worth noting that hyperchaos can be obversed in this hyperjerk system.
Dynamics of the novel hyperjerk system are analysed through equilibrium points, 3-D
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Figure 14: 2-D projection of the designed
electronic circuit in (vC2 ,vC3)–plane ob-
tained from Cadence OrCAD.

Figure 15: 2-D projection of the designed
electronic circuit in (vC1 ,vC4)–plane ob-
tained from Cadence OrCAD.

Figure 16: 2-D projection of the designed
electronic circuit in (vC2 ,vC4)–plane ob-
tained from Cadence OrCAD.

Figure 17: 2-D projection of the designed
electronic circuit in (vC1 ,vC4)–plane ob-
tained from Cadence OrCAD.

projections, Lyapunov exponents and Kaplan-Yorke dimension. In addition, an adaptive
backstepping controller is introduced to stabilize such hyperjerk system and achieve
global hyperchaos synchronization. Moreover the feasibility of theoretical hyperjerk
model is also confirmed by its electronic circuital implementation.
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Hyperjerk systems are simple and elegant because they describe the time evolution of
a single scalar variable. Additionally, mechanical systems can be presented conveniently
in hyperjerk forms. Chaotic and hyperchaotic behaviors generating from such hyperjerk
systems can be used in chaos-based applications. Hence, investigations of such proposed
hyperjerk system and its applications should be further done in future works.
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