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ABSTRACT

Purpose: This study thoroughly examined the application of inverse FE modelling and 
indentation tensile tests to identify nanotubes' rubber material properties.
Design/methodology/approach: Carbon nanotubes with various percentages of multi-
walled carbon nanotubes exposed to high tensile stress were used to enhance the mechanical 
qualities of N.R. rubber.
Findings: In this work, carbon nanotubes have been added to natural rubber. By using a solvent 
casting technique, toluene was used to make nanocomposites. 0.2%, 0.4%, 0.6%, 0.8%, 
and 1%. In this article, rubber and multi-walled carbon nanotubes interact in practical ways. 
Mechanical features of carbon nanotubes in NR have been researched. The results will lead 
to rubber products with improved mechanical qualities compared to present nanocomposite 
rubber containing various percentages of multi-walled carbon nanotubes exposed to large 
tensile test loading. The relative fitness error for significant stresses is reasonable with a second 
or third-order deformation model in numerical results.
Research limitations/implications: Non-linear finite element analysis is widely used 
to optimise complicated elastomeric components' design and reliability studies. However, 
accurate numerical results cannot be achieved without using rubber or rubber nanocomposite 
materials with reliable strain energy functions.
Practical implications: The indentation tensile tests of rubber samples have been simulated 
and confirmed using a parametric FE model. An inverse materials parameter identification 
algorithm was used to calculate the hyperelastic material properties of rubber samples 
evaluated in uniaxial tensile. Using ABAQUS FE software, material parameters and force-
displacement data may be automatically updated and extracted.
Originality/value: The numerical data for the inverse method of material property prediction 
has been successfully established by developing simulation spaces for various material 
characteristics. The force-displacement curve can be represented using technical methods. 
The results demonstrate that the inverse FE modelling process might be simplified by using 
these curve fitting parameters and plot equations to build a mathematical link between curve 
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coefficients and material properties. The first, second, and third-order deformation models were 
tested using FE simulations for the tensile test.
Keywords: Rubber nanocomposite materials, Rubber characterisation, Rubber nanocomposite, 
Strain energy, Hyperelastic materials model, Rubber modelling
Reference to this paper should be given in the following way: 
M.J. Jweeg, D.A. Alazawi, Q.H. Jebur, M. Al-Waily, N.J. Yasin, Hyperelastic modelling of rubber 
with multi-walled carbon nanotubes subjected to tensile loading, Archives of Materials Science 
and Engineering 114/2 (2022) 69-85. DOI: https://doi.org/10.5604/01.3001.0016.0027

METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 
 

Rubber and rubber-like materials display many unique 
physical and chemical characteristics, including elasticity, 
resilience, flexibility, shock absorption, damping, sealing 
capabilities, and insulation, among other materials [1,2]. 
These qualities allow the rubber to be used in many 
industrial and technical applications [3,4], including tyres, 
hoses, conveyor belts, seals, damping components, and 
artificial soft tissue. Rubber's stress-strain response is a 
critical research area. Finite element analysis (FEA) has 
been effectively applied to structural optimisation and 
reliability analysis of complex rubber components with 
substantial deformation thanks to rapid advancements in 
computer power and non-linear numerical simulation 
techniques [5-7].  

Similarly, polymer composites have been quite 
significant in manufacturing tires. Fillers nanocomposites 
are often used as additives to enhance the mechanical 
behaviour of the polymeric matrix. Reinforcing elastomers 
with mineral fillers is fundamental to increasing the rubber's 
lifetime. So, modification by nanoparticles of rubbers and 
conventional rubbers composites has drawn substantial 
interest in research and industry due to the unique property 
profile achieved at low nanofiller content. Property 
enhancements will cover structural and functional properties 
of mechanical performance.  

For longitudinal characteristics of aligned composites 
and nanotubes' mechanistic strengthening efficacy are 
higher than nanoplatelets with the same aspect ratio. For 
most random orientation cases and higher aspect ratios 
nanoparticles, nanoplatelets' geometric characteristics 
enable better strengthening; however, the same degree of 
dispersion and extinction in the same volume fraction. 
Depending upon the nanoparticular-polymer interaction, 
this difference will significantly affect the nanocomposites' 
bulk efficiency. 

Macromolecules are rarely made of Rubber materials 
only due to them not having the most optimal performance. 
They are complex structures with several components, 

including elastomers and various additives with different 
functions. The desired output is obtained by multiple 
mechanical, thermal, optical, electrical and chemical 
properties [8]. The degree of strengthening by filler depends 
on several variables, of which a broad polymer-filler 
interface is the most significant development. Carbon blacks 
and silicas are the best known reinforcing fillers. There are 
extensively used silicates, clays, whiting (calcium 
carbonate), and other mineral fillers if there is no high 
reinforcement grade. Carbon blacks constitute the 
preeminent class in terms of tonnage and different properties 
of strengthening fillers. Incomplete combustion of 
hydrocarbons or thermal cracking is the preparation of 
carbon blacks. Currently, nearly all rubber carbon blacks are 
made with processes for the oil furnace. Oil or, more often, 
natural gas is cracked on a hot refractory surface in the 
thermal phase without oxygen. Besides carbon blacks for 
rubber applications, several grades are mainly developed for 
applications not using rubber [9]. 

Attract attention to the topological limitation principle 
refers to the strong interactions spontaneously formed by the 
contact with a soft material that conforms its components 
(i.e. chain segments) with a suitable area geometry (or 
topology). Applied with carbon black (CB)-filled rubber 
compounds, this term readily reflects adsorbing/desorbing 
balance of chain segments at suitable positions on CB 
aggregates for various steps, such as viscosity and modulus. 
This balance is reversed for both the magnitude of the strain 
or temperature or the two. To address rheological quantities 
directly linked to CB and rubber, relatively simple 
mathematical models can be created. Due to their 
experimental simplicity, the strain sweep (SS) test protocols 
with sufficient rheometers are ideal, as shown by tests on 
various CB-filled compounds and an adequate math 
modelling of results obtained when played at constant 
frequency strain amplitude and temperature [10]. 

For preparing natural rubber (NR) nanocomposites, 
multi-wall carbon nanotube (MWNTs) were used. The 
nanostructures in MWNTs/NR nanocomposites integrated 
carbon nanotubes into a polymer solution and evaporated the 
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solvent. Nanotubes can be distributed homogeneously into 
the NR matrix to improve their mechanical properties with 
this technology. The nanocomposites' properties, including 
tensile strength, tensile modulus, tear strength, break 
extension and hardness, have been investigated. The 
mechanical experiments show up to 12 times with purity of 
NR in the initial modulus. The dispersion status of the 
MWNTs into NR and mechanical inspection were explored 
better to understand the final device's morphology [11]. The 
elastomer materials are characterised by significant enough 
deformation or non-linear hyperelastic behaviour, which 
results in the formation, through the different orientations, 
of a slightly entangled network with weak interactions 
[12,13]. Rubber's mechanical properties are mainly 
determined by configurational entropic and molecular 
stretching. The rubber elasticity principle, invariant/stretch 
dependent continuum mechanics, and computational finite 
element analyses describe elastomers' non-linear hyper-
elastic behaviour [14,15]. 

Rubber is a highly complex material from the 
perspective of its actions. It is not easy to construct a 
component model that can predict the rubber's behaviour. 
Many researchers have worked on this for an extended 
period. Primarily, it was based on polynomial scale 
dynamics, the Ogden Model, the Mooney-Rivlin Model, and 
Yeoh [16-17]. Different models are used to quantify the 
stress-energy function. The decision is made depending on 
whether or not test data is available [18]. Finite element 
simulation provides good outcomes as Tensile test results 
from uniaxial, biaxial, and planar directions are applied. 
Uniaxial test evidence is insufficient when dynamic stresses 
perform better [19,20]. Different models are used to quantify 
the stress-energy function. The decision is made depending 
on whether or not test evidence is available [21,22]. Wei et 
al. [10] perform a finite element rubber analysis under high 
deformation. He also addressed the implementations of the 
finite element in the finite element. The predictive 
thermodynamic and continuum mechanics models are well-
established for the hyperelastic material models.  

The experimental technique for evaluating the consti-
tuent models, mathematical derivations, and disputes are 
discussed. Are performed on some experiments, including 
uniaxial, planar, and biaxial tension [23-25]. Youjian [15], 
and Mullins [18], the tyre performance of the component 
model is simulated using a finite element method in the tyre 
industry. Quick transient reactions can also be simulated 
using the FE protocol. Zhang et al. [19], a model of strain 
invariants existed, Rivlin and Saunders [20], later 
generalised. Gent and Thomas [21] look at different strain 
energy functions. Smith [22], Valanis and Landel [23], and 
Ogden [24] proposed the basic stress pattern. 

In this research, natural rubber products have been 
improved with mechanical properties by using carbon 
nanotubes with different percentages of multi-walled carbon 
nanotube subjected to high tensile loading. 

 
2. Experimental work and preparation of 
samples 

 
In this work, carbon nanotubes have been filled into 

natural rubber. The preparation of nanocomposites was 
carried out using toluene as a solvent by a solvent casting 
process. The additional volumes of carbon nanotubes were 
0.2%, 0.4%, 0.6%, 0.8% and 1% by 100 grammes of the 
overall weight. Later on, the nanocomposite rubber was 
tested experimentally. This experiment aims to apply a 
tensile force to the test sample until it ruptures and then pulls 
it through to defeat. During the tensile load application [26-
31], the system calculates property and produces a 
stress/strain curve from which different values, such as the 
modulus of elasticity, can be calculated. The tensile 
measuring unit used in this analysis (see Fig. 1) has an 
electro-mechanical test system that regularly applies 
uniaxial loading to test specimens [32-39]. In terms of 
capabilities and implementations, it serves a broad role.  
 

 
 

Fig. 1. Tensile test machine 
 

The tensile machine performs load versus elongation 
(stress vs strain) measurements, which involves applying 
forces ranging from a few newtons to thousands of newtons, 
squeezing specimens with rubber grips, and calculating the 
resultant forces (stresses) and deformations (strains) [40-
44]. Later, tensile force and strain sensors that produce an 
electrical transducer, a signal proportional to the applied 
stress or strain, are susceptible to measured loads and strains 
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[45-50]. This electric signal is digitised, weighed, and 
digitised again. Finally, this electrical signal is analysed, 
digitised, and then used to exhibit, study, and report tension, 
strain, and other approximate content parameters. The 
tensile tests for strength after stretching were conducted 
according to standards (D412-98), and the experiments were 
repeated five times, with the average effects being shown 
and checked each time [51-54]. 

The excellent capability of producing rubber nano-
composites is proven by automobile tyres and other rubber 
materials, one of the most used and long-lasting groups of 
industrial items for more than a century. The exact meaning 
can be said for large-scale rubber compounding methods, 
Qusai et al. [55-58], which have been creating the 
nanocomposites found in tyres for almost a century, long 
before the word "nano" attracted academics' and engineers' 
attention. Many issues involve rubber nanocomposite 
mechanical behaviours for tensile loading. In general, the 
nanocomposite rubber applications are subjected to large 
tensile loading. So, the principles of large deformation 
rubber are fundamental in nano rubber applications. 

Consequently, it is essential to create precise, reliable 
available models to understand rubber nanocomposites' 
behaviour better. The main challenge is the expectations 
under which a given theoretical model fails to predict 
significant deformation behaviour of elastomer nano-
composites, as models are proposed for neat rubbers. More 
judgmentally, they can hardly be supposed to remain valid 
for systems in which four or more nanofillers having 
different nature, shapes, and sizes are used. This research 
attempts to use non-linear hyperelastic models for the non-
linear tensile behaviour of rubbers for nanocomposites 
containing multi-walled carbon nanotubes (MWCNTs). 

 
3. Strain energy 

 
The energy potential stored by an object's deformation is 

called strain energy (Ogden et al. [59]). The straining energy 
is the same as creating regular and shear strains for a 
perfectly elastic material. The strain energy is restored when 
the stress-producing strain is eliminated. Complete recovery 
is achieved for a completely elastic material, and due to 
energy dissipation, the recovery is partial for plastic 
material. The strain energy is a function that connects a 
material strain to the energy that this deformation produces. 
The strain energy density (U), Strain Energy Density (SED), 
determined by unit body volume, is strain energy. SED is an 
excellent content indication since it is standardised to body 
height. The strain-energy function can be seen as a 
generalisation of the law of Hooke, which systematically 
defines complex elastic components [59]. 

3.1. Ogden form models 
 
Ogden is [24] a designed model for large deformation 

isotropic elasticity. It is applied to characterise material's 
non-linear stress-stress behaviour, such as rubbers and 
polymers. Similar to other hyperelastic substance models. 
The Ogden model was built on the premise that the 
substance's action maybe by the strain's energy density 
function, which is isotropic, incompressible and isotope, 
Independent strain threshold. The general model of Ogden 
strain energy potential below Equation shows, 

 

U � ∑ ���
���
����� � ���� � ���� � 3�����  (1) 

 

The Ogden model is commonly employed when the 
model is enough to reflect test data of up to 800% of the 
tensile test results. The Ogden paradigm is also a much more 
scalable description of the experiment's data than the other 
hyperelastic. 

 
3.2. Neo-Hookean model 

 
A model Neo-Hookean is analogous to the principle of 

Hooke and is suitable to simulate the material's non-linear 
stress tension behaviour under a wide variety of 
deformations. In 1948 Ronald Rivlin developed the model 
(Ericksen and Rivlin [60]). This model is based on the 
thermodynamics of crosslinked polymer chains used for 
plastic products rubber-like and 21. The initial stage of 
cross-connected polymer is neo-Hookean, and as tension is 
applied shift to each other. The shape of the Neo-Hookean 
strain energy potential is as follows, 
 

U � C���I� � 3� � C���I� � 3� � �
�� �J�� � 1� (2) 

 
3.3. Mooney-Rivlin model 

 
Model Moony-Rivlin During the development of the 

original Mooney model, various observations were made on 
the strain energy mechanism for rubber, starting with: (1) 
The substance is uniform and free of hysteresis; (2). The 
substance is isotropic initially, and during the deformation, 
(3) the deformation occurs without any alteration of volume 
(Mooney, [16]). The linear shape of stress-energy is initially 
suggested by Mooney as, 
 

U � C�� �I� � 3� � �
�� �J�� � 1�� (3) 

 

Based on the linear relationship between stress and strain 
in primary shear, the Mooney-Rivlin model provides a 
slightly better match to some experimental rubber data than 
pure elastic models with appropriate C1 and C2 options 
(Mooney [16], Crocker et al. [61]). Initially formulated for 

3.   Strain energy
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3.2.  Neo-Hookean model
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rubber, the Mooney-Rivlin material is also used today to 
denote general incompressible organic tissue. The more 
advanced Ogden substance model has been used to model 
rubber and biological materials with even higher strains. 
(Breslavsky et al. [62]). 

 
3.4. Yeoh model 

 
The hyperelastic Yeoh model is often a reduced 

polynomial shape in the third order, suited to describe almost 
isotropic rubber-style materials (Renaud et al. [63]). 
According to Ronald Rivlin, the energy density function of 
the strain invariant sequences 1, 2, and 3 can be used to 
define the elastic characteristics of rubber. The Yeoh model 
for incompressible rubber is merely a function of 1, and the 
strain energy's energy potential is given by, 

 

U �� c������x�a���
�

���
� �

∑ c���I�̅ � 3������ �
∑ �

��
���� �J � 1��� � (4) 

 
3.5. Arruda-Boyce model 

 
The hyperelastic model of Arruda-Boyce used for fitting 

tensile tests the potential for the energy strain of the form, 
 

U � µ

⎝
⎜⎜
⎜
⎛
�
� �I� � 3� � �

�����
�I�� � 9�

� ��
�������

�I�� � 27� �
��

�������
�I�� � 81� �

���
���������

�I�� � 243� ⎠
⎟⎟
⎟
⎞
� �

� �
������
� � lnJ��� (5) 

 

These strain-energy functions have been applied to 
different strains in which the model is best suited. Since 
these models are built based on mathematical formation, 
critical parameters are often difficult to obtain. As seen 
briefly in the equations, a mixture of parameters is in some 
cases connected to the initial shear module. That directly 
affects precise, durable and unique evaluation and selection 
of material models for various circumstances in material 
parameters. 
 
4. Experimental results and fitting tensile 
tests 

 
To compare different material models, Abaqus has a 

hyperelastic curve fitting capability. To determine mechanical 
parameters, Abaqus uses stress-strain data from uniaxial tests. 
In Abaqus, each set of stress-strain data is converted into a 
strain energy equation. Abaqus' hyperelastic material curve 
fitting feature allows the researcher to compare material 

models with each other. There are hyperelastic material 
models that have been assessed, as depicted in Figures 2-7. 
To compare different material models, Abaqus has a hyper-
elastic curve fitting capability. Abaqus relies on specified 
stress-nominal strain data when performing uniaxial tests.  

 
a) 

 
b) 

 
c) 

 
 

Fig. 2. Experimental and fitting of different hyperelastic 
models with tensile test rubber 0% multi-walled carbon 
nanotube; a) Ogden model N=1, 2, 3, b) Neo-Hookean N=1, 
Ploynomial N=2, 3, c) Arruda-Boyce N=1 

3.4.  Yeoh model

3.5.  Arruda-Boyce model

4.  Experimental results and fitting tensile 
tests
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a)  b) 

 
 
c)  d) 

 
 

Fig. 3. Experimental and fitting of different hyperelastic models with tensile test rubber 0.2% multi-walled carbon nanotube; 
a) Ogden model N=1, 2, b) Mooney-Rivelin model N=1, c) Neo-Hookean N=1, Ploynomial N=2, 3, d) Arruda-Boyce N=1 
 
 

a)  b) 

 
 
Fig. 4. Experimental and fitting of different hyperelastic models with tensile test rubber 0.4% multi-walled carbon nanotube; 
a) Ogden model N=1, 2, b) Mooney-Rivelin model N=1 
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c)  d) 

 
 

Fig. 4. cont. Experimental and fitting of different hyperelastic models with tensile test rubber 0.4% multi-walled carbon 
nanotube; c) Neo-Hookean N=1, Ploynomial N=2, 3, d) Arruda-Boyce N=1 
 
 

a)  b) 

 
 
c)  d) 

  
 

Fig. 5. Experimental and fitting of different hyperelastic models with tensile test rubber 0.6% multi-walled carbon nanotube; 
a) Ogden model N=1, 2, 3, b) Mooney-Rivelin model N=1, c) Neo-Hookean N=1, Ploynomial N=2, 3, d) Arruda-Boyce N=1 
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a)  b) 

 
 
c)  d) 

 
 

Fig. 6. Experimental and fitting of different hyperelastic models with tensile test rubber 0.8% multi-walled carbon nanotube; 
a) Ogden model N=1, 2, b) Mooney-Rivelin model N=1, c) Neo-Hookean N=1, Ploynomial N=2, 3, d) Arruda-Boyce N=1 

 
 

a)  b) 

  
 

Fig. 7. Experimental and fitting of different hyperelastic models with tensile test rubber 1% multi-walled carbon nanotube; 
a) Ogden model N=1, 2, b) Mooney-Rivelin model 
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c)  d) 

  
 

Fig. 7. cont. Experimental and fitting of different hyperelastic models with tensile test rubber 1% multi-walled carbon 
nanotube; c) Neo-Hookean N=1, Ploynomial N=2, 3, d) Arruda-Boyce N=1 

 
Table 1. 
Material models used for material prediction parameters with 0% multi-walled carbon nanotube 
Hyperelasticity 
model No 1: 
Ogden Model 

 Parameters  

µ1 α1 µ2 α2 µ3 α3 Fitting 
error % 

Ogden N=1 7.11E-03 2.07 - - - - 3.32 
Ogden N=2 5E-03 .136   0.39 -0.18     2.71 
Ogden N=3 2.27E-04 2.79 -1.12E-07 4.00 0.40 -1.81  0.48 
Hyperelasticity  
model No 2: 
Polynomial 
Model  

 Parameters 

D1 C10 C01 D2 C20 C11 C02 Fitting error % 

Polynomial 
(Mooney-
Rivlin) N=1 

- - - - - - - Unstable 

Polynomial  
N=2 - - - - --  - Unstable 

Hyperelasticity  
model No 3:  Parameters 

Reduced 
Polynomial D1 C10 C01 D2 C20 C11 C02  C30 C21 C12 C03 Fitting 

error % 
 Neo-
HookeN=1 0 4.99E-03 0 - - - - - - D3 - - - 5.34 

N=2 0 4.77E-03 0 0 1.43E-09 0 0 - - - - - 3.99 
Yeoh N=3 0 4.48E-03 0 0 7.96E-09 0 0 0 -2.23E-14 0 0  1.85 
Hyperelasticity  
model No 4: 
Arruda-Boyce 

 Parameters 

µ µo λ D Fitting error % 

 9.90E-03 9.90E-03 1352.99 0 4.87 
 
Hyperelastic models were the most accurate in predicting 
rubber formulation behaviour because they could match 
experimental data points at small and large strain values. 

Mooney-Rivlin and Neo-Hookean coefficients and 
Arruda-Boyce and Ogden models calculated all deformation 
modes in Abaqus. Models like Ogden (N=2, N=3) were the 
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most accurate in predicting rubber formulation behaviour 
because they could match experimental data points at small 
and large strain values. Using the Mooney-Rivlin and Neo-
Hookean coefficients and models from Arruda-Boyce, 
Absqus calculated all deformation modes for each test. Tables 

1-6 show an unimportant parameter to a particular model. The 
mechanical properties were predicted using uniaxial tensile 
data to produce these results [55,56, 63-70]. The Ogden 
model N=3 has a fitting error of 0.48%, while the rest models 
predicted parameters with more significant fitting errors [71-75]. 

 
 
Table 2. 
Material models used for material prediction parameters with 0.2% multi-walled carbon nanotube 

 
 Parameters  

µ1 α1 µ2 α2 µ3 α3 Fitting 
error % 

Ogden N=1 1.94E-02 1.91  -  - - 4.16 
Ogden N=2 1.06E-02 2.02 1.11  -0.18 - - 2.34 
Ogden N=3 - - - - - - Unstable 
Hyperelasticity  
model No 2: 
Polynomial 
Model  

 Parameters 

D1 C10 C01 D2 C20 C11 C02 Fitting error % 

Polynomial 
(Mooney-
Rivlin) N=1 

0 5.87e-3 9.27e-2     3.10 

Polynomial N=2 - - - - - - - Unstable 
Hyperelasticity 
model No 3:  Parameters 

Reduced 
Polynomial D1 C10 C01 D2 C20 C11 C02 D3 C30 C21 C12 C03 Fitting 

error % 
Neo-Hooke N=1 0 6.35e-2 0 - - - - - - - - - 7.14 
N=2 0 6.70e-3 0 0 -1.73e-8 0 0 - - - - - 5.37 
Yeoh N=3 0 6.18e-3 0 0 -3.52e-9 0 0 0 5.28e-15 0 0 0 5.24 
Hyperelasticity 
model No 4: 
Arruda-Boyce 

 Parameters 

µ µo λ D Fitting error % 

N=1 1.25e-2 1.25e-2 1428 0 7.8 
 
 
Table 3.  
Material models used for material prediction parameters with 0.4% multi-walled carbon nanotube 
Hyperelasticity 
model No 1: 
Ogden Model 

  Parameters  
µ1 α1 D1 µ2 α2 D2 µ3 α3 Fitting 

error % 
Ogden N=1 2.89e-2 1.87 0 - - - - - 9.57 
Ogden N=2 8.06e3  2.10 0 3.10  -0.18 0 - - 1.04 
Ogden N=3 - - - - - - - - Unstable  
Hyperelasticity 
model No 2: 
Polynomial Model  

  Parameters 
D1 C10 C01  D2 C20  C11 C02 Fitting error % 

Polynomial 
(Mooney-Rivlin) 
N=1 

          

Polynomial N=2 0 3 0  0   0  14.05 
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Table 3. cont. 
Hyperelasticity 
model No 3: 

  Parameters 

Reduced 
Polynomial 

D1 C10 C01  D2 C20  C11 C02 D3 C30 C21 C12 C03 Fitting 
error % 

Neo-Hooke N=1 0 7.51e-3 0  - - - - - - - - - - 15.75 
N=2 0 7.91e- 0  0 -1.77e-

9 
 0 - - - - - - 14.05 

Yeoh N=3 0 8.35e-3 0  0 -7.95e-
09 

 0 0 0 1.64E-14 0 0 0 12.85 

Hyperelasticity 
model No 4: 
Arruda-Boyce 

  Parameters 
µ µo λ   Fitting 

error % 
N=1 1.48E-02 1.41E-02 1488   16.48 
 
Table 4.  
Material models used for material prediction parameters with 0.6% multi-walled carbon nanotube 
Hyperelasticity 
model No 1: 
Ogden Model 

Parameters  

µ1 α1 µ2 α2 µ3 α3 Fitting 
error % 

Ogden N=1 5.44E-02 1.79 - - - - 11.29 
Ogden N=2 1.23E-02 2.06155759 5.17196953 -0.18 - - 0.34 
Ogden N=3 14.77    -0.29 4.29E-2 -3.93 -7.48 -0.97 0.27 
Hyperelasticity  
model No 2: 
Polynomial Model  

Parameters 

D1 C10 C01 D2 C20 C11 C02 Fitting error % 

Polynomial 
(Mooney-Rivlin) 
N=1 

0 7.71E-03 0.40 - - - - 4.44 

Polynomial  N=2 - - - - - - - Unstable 
Hyperelasticity  
model No 3: Parameters 

Reduced 
Polynomial D1 C10 C01 D2 C20 C11 C02 D3 C30 C21 C12 C03 Fitting 

error % 
 Neo-HookeN=1 0 9.32E-03 0 - - - - - - - - - 27.02 
N=2 0 1.02E-02 0 0 -3.40E-09 0 0 - - - - - 22.19 
Yeoh N=3 0 1.14E-02 0 0 -1.89E-08 0  0 3.81E-14 0 0  16.71 
Hyperelasticity 
model No 4: 
Arruda-Boyce 

Parameters 

µ µo λ Fitting error % 

N=1 1.84E-2 1.84E-2 1533 28.24 
 
Table 5.  
Material models used for material prediction parameters with 0.8% multi-walled carbon nanotube 
Hyperelasticity 
model No 1: 
Ogden Model 

Parameters  

µ1 α1 µ2 α2 µ3 α3 Fitting 
error % 

Ogden N=1 -0.18 1.72 - - - - 12.48 
Ogden N=2 2.12E-03  2.35 1.93 -1.99 -  0.81 
Ogden N=3 - - - - - - Unstable 
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Table 5. cont. 
Hyperelasticity  
model No 2: 
Polynomial 
Model  

Parameters 

D1 C10 C01 D2 C20 C11 C02 Fitting error % 

Polynomial 
(Mooney-Rivlin) 
N=1 

0 8.368E-3 0.61 - - - - 0.40 

Polynomial  
N=2 - - - - - - - Unstable 

Hyperelasticity  
model No 3: Parameters 

Reduced 
Polynomial D1 C10 C01 D2 C20 C11 C02 D3 C30 C21 C12 C03 Fitting 

error % 
Neo-Hooke N=1 0 1.05E-02  0 - - - - - - - - - 39.25 
N=2 0 1.20E-02 0 0 -4.75E-09 0 0 - - - - - 30.93 
Yeoh N=3 0 1.42E-02 0 0 -2.95E-08 0 0  5.70E-14 0 0 0 18.89 
Hyperelasticity  
model No 4: 
Arruda-Boyce 

Parameters 

µ µo λ Fitting error % 

N=1 2.092E-02 2.09E-02 1578.00 40.83 
 
Table 6. 
Material models used for material prediction parameters with 1% multi-walled carbon nanotube 
Hyperelasticity 
model No 1: 
Ogden Model 

Parameters  

µ1 α1 µ2 α2 µ3 α3 Fitting 
error % 

Ogden N=1 0.10 1.719 - - - - 15.78 
Ogden N=2 6.65E-03 2.19 5.09 -1.37 - - 0.38 
Ogden N=3       Unstable 
Hyperelasticity 
model No 2: 
Polynomial 
Model  

Parameters 

D1 C10 C01 D2 C20 C11 C02 Fitting error % 

Polynomial 
(Mooney-
Rivlin) N=1 

0 9.17E-03 0.75 - - - - 5.27 

Polynomial 
N=2 - - - - - - - Unstable 

Hyperelasticity 
model No 3: Parameters 

Reduced 
Polynomial D1 C10 C01 D2 C20 C11 C02 D3 C30 C21 C12 C03 Fitting 

error % 
Neo-Hooke 
N=1 0 1.17E-02 0 - - - - - - - - - 44.82 

N=2 0 1.33E-02 0 0 -4.95E-09 0 0 - - - - - 35.95 
Yeoh N=3 0 1.56E-02 0 0 -2.80E-08 0 0 0 4.92E-14 0 0 0 25.28 
Hyperelasticity 
model No 4: 
Arruda-Boyce 

Parameters 

µ µo λ Fitting error % 

N=1 2.32E-02 2.32E-02 1653.00 46.45 
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5. Conclusion 
 
Young's modulus and Poisson's ratio can describe the 

linear elastic material behaviour. The behaviour of 
hyperelastic materials is more complicated, as complex 
strain energy functions can only describe it, making it more 
challenging to evaluate and model this category. The tensile 
testing method for natural rubber filled with a multi-wall 
carbon nanotube is studied, including testing configurations. 
Theoretical foundations and current research on Abaqus 
software FE modelling methods and optimisation 
programmes have been formed.  

This paper aims to review the hyperelastic properties of 
nanocomposite rubber. In practice, no reliable rules are 
available for stress-strain testing behaviour. The most stable 
and acceptable options are the models N=1, and N=2 of 
Ogden, in ABAQUS, in FEM. The models were tested. 
Tensile loading of nanocomposite rubber examined by Yeoh 
and Arruda-Boyce offers a solid analysis of the material 
response and a stable analysis. The numerical and 
experimental findings are reconciled. Regression analysis is 
used to determine the relationship. 
 
 
List of symbols 

 
U  Strain energy density 
λ� �i � 1,2,3�    Stretch ratio 

µ�  Material constant related to the initial 
shear modulus 

α�  Empirically calculated material constants 
λ�  The stretch ratio in the principal direction  
ε�  Principal nominal strain  
σ�  Tensile stress 
E Relative error 
E�  Vector of relative errors 

P��  A derivative of the vector of relative 
errors 

N Order of the polynomial 
n Number of data points 
σ���  Initial theoretical  stress 
σ����  Initial experimental  stress 
δ��  Degree of deformation 
σ���  Total theoretical stress 
γ   Shear strain 
c   Material constant 
λ  Extensions of the deformation 
r Iteration count 
R Relative root mean square error 
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