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Abstract 

The paper concerns the identification process applied for a semi-empirical model of working process in the CI 
engine. The identification is based on pressure courses in the cylinder recorded during the experimental 
measurements on the test stand and is performed for estimation of values of the model parameters. Appropriate 
estimated values of the model parameters ensure minimization of the difference between measured and modelled 
pressure courses in the cylinder. The identification process can be divided into two stages. The first stage concerns 
identification of discrete values of the model parameters for a set of discrete engine operating conditions. The task of 
discrete identification is formulated as a dynamic optimisation task which is solved using a genetic algorithm. The 
accuracy of the identification process is evaluated by comparison of measured and calculated values of main 
parameters which characterize the working cycle such as: the mean indicated pressure, thermal efficiency, the mean 
indicated pressure in working part of the cycle, maximal pressure of the cycle, the mass of the medium in the cylinder 
and the crankshaft angle for which the maximal pressure occurred. The second stage concerns generalization of the 
results for any technically possible engine operating conditions which is solved by means of approximation. Feed-
forward multilayer artificial neural networks are used for the approximation. The accuracy of the identification and 
some examples of verification of the model predictions are presented as well. 
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1. Introduction 
 

Many different mathematical models can be used in research of engine technology. Besides the 
CFD models, the semi-empirical models of the working process are widely used in studies 
concerning the working cycle of a CI engine [5, 7] . These models are applied mostly in case when 
the time of model answer is a crucial factor. However, models belonging to this group usually 
have many simplifying assumptions mostly based on formulae and relations obtained from 
experimental measurements [6]. This led to the use of some additional model parameters whose 
values have to be appropriately chosen in order to ensure an acceptable accuracy of the model. As 
was shown in papers [1, 9], a solution to the problem of estimating the model parameters (called 
the calibration or identification) can be obtained by means of optimization methods. In this case 
the model parameters can be the independent variables of the dynamic optimization task. This 
approach requires the experimental set of data in order to identify the values of model parameters.  

In the paper the identification based on genetic algorithms is used for solving the dynamic 
optimisation task. Genetic algorithms, unlike many other optimization methods, enable us to avoid 
the local minimum and find the solution which is close to the optimum and ensure the minimal 
difference between the measured and calculated pressure courses in the cylinder [9]. The discrete 
identification is performed for a wide range of engine operating conditions, and in the next step in 
order to generalize the results of identification an approximation task was formulated and solved 
by using an artificial neural network. As was shown in paper [3], neural networks after training 
can better generalize than functions with form taken a priori. However, the type of the neural 
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networks, their architecture and training process determine the accuracy of prediction which has to 
be evaluated before implementation of the networks in the model of the working cycle. 
 
2. The model of working process 
 

In the paper a semi-empirical single-zone model of the working cycle of the CI engine 
formulated by authors in earlier work [10] is considered. The model enables calculation of the 
pressure, mass and temperature courses in the cylinder for a given vector of independent input 
parameters (the engine control parameters) using some additional quantities given as a vector of 
model parameters. The model can be written symbolically as: 

 0,,,,, TmpMi GEX  for li ,...,1 , (1) 

where: 

iM  - differential operator or function, 

l  - number of equations, 
T

EGRw XBn ,,, 0X  - vector of engine control parameters, 

n  - crankshaft rotational speed, 

0B  - injected fuel mass,  

w  - injection advance angle, 

EGRX  - degree of exhaust gas recirculation, 
T

zswd ee 81 ...,,,,,E  - vector of model parameters, 

d , w  - inlet and exhaust valve discharge coefficient respectively, 

s  - total combustion duration, 

z  - start of combustion, 
T

wwdd TpTp ,,,,G  - vector of auxiliary parameters, 

dp , , ,  - pressure and temperature in the intake (d) and exhaust (w) 

manifold respectively, 
dT wp wT

 - relative air/fuel ratio. 
The components of the vector of model parameters appear in the following equations (subscript 

c is used for parameters in the cylinder, d in the intake and w in the exhaust manifold): 
- flow by inlet/outlet valves: 
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where:  
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 - crank angle, 
- the Watson function: 
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- the Hochenberg formula for calculation of the heat transfer coefficient: 
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where: 

cV  - cylinder volume, 

s  - mean piston speed. 
Equations (2.1-2.3) together with the following equations: 
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where: 

hA  - heat transfer area, 

pc ,  - specific heat of the medium at constant pressure and constant volume respectively, vc

fm  - mass of fuel, 

sT  - wall temperature, 

W  - fuel caloric value, 
y  - fuel mass burning rate,  

which describe the mass and energy conservation laws respectively, form a set of equations 
describing the single-zone model of the working cycle.  

Application of a semi-empirical model is possible if values of model parameters are known. If 
the values of the model parameters are not appropriate, the output from the computational model 
differs significantly from reality. In order to obtain an acceptable accuracy of the model prediction 
for the main parameters describing the working cycle, identification should be performed. The 
identification is the process of searching for those values of model parameters (vector E ) which 
ensure good compatibility between the real and calculated pressure courses in the cylinder. 
 
3. The problem of the discrete identification 
 

The model presented in earlier section has 13 unknown model parameters which could be 
estimated on the basis of measurements carried out for a given set of engine operating conditions. 
In measurements pressure courses in the cylinder and auxiliary parameters such as: temperature 
and pressure in the engine equipment system, relative air/fuel ratio are recorded for a wide range 
of engine torque, load and possible recirculation degrees and injection advanced advance angles, 
i.e. for different sets of input parameters given as vector X  [10]. In the next step the vectors of 

model parameters )( jE are estimated for each pair of vectors )( jX  ,  where  is 
a number of measurements point. This stage is called the discrete identification. The values of the 
computational model parameters which ensure the minimal difference between the measured and 
calculated pressure courses in the cylinder are obtained as the results. 

)( jG 400,..,1j

The discrete identification process of the vector of model parameters E  for a given vector of 
input parameters X  and auxiliary parameters G  can be written as a dynamic optimisation task 
of the functional: 

   (4) minmaxmax,, 2
2

24

0

1 FEFE ppcdppcGEX

where:  

Ep  - pressure course obtained on the basis of the computational model, 

Fp  - smoothed course from experimental measurements, 

1c , 2c  - weight coefficients. 
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I  order to solve the optn imization task in the form (4), the objective function has to be 
inte

 

grated at every step. In papers [4, 10] it was shown that the genetic algorithms can be used to 
solve the task (4) rewritten in the form of the function of adaptation as follows: 

max
,,

1
,,

GEX
GEX . (5) 

The real-value representation of genes in the chromosome is used, i.e. the chromosome has the 
form of vector [10]:  

 Tzz 131,...,Z , (6) 

here

t, the genetic operators of the arithmetical crossover and non-uniform mutation have been 
app

measured and 

w 8..1ifor .  ,,,,, 5554321 ezzzzzz iizswd

Nex
lied [8]. As the results of using the genetic algorithm, for given from measurements pressure 

courses and vectors )( jX , )( jG , the vectors of model parameters )( jE are estimated. 
The accuracy of the identification process can be evaluated by comparison of 

calculated values of main parameters which characterize the working cycle such as: the mean 
indicated pressure ip , thermal efficiency c , the mean indicated pressure in working part of the 

cycle )(rip , maxima max , the mass of the medium in the cylinder cm  and 

the crankshaft angle for which the maxima ssure 
maxp

l pressure of the cycle p

l pre  occurred. In Tab. 1 are presented the 

values of error of modelling for the main parameters o  working cycle. The error is expressed 
as an average relative percentage error: 

f the

 
400

1

%100
j j

jj

o

mo
, (7) 

where re values observed in measurement and predicted from the model respectively for 

Tab. 1. The error of modelling 

jj mo , a

th  engthe j ine conditions. 

 

Parameter of the working cycle  

ip , c  )(rip  p  m  max c maxp  

Average error of modelling  
[%] 

5.02 2.74 2.7 2.18 0.73 

 
Analysis of the data presented in Tab. 1 lead us to conclusions of satisfactory results of 

o

n presented in earlier chapter enables calculation of the working cycle 
onl

the w  the
relationships have to be proposed: 

m delling. It means that the pressure courses and the main parameters of the working cycle are 
computed with very good accuracy after using the values of model parameters obtained from the 
identification. Moreover, the maximal errors do not exceed in any case 5.1%. 
 

. The generalization 4
 

The discrete identificatio
y for a limited number of discrete engine operating conditions given by known vectors )( jX  , 
)( jG and using vector )( jE  estimated for those conditions. In order to use the model for modelling 

orking process in  cylinder for any technically possible operating conditions, the following 

. 
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 XE Ef , (8) 

and 

XG Gf . (9)  

The problem of generalization of the results of discrete identification can be treated as an 

pproximation task of discrete vectors )( jE , for)( jG   400,..,1j . Solution of the approximation a

task yields the unknown function XEf  and XGf . The task can be solved in many ways, e.g. 

by using the least square method if th rm the fu given a priori or with artificial e fo  of nction is 
neural networks otherwise. Howev ults o  comparisons made for similar problems of er, res f some
approximation presented in papers [2, 3] showed that using artificial neural networks can be 
a better choice.  

Preliminarily two types of neural networks were tested: multi layer network and radial network 
[11] with different activation functions. After some numerical experiments we decided to use two 
feed-forward multilayer artificial neural networks: A and B. The input signals are the components 

of the vector 
T

EGRw XBn ,,, 0X , the output signals are as follows: 

- network A has ou

 TTpTp ,,,,,,,, , 

tput signals :  

(10) 

- network B has output signals :  

 1Out

zswdwwdd1Out

2Out

 TeeOut 412 ..., . (11) 

One can notice that the network A uses for approximation all components of the vector of 
uxiliary parameters and four components of the vectora  of model parameters E . The network B G

uses for approximation only five components of the vector of model parameters E  which all are 
the parameters of the Watson formula. It means that parameters used for calculation the heat 
transfer coefficient 85...ee  are not approximated. Numerical experiments show that using the 

average values of those parameters obtained in discrete identification does not strongly influence 
the accuracy of the m

For both neural networks we used the activation function in the form of a hyperbolic tangent: 

 

odel. 

1

1)( IwIw
T

ef T   (12) 

where: 
– vector of weights on neurons’ inputs, w

I – vector of neurons’ input signals.  
e of the networks we start with one hidden layer with 9 

ne arately using supervised momentum algorithm based on 
th

In order to find the optimal architectur
d sepurons. Neural networks were traine

e back-propagation method in which the weights were adjusted in each training step by using the 
formula [11, 12]:  

 1)(1 nnnnnn wwwww , (13) 

where: 
 - learning rate, 

w  - gradient of the network output error,  
 - moment coefficient set equal to 0.9. 
The he average relative percentage error training procedure was continued until t   between the 

value g ulated by the network for each component of the iven in verification set and the value calc

, 
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ou ut s or for any component of the output signals was still 
mo

tp ignals became less than 10%. If the err
re than 10%, the network architecture was changed by adding a new neuron on the hidden layer 

and the training procedure was repeated. In Tab. 2 are presented the final architectures of both 
networks and values of the average relative percentage error  for each component of the output 
signals. 
 
Tab. 2. The final architecture of considered neural networks A and B and values of the average relative percentage 

error  for each component of the output signals 

 Network A 

Architecture The output layer The hidden layer 

The number of 
neurons 

15 9 

 Evaluation of the approximation quality for a verification set 

Output signal dp  dT  w  p wT   d  w  s  z  

 [%] 2.226 1 0.452 .961 2.076 1.304 2.453 2.510 8.827 9.023 

Median of  [%] 2.01 1.64  2.14 0.94  1.81  1.73  8.47 8.403 0.28  1 3 1 8 8 6 5 6

 Network B 

Architecture id er h t lThe h den lay T e outpu ayer 

T
n

he number of 
eurons 

31 5 

 Evaluation of the approximation quality for a verification set 

Output signal  1e  2e  3e  4e  

 [%] 8.061 2 8.944 8.453 6.125 5.43

Median of  [%] 7.96  7.06  4.92  5.36  3.02  5 6 5 7 4
 

ysis of values of rage relative percentageAnal the ave  error  for each component of the output 
s ented in Tab. 2 leads to the fo g conclusignals pres llowin ions: 
- among all output signals the smallest value of the average error was achieved for , z

- the components of the auxiliary vector are predicted with very good accuracy, for them the 
average output error does not exceed 2.5%, 

- generally bigger values of error was achieved for the network B which was used for 
approximation of the model parameters used in Watson formula.  

 
5. Conclusion 
 

The identification procedure presented is a main step of formulating the semi-empirical model 
cycle which consists of two stages. The first stage of the identification procedure 

nsures that the values of the model parameters are estimated properly. The second one enables 
esti

neural networks. Finally, the model was used to calculate the pressure courses and the main 

of the working 
e

mation of those values for any conditions of engine work by solving the appropriate 
approximation task. The overall accuracy of the model predictions is determined by accuracy 
achieved in both stages. In order to verify the accuracy of the model, some additional comparisons 
should be done. For comparison experimental measurements are used for which values of control 
parameters (input signals) were different from those taken for teaching the neural networks. Then, 
all model and auxiliary parameters were calculated according to the approximation obtained by the 

46



 
The Identification of Model Parameters for a Semi-Empirical Model of Working Process in the Compression… 

parameters of the working cycle. A comparison of some pressure courses p  calculated by the 
model and those from the measurements are presented in Fig. 1. 

 

 

 
Fig. 1. Comparison of measured and calculated pressure courses of the medium in the cylinder  

 
In Table 3 are presented values of error of modelling for the main parameters of the working 

cycle for cases presented in Fig. 1.  

Tab. 3. The err f modelling ors o

 Error of modelling [%] 

Parameter of the Case A: 1500 rpm
working cycle 

 
0.5 Mmax 

Case B: 2500 rpm Case C: 3500 rpm 
0.9 Mmax 

Case D: 4000 rpm 
0.25 Mmax 0.75 Mmax 

ip , c  0.72 5,08 0.63 1.7 

)(rip  4.83 1.36 0.69 1.67 

max  p 3.95 5.28 0.4 2.58 

cm  1.28 0.81 1.93 0.01 

maxp  2.01 0.66 0.54 0.14 

 
he results presented ab. 3 show t e used method of identification ensures an 

acceptable correspondenc calculation re and measurem  Thus, the sem pirical 
model presented can be used in studies conce modelling of the working cycle fo engine 
perating conditions.  

T  in T
e of 

hat th
sults ents. i-em
rning r any 

o
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