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Abstract 

The numerical modelling of combustion phenomena is an important task due to safety issues and development and 
optimization of engines. Laminar burning velocity (LBV) is one of the most important physical properties of 
a flammable mixture. Knowing its exact value if crucial for assessment of flame stabilization, turbulent flame 
structure. It influences strongly safety, probability of knocking combustion and it is one of parameters used for 
assessment and development of detailed chemical kinetic mechanisms. Hence, the goal of this work is to develop 
models by means of Machine Learning algorithms for predicting laminar burning velocities of single-fuel C1-C7 
normal hydrocarbon and air mixtures. Development of the models is based on a large experimental data set collected 
from literature. In total more than 1000, LBVs were accumulated for hydrocarbons from methane up to n-heptane. 
The models are developed in MATLAB 2018a with use of Machine Learning toolbox. Algorithms taken into account 
are multivariate regression, support vector machine, and artificial neural network. Performance of the models is 
compared with most widely used detailed chemical kinetics mechanisms’ predictions obtained with use of LOFEsoft. 
These kind of models might be efficiently used in CFD combustion models based on flamelet approach. The main 
advantage in comparison to chemical kinetics calculation is much shorter computational time needed for 
computations of a single value and comparable performance in terms of R2 (coefficient of determination), RMSE 
(root-mean-square error) and MAE (mean absolute error). 
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1. Introduction 
 
 

Laminar burning velocity (LBV) is a property of a flammable mixture. Its value depends on 
mixture composition (fuel, oxidizer), equivalence ratio, pressure, and temperature. Together with 
ignition delay, time and species concentration is used for development and indirect assessment of 
detailed chemical kinetics mechanisms. LBV directly influences turbulent flame speed, therefore 
a knowledge of LBV is crucial in industrial systems (safety, risk of deflagration to detonation 
transition, DDT) and during design process of gas turbines and piston engines. Turbulent flame 
speed is a factor affecting i.e. length of gas turbine’s combustion chamber, combustion stability, 
and probability of occurrence of knocking combustion in piston engines. 

Combustion models used in computational fluid dynamics (CFD) based on flamelet approach 
often utilize correlations for laminar burning velocity, where calculations with detailed chemistry 
are too time-consuming, as well as accessing tabulated chemistry data. The most frequent and the 
simplest correlation, a so-called power-law equation for LBV are used: 
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,                                        (1) 

where LBVL0 and LBVL are LBV measured at ambient conditions (temperature T0, pressure P0) 
and LBV sought for, respectively. Factors α and β are temperature and pressure influence 
exponents and usually they are functions of equivalence ratio (EQR). These power-law 
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correlations need to be updated, as new experimental data are published continually extending 
range of conditions. 

The objective of this study is to introduce new laminar burning velocity models for a very 
broad range of hydrocarbon fuels and conditions using machine learning (ML) algorithms. ML is 
widely used in numerous aspects of life, for instance: self-driving cars, handwriting recognition, 
anti-spam filtering, web search, and rating systems. Now it is becoming more popular in science 
as well.  
 
2. Data analysis and simulation 
 

In order to create models following steps are accomplished: 
1. Collect data from the literature, 
2. Simulate data, 
3. Feature Engineering, 
4. Normalize data to 0-1 range, 
5. Split data into training and test sets (70/30), 
6. Apply algorithms, 
7. Perform cross validation. 
 
Experimental data 

Input of the models are experimental laminar burning velocities collected from literature 
[1-33]. In total 1073 points are collected for mixtures of air and one of seven hydrocarbons from 
methane up to n-heptane (normal alkanes only) for different temperatures, pressures and 
equivalence ratios. A brief summary of the collection is in Tab. 1. 
 

Tab. 1. A summary of accumulated experimental LBVs of mixtures of air with one of seven hydrocarbons 
from methane up to n-heptane 

Air + Methane Ethane Propane n-Butane n-Pentane n-Hexane n-Heptane 
T [K] 295-573 295-450 295-650 298-450 353-450 353-460 298-450 
P [bar] 0.2-20 1-10 1-7.4 1-3 1-10 1-10 0.5-24.7 
EQR [-] 0.5-1.68 0.6-1.5 0.5-1.6 0.7-1.5 0.55-1.7 0.55-1.7 0.55-1.7 
LBV [cm/s] 2.2-85.2 7.1-82.4 9.6-162.1 18.4-76.6 8.1-76.2 10.8-76.7 7-77.7 
#points 398 123 210 29 44 51 218 

 
Data simulation 

Sample size determination is the act of choosing the number of observations or replicates to 
include in a statistical sample. The sample size is an important feature of any empirical study in 
which the goal is to make inferences about a population from a sample. In practice, the sample size 
used in a study is determined based on the expense of data collection, and the need to have 
sufficient statistical power. Experimental investigation of any physical phenomena is cost and time 
consuming. In general, tests are repeated 3 to 5 times for the same settings in order to verify that 
the measure is more or less the same. Unfortunately, the size of this sample is not statistically 
significant. A way to obtain a statistically significant sample is to simulate data based on sample 
distribution and standard deviation. In this study, data were simulated based on the existing 
samples assuming beta distribution. The probability density function (pdf) of the beta distribution, 
for 0 ≤ x ≤ 1, and shape parameters α, β > 0, is a power function of the variable x and of its 
reflection (1 – x) as follows: 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝛽𝛽) =  1
𝐵𝐵(𝛼𝛼,𝛽𝛽)

𝑥𝑥𝛼𝛼−1 ∙ (1 − 𝑥𝑥)𝛽𝛽−1.                        (2) 
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The beta function is a normalization constant to ensure that the total probability integrates to 1. 
In the above equations x is a realization – an observed value that actually occurred – of a random 
process X. The expected value (mean, μ) of a beta distribution random variable X with two 
parameters α and β is a function of only the ratio β/α of these parameters: 

𝜇𝜇 = 𝐸𝐸[𝑋𝑋] =  1

1−𝛽𝛽𝛼𝛼

.                     (3) 

Letting α = β in the above expression one obtains μ = 1/2, showing that for α = β the mean is at 
the centre of the distribution: it is symmetric 

The simulation procedure is as follows: 
1. fit 5th order polynomial into given data points, 
2. assume α, 
3. calculate β, 
4. calculate density, distribution function, quantile function and random generation for the beta 

distribution with parameters α and β. 
Data, which will be simulated, should be correlated with each other or pattern should exists. 

When doing simulation of laminar burning velocity in a function of equivalence ratio it can be 
seen that relationship between variables is similar to inverse quadratic.  

Figure 2 presents measured values (black dots) with simulated data (blue circles). Simulation 
of the data is important in order to avoid the over-fitting problem. The larger the data set the more 
flexible model can be fitted [34]. 
 

 
Fig. 1. Experimental LBVs (black dots) with its functional estimate (dashed line) and simulated LBVs (blue circles) 

of n-heptane/air mixture at 450 K and 3 bar  
 
Data normalization  

Generated data are normalized to 0.0-1.0 range, in order to bring all the features to the same 
scale. This procedure makes machine-learning algorithms to converge faster and improves their 
adaptation ability. Data is normalized. Normalization is made based on the following equation: 

𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

,                        (4) 

where x = (x1,...,xn) and zi is i-th normalized data. Normalized data are divided randomly into 
training and test set, 70% to 30% accordingly. First set is used to train model, the second set is to 
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estimate how well the model has been trained. In this work multivariate regression [35, 36], 
supported vector machine [37, 38] and artificial neural network [39] are applied for the data set 
and the results are compared. 
Feature engineering 

Process of feature engineering was used to create additional features with addition to the 
existing one in order to improve the prediction power of the models. As a result equivalence ratio 
is presented in the form of the 5th order polynomial and both temperature and pressure additionally 
as the second power and the root. The final model is a laminar flame speed in function of 
equivalence ratio, initial pressure and initial temperature and number of carbons in a chemical 
formula, HC: 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐻𝐻𝐻𝐻 + (𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝑅𝑅2 + 𝐸𝐸𝐸𝐸𝐸𝐸3 + 𝐸𝐸𝐸𝐸𝐸𝐸4 + 𝐸𝐸𝐸𝐸𝐸𝐸5) + (𝑃𝑃0 + 𝑃𝑃02 + 𝑃𝑃00.5) + (𝑇𝑇0 + 𝑇𝑇02 + 𝑇𝑇00.5). 

3. Machine Learning Algorithms

Multivariate Regression 
Multivariate regression is a technique that estimates a single regression model with more than 

one outcome variable [35]. The multivariate general linear model is defined as follows 

Y = X B + E, 

where Y is a matrix of n observations on m response variables; X is a model matrix with columns 
for k + 1 regressors, typically including an initial column of 1’s for the regression constant; B is 
a matrix of regression coefficients, one column for each response variable; and E is a matrix of 
errors [36]. Fig. 2 summarizes obtained results.  

Supported Vector Machine 
Supported Vector Machine (SVM) is a method of the optimal separating hyperplane. This 

algorithm belongs to supervised learning models used for classification and regression analysis. 
Input vectors X are mapped into the high-dimensional feature space Z through nonlinear mapping, 
chosen a priori. In this space, in case of classification, an optimal hyperplane is constructed, which 
divides the data into the most distinct sets. In case of regression, it creates a hyperplane which is 
the closest to all observations [37]. In order to improve the performance of SVM the best 
parameters for the model are selected by the process called hyper parameter optimization [38]. The 
standard way to do this is a grid search where many models are trained for the different pairs of ϵ 
and cost, and choose the best one.  

Artificial Neural Network 
The artificial neural network (ANN) consists of layers of neurons, where the first layer is called 

input layer and the last layer is called output layer. The layers between input and output are called 
hidden layers. Input nodes are passive which means that they duplicate received the input value 
and passes it to each node in the next layer. The connections between nodes contain parameters 
known as weight, which indicates the influence of a given node on the final output value. Nodes in 
hidden and output layers hold activation function. Those nodes are being called as active. Sum of 
input values multiplied by specific weights is passed to the active node’s activation function [39]. 
Additional nodes added to the layers are called bias nodes (b). Those bias nodes hold constant 
values and support achieving better-fitted results of prediction by shifting the activation function 
characteristics. Fig. 2 presents structure of the ANN used in this study.  
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Fig. 2. Structure of ANN used in this study: two hidden layers with 10 nodes each 

 
Each iteration of the neural network training process consists of two steps: forward and 

backward propagation. Forward propagation is a simple forward pass of input values through all 
the neurons, and it outputs a result, called a prediction value. Backward propagation method is a 
part of artificial neural networks supervised machine learning algorithm and it minimizes the 
neural network error, called the cost function, in each iteration by adjusting the weights in all 
nodes. The value of the error is the difference between the predicted value obtained in the forward 
pass and the actual output value taken from the training set. After the training, when the error is 
small enough, only the forward propagation is used to obtain predictions. 
 
4. Results 
 

Figure 3 presents a summary of obtained models’ performance. True LBVs against predicted 
LBVs for all 3 algorithms is shown in the left part of Fig. 3. The most common metrics for 
measuring accuracy, R2 (coefficient of determination), RMSE (root-mean-square error) and MAE 
(mean absolute error) are in titles. Diagrams on the right side in Fig. 3 show error higher than 
3 cm/s.  

The model obtained with the multivariate regression has the lowest accuracy and the highest 
R2, RMSE and MAE. The ANN performs best across all 3 algorithms and for this model; 
coefficients are differentiated for each hydrocarbon in Tab. 2. Generally, the model predicts very 
well investigated LBVs. The lowest metrics are for methane. However, one need to keep in mind 
that methane has the biggest experimental data set (Tab. 1) and it was investigated for a long span 
of time. It could result in high spread of experimental data and at last worse predictability of 
models.  
 

Tab. 2. R2, RMSE and MAE for each hydrocarbon for ANN model 

 
CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 

R2 0.975 0.990 0.993 0.998 0.990 0.995 0.991 
RMSE 2.154 1.317 3.126 0.642 1.658 1.022 1.217 
MAE 1.397 1.007 1.708 0.543 1.074 0.756 0.851 

 
Tab. 3. Comparison of performance of detailed reaction mechanisms and ANN in reproduction of methane LBV 

 
ANN GRI-mech 3.0 San Diego CaltechMech POLIMI  AramcoMech 

R2 0.975 0.934 0.867 0.936 0.914 0.973 
RMSE 2.154 3.497 4.977 3.466 4.017 2.370 
MAE 1.397 2.161 3.829 2.113 2.685 1.555 

 
In Tab. 3 the ANN’s performance of methane’s LBV is compared to detailed reaction 

mechanisms (DRMs): GRI-mech 3.0 [40], San Diego 2014 [41], CaltechMech [42], POLIMI C1-
C3 LT HT [43] and AramcoMech 2.0 [44]. LBVs were obtained with use of LOGEsoft [45]. One  
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Fig. 3. Results for multivariate regression, SVM and ANN: left – true LBV against predicted LBV,  

right – experimental LBV against EQR. Model error bars higher than 3 cm/s are marked by red colour 
 
can notice that ANN model is the most accurate and comparable to AramcoMech 2.0. However, 
due to a high number of species and reactions in the mechanisms computational time is long 
(average from all calculations with AramcoMech 2.0 is 5.2 h, where for ANN model it is an order 
of seconds). 
 
5. Conclusions 
 

In the article, 3 models of laminar burning velocity of mixtures of air with one of seven 
hydrocarbons from methane up to n-heptane were created. Machine learning algorithms, such as 
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Multivariate regression, Supported Vector Machine and Artificial Neural Network were used. The 
best performance is obtained by ANN model in terms of R2, RMSE and MAE. Good performance 
is constant across all seven hydrocarbons. ANN model performance for methane LBVs was 
compared to well establish detailed reaction mechanisms. It was shown that ANN model is more 
accurate than the DRMs and also it is much less computationally expensive. 
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