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Abstract. In this paper we complete the study started in [P. Pucci, L. Temperini, Existence
for (p,q) critical systems in the Heisenberg group, Adv. Nonlinear Anal. 9 (2020), 895–922] on
some variants of the concentration-compactness principle in bounded PS domains Ω of the
Heisenberg group Hn. The concentration-compactness principle is a basic tool for treating
nonlinear problems with lack of compactness. The results proved here can be exploited when
dealing with some kind of elliptic systems involving critical nonlinearities and Hardy terms.

Keywords: Heisenberg group, concentration-compactness, critical exponents, Hardy terms.

Mathematics Subject Classification: 22E30, 35B33, 35J50, 58E30, 35H05, 35A23.

1. INTRODUCTION

In this paper we complete the study started in [19] on some important variants of the
concentration-compactness principle in the Heisenberg group, which are crucial in
the study of nonlinear critical elliptic systems, with Hardy terms.

In recent years, when dealing with nonlinear elliptic problems involving critical
nonlinearities and Hardy terms, the concentration-compactness principle due to Lions,
cf. [14, 15], has been a fundamental tool for proving existence of solutions. We just
mention [2, 6, 13,19] and the references therein.

Moreover, geometric Analysis in the Heisenberg group, and more in general in
Carnot groups, represents one of the currently most active areas of mathematics. The
main reason lies in the fact that the Heisenberg group Hn plays an important role in
several branches of mathematics, such as representation theory, partial differential
equations, number theory, several complex variables and quantum mechanics. We refer,
for example, to [1, 17–19].
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In this paper, taking inspiration from [13] and following the basic ideas of the
papers [14,15] of Lions, we extend the vectorial concentration-compactness principle
to the Heisenberg group setting. The methods used are based on the approach in
[5, 13–15] on Rn and in [2] on Hn.

Throughout the paper, we assume that Ω is a bounded Poincaré–Sobolev domain of
the Heisenberg group Hn, briefly PS domain, that is Ω is an open set of Hn with the
property that there exist a covering {B}B∈F of Ω by Carnot–Carathéodory balls and
numbers N > 0, a ≥ 1, and b ≥ 1 such that

(i) for every q ∈ Hn ∑

B∈F
1(a+1)B(q) ≤ N1Ω(q),

(ii) there exists a ball B0 ∈ F such that for all B ∈ F there is a finite chain
B0, B1, . . . , Bs(B), with Bi ∩Bi+1 6= ∅ and |Bi ∩Bi+1| ≥ max{|Bi|, |Bi+1|}

/
N ,

(iii) B ⊂ bBi for i = 1, . . . , s(B).

The above definition can be found, together with a complete treatment of the topic,
in [11]. In the context of Heisenberg groups one can produce a large class of PS
domains as explained in details in [11].

Denote by Q = 2n+ 2 the homogeneous dimension of Hn, let ℘ be an exponent
with 1 < ℘ < Q, and let α > 1 and β > 1 be such that α+ β = ℘∗, where

℘∗ = ℘Q

Q− ℘

is a critical exponent related to ℘, in a sense that will be explained later.
We denote by r the Heisenberg norm, or the Korányi norm,

r(q) = r(z, t) = (|z|4 + t2)1/4,

with z = (x, y) ∈ Rn × Rn, t ∈ R, |z| the Euclidean norm in R2n of z,

DHu = (X1u, · · · , Xnu, Y1u, · · · , Ynu)

the horizontal gradient, {Xj , Yj}nj=1 the basis of horizontal left invariant vector fields
on Hn, that is

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
,

for j = 1, . . . , n.
We prefer to use the Korányi norm and distance since they are much easier to

compute than the Carnot–Carathéodory distance. Moreover, it is clear that the t-axis
is a snowflake of R. However, the Korányi distance does not reflect the sub-Riemannian
structure of the Heisenberg group. Despite this, the two metrics are closely related.
Interestingly, in the setting of the Heisenberg group it was shown by Yang in [24]
that the L-gauge d(x) – sometimes also called the Korányi–Folland or Kaplan gauge
in this case – can be replaced by the Carnot–Carathéodory distance, and the Hardy
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inequality in the Heisenberg group remains valid with the same best constant p/(Q−p).
Moreover the L-gauge d(x) can be clearly replaced by another quasi-norm due to the
equivalence of all homogeneous quasi-norms on stratified Lie groups, but this may
change the best constant in a way which is not easy to trace. Excellent additions and
related questions can be found in the recent paper [20].

In the paper, statements involving measure theory are always understood to be
with respect to Haar measure on Hn, which coincides with the (2n+ 1)-dimensional
Lebesgue measure, as explained in Section 2.

Assume that 1 < ℘ < Q. Let us first introduce the Folland–Stein space S1,℘
0 (Hn),

which is defined as the completion of C∞0 (Ω) with respect to the norm

‖DHu‖℘ =



∫

Ω

|DHu|℘Hdq




1/℘

.

In order to state the main result of the paper, it is crucial to introduce also the Hardy
inequality in the Heisenberg setting. To this purpose, consider the weight function ψ,
defined as ψ = |DHr|H . The best Hardy–Sobolev constant H℘ = H(℘,Q) is given by

H℘ = inf
u∈S1,℘

0 (Ω)
u6=0

‖DHu‖℘℘
‖u‖℘H℘

, ‖u‖℘H℘
=
∫

Ω

ψ℘|u|℘ dq
r℘
. (1.1)

For further details we refer to Section 2. One of the main difficulties of working with
Hardy terms is that the Hardy embedding S1,℘

0 (Ω) ↪→ L℘(Ω, ψ℘r−℘dq) is continuous
but not compact, even locally in any neighborhood of O.

Let finally σ be a constant with 0 ≤ σ < H℘. Now we can state the main
result of the paper, which is a concentration-compactness principle for systems in
S = S1,℘

0 (Ω)× S1,℘
0 (Ω).

Theorem 1.1. Let Ω is a bounded PS domain of the Heisenberg group Hn, with
O ∈ Ω. Let {(uk, vk)}k be a weakly convergent sequence in S, with weak limit (u, v).
Then there exist three nonnegative finite Radon measures µ, ν and ω in Hn, such that

(
|DHuk|℘H+|DHvk|℘H

)
dq
∗
⇀ µ,

(
|uk|℘ + |vk|℘

)
ψ℘

dq

r℘
∗
⇀ ω,

|uk|α|vk|βdq ∗⇀ ν inM(Hn),
(1.2)

where M(Hn) is the space of all finite Radon measures on Hn. Furthermore, there
exist an at most countable set J , a family of points {qj}j∈J ⊂ Hn and two families of
nonnegative numbers {µj}j∈J∪{0} and {νj}j∈J∪{0} such that

dν = |u|α|v|βdq + ν0δO +
∑

j∈J
νjδqj

, νj = ν({qj}), (1.3)

dµ ≥
(
|DHu|℘H + |DHv|℘H

)
dq + µ0δO +

∑

j∈J
µjδqj

, µj = µ({qj}), (1.4)
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dω =
(
|u|℘ + |v|℘

)
ψ℘

dq

r℘
+ ω0δO, (1.5)

ν
℘/℘∗
j ≤ µj

I for all j ∈ J, ν
℘/℘∗
0 ≤ µ0 − σω0

Iσ
, (1.6)

where δO and δqj are the Dirac functions of mass 1 at the points O and qj of Hn, and

Iσ = inf
(u,v)∈S

(u6=0)∧(v 6=0)

‖DHu‖℘℘ + ‖DHv‖℘℘ − σ‖u‖℘H℘
− σ‖v‖℘H℘


∫

Ω

|u|α|v|βdq



℘/℘∗ , (1.7)

while I = I0.

The assumption that Ω is bounded in Theorem 1.1 plays an essential role to get
the compact embedding (2.3), which is widely used in the proof. Theorem 1.1 extends
to the Heisenberg setting Theorem 2 of [13] and also Theorem 1.2 of [19]. The proof
of Theorem 1.1 follows the arguments given in of Theorem 1.1 of [5] for the Euclidean
setting, see also [14,15], and extends Theorem 1.2 of [2]. In particular, we generalize
the results of [2, 5] in two directions: first we consider the term depending on α and β
and second we work in the vectorial case.

The paper is structured as follows. In Section 2, we recall the main features of
the functional setting on the Heisenberg group Hn and notations of the paper, while
Section 3 is devoted the proof of Theorem 1.1.

2. PRELIMINARIES

In this section we present the basic properties of Hn as a Lie group. Analysis on the
Heisenberg group is very interesting because this space is topologically Euclidean, but
analytically non-Euclidean, and so some basic ideas of analysis, such as dilatations,
must be developed again. One of the main differences with the Euclidean case is that
the homogeneous dimension Q = 2n+ 2 of the Heisenberg group plays a role analogous
to the topological dimension in the Euclidean context. For a complete treatment, we
refer to [10–12,23].

Let Hn be the Heisenberg Lie group of topological dimension 2n+ 1, that is the
Lie group which has R2n+1 as a background manifold, endowed with the non-Abelian
group law

q ◦ q′ =
(
z + z′, t+ t′ + 2

n∑

i=1
(yix′i − xiy′i)

)

for all points q, q′ ∈ Hn, with

q =(z, t)= (x1, . . . , xn, y1, . . . , yn, t) and q′ =(z′, t′)= (x′1, . . . , x′n, y′1, . . . , y′n, t′).

The inverse is given by q−1 = −q, so that (q ◦ q′)−1 = (q′)−1 ◦ q−1.
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The vector fields for j = 1, . . . , n

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
, T = ∂

∂t
,

constitute a basis for the real Lie algebra of left-invariant vector fields on Hn. This
basis satisfies the Heisenberg canonical commutation relations

[Xj , Yk] = −4δjkT, [Yj , Yk] = [Xj , Xk] = [Yj , T ] = [Xj , T ] = 0.

A left invariant vector field X that is in the span of {Xj , Yj}nj=1 is called horizontal.
We define the horizontal gradient of a C1 function u : Hn → R by

DHu =
n∑

j=1
[(Xju)Xj + (Yju)Yj ] .

Clearly, DHu is an element of the span of {Xj , Yj}nj=1. Furthermore, if f is of class
C1(R), then

DHf(u) = f ′(u)DHu.

In the span of {Xj , Yj}nj=1 ' R2n we consider the natural inner product given by

(
X,Y

)
H

=
n∑

j=1

(
xjyj + x̃j ỹj

)

for X = {xjXj + x̃jYj}nj=1 and Y = {yjXj + ỹjYj}nj=1. The inner product
(
·, ·
)
H

produces the Hilbertian norm

|X|H =
√(

X,X
)
H

for the horizontal vector field X. Moreover, the Cauchy–Schwarz inequality
∣∣(X,Y

)
H

∣∣ ≤ |X|H |Y |H
holds for any horizontal vector fields X and Y .

For any horizontal vector field function X = X(q), X = {xjXj + x̃jYj}nj=1, of class
C1(Hn,R2n), we define the horizontal divergence of X by

divHX =
n∑

j=1
[Xj(xj) + Yj(x̃j)].

If furthermore u ∈ C1(Hn), then the Leibnitz formula continues to be valid, that is

divH(uX) = udivHX +
(
DHu,X

)
H
.

The Korányi norm is given by

r(q) = r(z, t) = (|z|4 + t2)1/4 for all q = (z, t) ∈ Hn.
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The corresponding distance, the so called Korányi distance, is

dK(q, q′) = r(q−1 ◦ q′) for all (q, q′) ∈ Hn ×Hn.

This distance acts like the Euclidean distance in horizontal directions and behaves like
the square root of the Euclidean distance in the missing direction. Consequently, the
Korányi norm is homogeneous of degree 1, with respect to the family of dilations

δR : (z, t) 7→ (Rz,R2t), R > 0, (2.1)

since
r(δR(q)) = r(Rz,R2t) = (|Rz|4 +R4t2)1/4 = Rr(q)

for all q = (z, t) ∈ Hn. It is easy to verify that the Jacobian determinant of dilatations
δR : Hn → Hn is constant and equal to R2n+2. This is why the natural number
Q = 2n+ 2 is called homogeneous dimension of Hn.

Let BR(q0) = {q ∈ Hn : dK(q, q0) < R} be the Korányi open ball of radius R
centered at q0. For simplicity BR denotes the ball of radius R centered at q0 = O,
where O = (0, 0) is the natural origin of Hn.

The main geometrical function ψ, which appears in (1.1), is defined by

ψ(q) = |DHr|H = |z|
r(q) for all q = (z, t) ∈ Hn \ {O},

with 0 ≤ ψ ≤ 1, ψ(0, t) ≡ 0, ψ(z, 0) ≡ 1. Furthermore, ψ2 is the density function,
which is homogeneous of degree 0, with respect to the dilatation δR introduced
in (2.1). In Euclidean space the presence of the density ψ is outshone by the flat
geometry of Rn, which yields ψ ≡ 1.

The Lebesgue measure on R2n+1 is invariant under left translations. Thus, from here
on, we denote by dq the Haar measure on Hn that coincides with the (2n+1)-Lebesgue
measure, since the Haar measures on Lie groups are unique up to constant multipliers.
We also denote by |U | the (2n+ 1)-dimensional Lebesgue measure of any measurable
set U ⊂ Hn. Furthermore, the Haar measure on Hn is Q-homogeneous with respect to
dilations δR. Consequently,

|δR(U)| = RQ|U |, d(δRq) = RQdq.

In particular |BR| = |B1|RQ.
Let us now introduce the Folland–Stein inequality in Ω, which is the analogous of

the Sobolev inequality in the homogeneous setting. Let 1 < ℘ < Q. By [7, 8, 21, 22],
we know that for all ϕ ∈ C∞0 (Ω)

‖ϕ‖℘∗ ≤ C℘∗‖DHϕ‖℘, ℘∗ = ℘Q

Q− ℘, (2.2)

where C℘∗ is a positive constant depending only on Q and ℘.
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Denote by HW 1,℘(Ω) the horizontal Sobolev space consisting of all functions
u ∈ L℘(Ω) such that DHu exists in the sense of distributions and |DHu|H ∈ L℘(Ω),
endowed with the natural norm

‖u‖HW 1,℘(Ω) =
(
‖u‖℘℘ + ‖DHu‖℘℘

)1/℘
,

where

‖DHu‖℘ =



∫

Ω

|DHu|℘Hdq




1/℘

.

Clearly, by (2.2), the embedding S1,℘
0 (Ω) ↪→ HW 1,℘(Ω) is continuous. Moreover, if

Ω is a bounded PS domain in Hn, the embedding

HW 1,℘(Ω) ↪→↪→ Ls(Ω) (2.3)

is compact, when 1 ≤ s < ℘∗ by [11, 12, 23]. In particular, since any
Carnot–Carathéodory ball is a bounded PS domains of Hn by [9, 12, 23],
the property (2.3) holds for the Carnot–Carathéodory balls. Moreover, since the
Carnot–Carathéodory distance and the Korányi distance are equivalent on Hn, see [12],
then (2.3) holds in particular when Ω is any Korányi ball. In conclusion, the embedding

HW 1,℘(BR(q0)) ↪→↪→ Ls(BR(q0)), 1 ≤ s < ℘∗,

is compact for any q0 ∈ Hn and R > 0.
Finally, we recall the Hardy–Sobolev inequality in Ω. From the Hardy–Sobolev

Theorem 1 of [16], we know that
∫

Ω

ψ℘|ϕ|℘ dq
r℘
≤
(

℘

Q− ℘

)℘ ∫

Ω

|DHϕ|℘Hdq (2.4)

for all ϕ ∈ C∞0 (Ω \ {O}), with O = (0, 0) the natural origin in Hn. The above Hardy
inequality was obtained in [10] when ℘ = 2 and in another version in [4] for all ℘ > 1.
Clearly, (2.4) implies that

S1,℘
0 (Ω) ↪→ L℘(Ω, ψ℘r−℘dq). (2.5)

However, as already noted, the above embedding is not compact, even locally in any
neighborhood of O.

3. PROOF OF THEOREM 1.1

From here on we assume that Ω is a bounded PS domain of Hn, with O ∈ Ω. This
section is devoted to the proof of Theorem 1.1, which concerns the study of the exact
behavior of weakly convergent sequences in S in the space of measures. The proof
follows the arguments given in the Euclidean, scalar setting in Theorem 1.1 of [5] and
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in the Heisenberg, scalar setting in Theorem 1.2 of [2]. We extend these results in
two directions: first we consider the term depending on α and β and second we work
in the vectorial case.

Before proving Theorem 1.1, let us introduce some useful notations. Under the
assumptions 1 < ℘ < Q, α > 1, β > 1, α + β = ℘∗, and σ ∈ [0, H℘), the optimal
constant Iσ introduced in (1.7) is well defined. Indeed, since σ ∈ [0, H℘), the quantity
in (1.7) is nonnegative by (2.4). Moreover, the Hölder inequality and the Folland–Stein
inequality (2.2) give

∫

Ω

|u|α|v|βdq ≤



∫

Ω

|u|℘∗
dq



α/℘∗

∫

Ω

|v|℘∗
dq



β/℘∗

≤ C℘
∗

℘∗ ‖DHu‖α℘‖DHv‖β℘

(3.1)

for all (u, v) ∈ S, since α, β > 1 and α + β = ℘∗. Therefore, (3.1) and the Young
inequality yield



∫

Ω

|u|α|v|βdq



℘/℘∗

≤ C℘℘∗‖DHu‖α℘/℘
∗

℘ ‖DHv‖β℘/℘
∗

℘

≤ C℘℘∗

(
α

℘∗
‖DHu‖℘℘ + β

℘∗
‖DHv‖℘℘

)

≤ C℘℘∗
(
‖DHu‖℘℘ + ‖DHv‖℘℘

)

(3.2)

for all (u, v) ∈ S. Hence, by (3.2) and by the Hardy inequality, we get

‖DHu‖℘℘ + ‖DHv‖℘℘ − σ‖u‖℘H℘
− σ‖v‖℘H℘


∫

Ω

|u|α|v|βdq



℘/℘∗ ≥ 1− σ/H℘

C℘℘∗
> 0

since σ < H℘ and so Iσ > 0. Taking inspiration from [2,5, 13], we turn to the proof of
Theorem 1.1.

Proof of Theorem 1.1. Fix a sequence {(uk, vk)}k in S, with (uk, vk) ⇀ (u, v) in S.
Then uk ⇀ u, vk ⇀ v in L℘(Ω, ψ℘r−℘dq) by (2.5). Moreover, by (3.1) the sequence
k 7→ |uk|α|vk|β is bounded in L1(Ω). Since Ω is bounded, the measures

k 7→
(
|DHuk|℘H + |DHvk|℘H

)
dq, k 7→

(
|uk|℘ + |vk|℘

)
ψ℘

dq

r℘
, k 7→ |uk|α|vk|βdq

in Hn are uniformly tight in k. Therefore, there exist three nonnegative finite Radon
measures µ, ν and ω in Hn such that (1.2) holds.

Arguing as in Theorem 1.2 of [19], we obtain the validity of (1.3) and (1.4) as well
as of the estimate ν℘/℘∗j ≤ µj/I for all j ∈ J .
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Put uk = uk − u and vk = vk − v. Clearly, uk ⇀ 0 and vk ⇀ 0 in S1,℘
0 (Ω) as

k →∞. Then, as observed above, we acquire the existence of two nonnegative finite
Radon measures µ̂ and ω̂ on Hn such that

(
|DHuk|℘H + |DHvk|℘H

)
dq
∗
⇀ µ̂ and

(
|uk|℘ + |vk|℘

)
ψ℘

dq

r℘
∗
⇀ ω̂ (3.3)

in M(Ω). By (2.3), the sequences (uk)k and (vk)k strongly converges to u and v,
respectively, in L℘(Ω), being Ω a bounded PS domain. Thus, from Theorem 4.9 of [3],
we get the existence of g ∈ L℘(Ω) such that, up to subsequences,

uk → u a.e. in Ω, |uk| ≤ g a.e. in Ω and for all k. (3.4)

Similarly, there exists h ∈ L℘(Ω) such that, up to subsequences,

vk → v a.e. in Ω, |vk| ≤ h a.e. in Ω and for all k. (3.5)

Therefore, the Brézis–Lieb lemma implies that for any ϕ ∈ C∞0 (Ω) it results

lim
k→∞

‖ϕuk‖℘H℘
− ‖ϕu‖℘H℘

= lim
k→∞

‖ϕuk‖℘H℘
,

lim
k→∞

‖ϕvk‖℘H℘
− ‖ϕv‖℘H℘

= lim
k→∞

‖ϕvk‖℘H℘
.

A combination of the above formulas yields that
∫

Ω

|ϕ|℘dω −
∫

Ω

|ϕ|℘
(
|u|℘ + |v|℘

)
ψ℘

dq

r℘
=
∫

Ω

|ϕ|℘dω̂.

Consequently,
ω = ω̂ +

(
|u|℘ + |v|℘

)
ψ℘

dq

r℘
,

since ϕ ∈ C∞0 (Ω) is arbitrary.
Let us now prove (1.5). To this purpose, fix ϕ ∈ C∞0 (Ω) and ε > 0. Then, there

exists Cε > 0 such that |ξ+ η|℘ ≤ (1 + ε)|ξ|℘ +Cε|η|℘ for all numbers ξ, η ∈ R. Hence,
the Leibnitz formula gives for all k

∫

Ω

|DH(ukϕ)|℘Hdq ≤ (1 + ε)
∫

Ω

|DHuk|℘Hn |ϕ|℘dq

+ Cε

∫

Ω

|DHϕ|℘H |uk|℘dq.
(3.6)

Thus, (3.6) and the Hardy inequality (2.4), along the sequence (ϕuk)k of S1,p
0 (Ω),

imply that

H℘‖ϕuk‖℘H℘
≤ ‖DH(ukϕ)‖℘℘ ≤ (1 + ε)

∫

Ω

|DHuk|℘H |ϕ|℘dq + Cε,ϕ‖uk‖℘℘, (3.7)
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for an appropriate constant Cε,ϕ > 0. Replacing uk by vk and arguing in the same
way we get (3.7) also in the v component. Thus,

H℘

∫

Ω

|ϕ|℘ (|uk|℘H + |vk|℘H)ψ℘ dq
r℘

≤ (1 + ε)
∫

Ω

(
|DHuk|℘H + |DHvk|℘H

)
|ϕ|℘dq (3.8)

+ Cε,ϕ
(
‖uk‖℘℘ + ‖vk‖℘℘

)
.

Hence, passing to the limit in (3.8), using (3.3), (3.7) and the fact that uk = uk−u→ 0
and vk = vk − v → 0 in L℘(Ω) as k →∞, we have

∫

Ω

|ϕ|℘dω̂ ≤ 1 + ε

H℘

∫

Ω

|ϕ|℘dµ̂.

Therefore, by Lemma 1.4.6 of [12] the measure ω̂ is decomposed as sum of Dirac
masses. Let us now prove that ω̂ is concentrated at O.

Fix ϕ ∈ C∞0 (Ω), with O /∈ suppϕ, so that ψ℘|ϕ|℘/r℘ is in L∞(suppϕ). Then, (2.3)
yields

∫

Ω

ψ℘|ϕ|℘
(
|uk|℘ + |vk|℘

)dq
r℘

=
∫

suppϕ

ψ℘|ϕ|℘
(
|uk|℘ + |vk|℘

)dq
r℘

≤ C
∫

suppϕ

(|uk|℘ + |vk|℘) dq → 0

as k → ∞. This, combined with (3.3), gives
∫

Ω |ϕ|℘dω̂ = 0, that is ω̂ is a measure
concentrated in O. Hence ω̂ = ω0δO, and so (1.5) is proved.

It remains to show the second part of (1.6). From (1.7), for all ϕ ∈ C∞0 (Ω) it
results

Iσ
(∫

Ω

|ϕ|℘∗ |uk|α|vk|βdq
)℘/℘∗

≤
∫

Ω

(
|DH(ϕuk)|℘H + |DH(ϕvk)|℘H

)
dq

− σ
∫

Ω

ψ℘|ϕ|℘ (|uk|℘ + |vk|℘) dq
r℘
,

(3.9)

since α+ β = ℘∗. Then, using the Leibnitz formula (3.6) in (3.9), we get

Iσ
(∫

Ω

|ϕ|℘∗ |uk|α|vk|βdξ
)℘/℘∗

≤ (1 + ε)
∫

Ω

(
|DHuk|℘H + |DHvk|℘H

)
|ϕ|℘dq

+ Cε,ϕ
(
‖uk‖℘℘ + ‖vk‖℘℘

)

− σ
∫

Ω

ψ℘|ϕ|℘ (|uk|℘ + |vk|℘) dq
r℘
.
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Passing to the limit as k →∞ in the above inequality and using (1.2), (3.4) and (3.5),
we obtain

Iσ
(∫

Ω

|ϕ|℘∗
dν

)℘/℘∗

≤ (1 + ε)
∫

Ω

|ϕ|℘dµ

+ Cε

∫

Ω

|DHϕ|℘H (|u|℘ + |v|℘) dq − σ
∫

Ω

|ϕ|℘dω.
(3.10)

Fix now a test function ϕ ∈ C∞0 (Ω), with 0 ≤ ϕ ≤ 1, ϕ(0) = 1, suppϕ = B1 and put
ϕε̃(q) = ϕ(δ1/ε̃(q)) for ε̃ > 0 sufficiently small. Since ν ≥ ν0δO, choosing ϕε̃ as test
function in (3.10), we have

0 ≤ Iσν℘/℘
∗

0 ≤ (1 + ε)µ(Bε̃)− σω0 + Cε

∫

Ω

|DHϕε̃|℘
(
|u|℘ + |v|℘

)
dq. (3.11)

The last term of the right-hand side of (3.11) goes to 0 as ε̃ → 0+, thanks to the
Hölder inequality. Hence, 0 ≤ Iσν℘/℘

∗

0 ≤ µ0 − σω0, letting ε̃ → 0+ and also ε → 0+

in (3.11). By the Fatou lemma µ ≥ |DHu|℘Hdq and this concludes the proof of (1.6),
since |DHu|℘Hdq and µ0δO are orthogonal.
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