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Abstract. We show that the one-sided regularizations of the generator of any uniformly con-
tinuous and convex compact valued composition operator, acting in the spaces of functions
of bounded variation in the sense of Wiener, is an affine function.

Keywords: ¢-variation in the sense of Wiener, set-valued functions, left and right regular-
izations, uniformly continuous composition (Nemytskii) operator, Jensen equation.

Mathematics Subject Classification: 47B33, 26B30, 26E25, 26B40.

INTRODUCTION

Let (X,|-]) and (Y,|-]) be two real normed spaces, C be a convex cone in X and
I C R an interval. Let cc(Y') be the family of all non-empty convex compact subsets
of Y. We consider the Nemytskii operator, i.e. the composition operator defined by
h(t, F(t)) for F : I — cc(X), where h: I x R — cc(Y) is a given set-valued function.
It is shown that if the operator H maps the space BV, (I;C) of functions of bounded
-variation in the sense of Wiener into the space BW,(I;cc(Y')) of convex compact
valued functions of bounded w-variation in the sense of Wiener, and is uniformly
continuous, then the one-sided regularizations h~ and h™ of h which respect to the
first variable, are affine with respect to the second variable. In particular,

h=(t,x) = A(t)x + B(t), fortel, xze€C,

for some function A : I — L(C,ce(Y)) and B € BWy(I;cc(Y)), where L(C, ce(Y))
stands for the space of all linear mappings C' into cc(Y).
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1. PRELIMINARIES

In this section we present some definitions and recall known results concerning the
Wiener @-variation.

Let F be the set of all convex functions ¢ : [0,00) — [0, 00) such that: ¢(0) =
©(0+) = 0 and tthW ©(t) = co. Then we have

Remark 1.1. If ¢ € F, then ¢ is continuous and strictly increasing. Indeed, the
continuity of ¢ at each point ¢ > 0 follows from its convexity and continuity at 0 from
the assumption ¢(0) = ¢(0+) = 0. Suppose that ¢(t1) > (t2) for some 0 < t; < to.

Then
e(t) —90)  »(t) S o(t2)  o(t2) —(0)

t1—0 t1 to to—0
contradicting the convexity of .

)

Let I C R be an interval. For a set X we denote by X' the set of all functions
f:1— X.

Definition 1.2. Let ¢ € F and (X, |- |) be a real normed space. A function f € X!
is of bounded ¢-variation in the sense of Wiener in I, if

m
ve(f) = sngW(\f(ti) — f(ti-1)]) < o0, (1.1)
i=1
where the supremum is taken over all finite and increasing sequences & = (¢;)7,

tiel, meN.

Denote by BV, (I, X) the set of all functions f € X' such that v,(\f) < oo for
some A > 0. BV, (I, X) is a normed space endowed with the norm

[flle := f(a)l +pp(f),  f € BVL(I,X), (1.2)
where I = [a,b] and
pg,(f):inf{e>0:11</,(f/e) Sl}. (1.3)

Let cc(X) be the family of all non-empty convex compact subsets of X, and let D
be the Pompeiu-Hausdorff metric in cc(X), i.e.

D(A, B) = max{e(A,B), e(B,A)}, A, B € ce(X), (1.4)
where
e(A, B) = sup {d(m,B) RS A}, d(z, B) = inf {d(m,y) ty € B}. (1.5)

The Pompeiu-Hausdor{f metric D is translation invariant on cc(X) in the sense
that (see [13, Lemma 3|):

D(A,B)=D(A+Q,B+Q) (1.6)
for all A, B € c¢(X) and bounded nonempty set @ of X.
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Definition 1.3. Let ¢ € F and F : I — c¢(X). We say that F has bounded
(p-variation in the Wiener sense if

m

wy(F) == m;pZ(p(D(F(ti), F(ti—1))) < oo, (1.7)

where the supremum is taken over all finite and increasing sequences £ = (¢;)1,,
tiel, meN.

Let
BW,(I,ce(X)) == {F € ce(X)' 1 wy(AF) < oo for some A > 0}. (1.8)

For Fy, F> € BW,(I,cc(X)) put

Dy (Fy, F») := D(Fi(a), F2(a)) + pe(F1, F2), (1.9)
where
po(F1, Fy) := inf {e >0:W.(F,F) < 1} (1.10)
and
WE(Fl,Fg) = SlglpZ(p(iD(Fl(ti) + Fg(ti_l); Fg(ti) + Fl(ti—l))>, (111)

where the supremum is taken over all finite and increasing sequences § = (¢;)1",,
tiel, meN.
Lemma 1.4 (cf. M. Castillo [2, p. 107]). The set BW,(I,cc(X)) endowed with D,

1S a metric space.

Lemma 1.5 (cf. V.V. Chistyakov [3, Lemma 5.2|). Let Fy, Fy € BW,(I,cc(X)) and
p € F. Then, for A > 0,

Wi(F1,F2) <1 if and only if p, (Fl,Fg) <\

Now, let (X,]-]), (Y,]-]) be two real normed spaces and C' be a convex cone in X.
Given a set-valued function h : I x C — cc(Y) we consider the composition operator
H:C! — Y generated by h, i.e.

(Hf)(t) == h(t, f(t)), feCf, tel. (1.12)
)

1.
Denote by A(C, ce(Y)) the space of all additive functions and by £(C, cc(Y)) the
space of all set-valued linear functions, i.e., all set-valued functions A € A(C,cc(Y))
which are positively homogeneous.

Lemma 1.6 (cf. K. Nikodem [12, Th. 5.6]). Let (X,|-|), (Y,|-|) be normed spaces
and C' a convex cone in X. A set-valued function F : C — cc(Y) satisfies the Jensen
equation

F(m—;—y) :%(F(ac)—&—F(y))7 z,y € C, (1.13)

if and only if, there exist an additive set-valued function A:C — cc(Y) and a set
B € cc(Y) such that F(x) = A(x) + B for allxz € C.
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2. THE COMPOSITION OPERATOR

Our main result reads as follows:

Theorem 2.1. Let (X,|-|) be a real normed space, (Y,|-]) a real Banach space, C a
convez cone in X and suppose that ¢, € F. If the composition operator H generated
by a set-valued function h : I x C — cc(Y) maps BV,(I,C) into BWy(I,cc(Y)),
and is uniformly continuous, then the left reqularization of h, i.e. the function h™ :
I x X —Y defined by

h=(t,x) :=limh(s,x), tel, xe€C,

sTt

exists and
h=(t,x) =At)x+ B(t), tel, xze€C,

for some A : I — A(X,ce(Y)) and B : I — cc(Y). Moreover, if 0 € C,
then B € BWy(I,cc(Y)) and, for any t € I, the linear set-valued function A(t) is
continuous.

Proof. For every x € C, the constant function I 5 t — x belongs to BV, (I, C). Since
H maps BV, (I,C) into BWy (I, cc(Y')), for every « € C, the function I 3 ¢t — h(¢, x)
belongs to BWy(I,cc(Y)). Now the completeness of cc(Y) with respect to the
Pompeiu-Hausdorff metric (see [17, Th. A]), implies the existence of the left reg-
ularization h™ of h.

By assumption, H is uniformly continuous on BV, (I,C). Let w:Rt — R be
the modulus of continuity of H, that is

w(p) = sup { Dy (H (1), H(£)) Ui = follo < pi f1f2 € BV,(LO), p>0.

Hence we get

Dy (H(f1),H(f2)) <w(lfr = fellp), for fi,f2 € BV,(I,C). (2.1)
From the definition of the metric Dy, and (2.1), we obtain
po(H(f1); H(f2)) Sw(llfi = follp),  for  f1, f2 € BV,(I,C). (2.2)

From Lemma 1.5, if w([|fi — f2[|p) > 0, the inequality (2.2) is equivalent to

Ww(\lferI\w)(H(fl)aH(f2)) <1, fi,f2€BV,(I,C). (2.3)

Therefore, for any a < a1 < f1 < ag < fo < ... < Qm < Bm = b, «;, B; € 1,
i €{1,2,...,m}, m € N, the definitions of the operator H and the functional W¢,

imply
" D(R(Bs, [1(8:)) + h(a, f2(i)); R(Bi, f2(8:)) + B, fi(ew)))
>+ oI — Follo) )<t

(2.4)
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For a,0 € R, a < 3, we define functions 7,3 :R — [0,1] by

0 if t<aq,
t—a .

Na,a(t) := 5 a if a<t<g, (2.5)
1 it p<t.

Let us fix t € I. For an arbitrary finite sequence a < a1 < f1 < ag < B2 < ... <

A < Bm < t and x1,29 € C, x1 # x2, the functions f1, fo : I — X defined by
1
fo(r) := 3 [nai’gi(T)(.’L'l — o)+ + xg], Tel (=1,2, (2.6)

belong to the space BV, (I,C). From (2.6) we have

L1 — X2

fl(T)_f2(T): 2 ) TEIa
therefore . .
1— T2
1= falle = | =52
moreover
xr1+x T+
AB) =215 fo(Bi) = = 5 2 fila) == 5 2 falaq) = .
Using (2.4), we hence get
T -;9102) +h<ﬁi7 T+ T2

m D(h(ﬁuﬂ?l) +h(ai,$2);h(0¢i,
o
=1

Z L1 — T2
(7570

Since, for any « € C, the constant function I 3 7 — z belongs to space BV, (I, C)
and H maps BV, (I,C) into BWy(I,cc(Y)), the function I > 7 — h(71,x) belongs
to BWy(I,cc(Y)) for any « € C. From the continuity of ¢ and the definition of A~
letting vy 1 ¢ in (2.7), we obtain

2 )>>§1. (2.7)

2

- D(h_(t7x1) R (@) 20 (t7 1 + xz)) )

DY T — X2 =h =
F1< “(|757)
that is

¢<D(h—(t,x1) +h7 (8 22);2h7 <t’ xl;xz))> < %

(757

Hence, since m € N is arbitrary,
D(h_(t7 x1) +h™ (t,22); 20~ (t, xl _g @))
d )

(=)
W
2

|
o
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and, as ¥(r) = 0 only if r = 0, we obtain

D(h_(t, 1) + B (t, 2); 20~ (t, wl ;””)) —0.

Therefore

h- (t’ xr1 + IEQ) _ h~ (t,fEl) + hi(t,l’g)
2 2

forallt € I and all z{, x5 € C.

Thus, for each t € I, the function h™(¢,-) satisfies the Jensen functional equation
in C. Consequently, by Lemma 1.6, for every t € I there exist an additive set valued
function A(t) : C — cc(Y') and a set B(t) € cc(Y') such that

h™(t,x) = A({t)x+ B(t) for ze€C, tel, (2.9)

which proves the first part of our result.

The uniform continuity of the operator H : BV »(I,C) — BWy(I,cc(Y)) implies
the continuity of the function A(t), so that ) L(C,cc(Y)) (see [12, Th. 5.3]).
Putting z = 0 in (2.9), and taking into account that A(¢)0 = {0} for t € I, we get

h=(t,0)=B(t), tel,
which implies that B € BWy (I, ce(Y)). O

Remark 2.2. The counterpart of Theorem 2.1 for the right regularization h* of h
defined by
Rt (t,z) :=limh(s,x); te€l,

s|t
is also true.

Remark 2.3. Taking p(t) = ¢(t) =P (¢t > 0) for all 1 < p < oo we obtain the main
result of [4].

Remark 2.4. The condition intC # ) is assumed to guarantee the continuity of the
linear functions A(t).

Remark 2.5. The uniformly continuous composition operators in the single-valued
case for some function spaces were considered in [7, 8] and [9]. The globally Lip-
schitzian composition operators in some special function spaces were considered in
[6,10,11] (cf. also [1] for other references). The first paper in which the set-valued Lip-
schitzian composition operators were considered is due to A. Smajdor and W. Smajdor
[14]. Note also that G. Zawadzka [17] considered the set-valued Lipschitzian compo-
sition operators in the space of set-valued functions of bounded variation.
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