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Purpose: The purpose of this article is to present a research report on a system dynamics 5 

simulation modeling and experimenting of bullwhip effect (BWE) to examine effectiveness of 6 

some selected inventory control policies with down- and upstream information flow in a Beer 7 

Distribution Game (BDG) of a supply chain structure. 8 

Design/methodology/approach: The impact of systems’ structures and decision making 9 

policies in supply chains or logistics systems are measured and analyzed by an application of 10 

systems thinking paradigms and approaches. Particularly, the continuous simulation modeling 11 

approach with systems thinking Iceberg model metaphor, allowing to focus on strategic aspects 12 

of management with some recommendation to design better structures and decision making 13 

policies are taken. For the bullwhip effect analysis of a supply chain example (based on BDG 14 

model), a System Dynamics (SD) continuous simulation modeling method with some proposals 15 

in order to analyze feedback loop dominance are undertaken to explain supply chain behaviors 16 

and to make some sensitivity analysis for decision making (inventory control) policies. 17 

Findings: The research findings outline the impact of cause – effect relations, feedback loops 18 

polarities, and decision making policies to particular behaviors of the BDG supply chain. 19 

Research limitations/implications: Because of complexity of heuristic methods for feedback 20 

loop dominance analysis only simple approach was applied (LPD), and some selected scenario 21 

for simulation experiments were undertaken resulting in limited conclusions. 22 

Practical implications: The conclusions of the research draw some practical recommendations 23 

for a design of information sharing system and an effectiveness of some inventory control 24 

policies to be applied in supply chains. 25 

Social implications: One of the systems thinking elements in practical management is  26 

an influence to mental models of managers and decision makers. Managers in supply chain 27 

systems particularly need some recommendations to avoid bullwhip effect negative impacts. 28 

Additionally, managers and also scholars still call for more research to investigate the design 29 

and decision making in supply chains, therefore systems thinking simulation research can 30 

bridge the gap between traditional operations research and management with other approaches 31 

to provide insight into supply-chain dynamics and deliver impactful suggestions to managers. 32 

Originality/value: The paper gives a concept of supply chain dynamic analysis by  33 

an application of Iceberg model systems thinking metaphor, feedback loop dominance analysis, 34 

and a measurement of some selected inventory control policies effectiveness. 35 
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1. Introduction 1 

The emergence of the simulation modeling (SM), as an important field of management 2 

systems modeling support, creates a new need and interest for management research community 3 

in the ways in which the SM method or technique can assist the process of modeling and 4 

analyzing macro-scope management systems, processes, functions and structures. However, 5 

despite the existing successful application examples, SM in dynamic management systems 6 

modeling has not to date received the methodological support to establish it as a separate 7 

research area in management theories’ building. Also a micro-scope method of modeling, 8 

usually as stochastic discrete modeling, is another form of simulation to be applied rather at  9 

an operational level of management. 10 

One of the major research problems in dynamic systems’ SM is the identification of 11 

relationships between the structure of a dynamic system and the behavior it generates.  12 

It is obvious, that cause and effect relations, feedbacks, delays and amplifications, as basic 13 

structural features of systems and applied (implemented) decision making policies and rules in 14 

system’s management or control on dynamic properties of systems, have a significant impact 15 

on the system. Complex systems (e.g. economic and management systems), behave in a way 16 

that is hard to identify and determine unambiguously (a paradigm of anti-intuitive and counter-17 

intuitive behavior). The main reason for this is the coexistence of many nonlinear structures 18 

and higher order feedbacks. There are also ‘shadow/phantom’ structures, resulting in the same 19 

types of behavior, difficult to identify in terms of feedback dominance. And although in such 20 

systems many so called ‘system’s effects’ are also created (synergy effects), understanding the 21 

nature of a single feedback and decision (control) making policies implemented within,  22 

is highly critical to a design process of appropriate structures and decision-making policies. 23 

There is a substantial and still growing bibliography on the one of the most fundamental 24 

phenomena in supply chain management – a ‘bullwhip effect’ (BWE), and its impact on supply 25 

chain performance (Akkermans et al., 2005; Croson et al., 2005; Liang et al., 2006; Jakšič et 26 

al., 2008; Ouyang et al., 2010; Duc et al., 2010; Bhattacharya et al., 2011; Dass et al., 2011; 27 

Ding et al., 2011; Dobos, 2011; Sodhi et al., 2011; Zhang et al., 2011; Kristianto et al., 2012; 28 

Mesjasz, 2012; Sterman et al., 2015; Gonçalves et al., 2021). This effect is an amplification of 29 

order oscillations (fluctuations) and time phases lags moving up the supply chain  30 

(in an upstream direction) – away from the supply chain final point – a final customer.  31 

Given the impact of BWE on supply chains, scholars have called for more research to 32 

investigate the behavior of actors within a supply chain (Bolton, Katok, 2008; Narayanan, 33 

Moritz, 2015). Behavioral operations research (OR) and SM can bridge the gap between 34 

traditional management heuristics and other behavioral sciences such as psychology, 35 

neuroscience, and organizational science to provide insight into supply-chain dynamics and 36 

deliver impactful suggestions to managers. 37 
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The principles, structure and mechanics of BDG1 game are well documented. Its successful 1 

history began with J.W. Forrester first business oriented research, being used basically as  2 

a supply chain model experimental setting and treatments in a board or computer controllable 3 

forms, however there is still a need to provide more profound research regarding its information 4 

system design, and inventory control policies impacts to supply chain performance.  5 

The game consists of four actors as players (4-echelon structure) and one actor as an external 6 

source of demand (customer or arbiter). Players take the role of inventory managers at one of 7 

these four echelons within an integrated supply chain: retailer, wholesaler, distributor,  8 

and manufacturer. Within each role, manager as a decision maker is responsible for placing 9 

orders to direct upstream supplier and filling orders placed by direct downstream customers. 10 

The decisions must be made repeatedly over series of periods, and within each period events 11 

occur in the following sequence: a) shipments arrive from direct upstream supplier,  12 

b) new orders arrive from direct downstream customer, c) new orders are filled and shipped 13 

from inventory, however when order quantity than available inventory (inventory on hand), 14 

unfilled order is placed in backlog and filled once the inventory becomes available in a future 15 

(in next periods), and d) each supply chain actor places an order to a direct upstream supplier. 16 

The purpose of this paper is to present a research report on a system dynamics simulation 17 

modeling and experimenting of bullwhip effect (BWE) to examine effectiveness of some 18 

selected inventory control policies with down- and upstream information flow in a Beer 19 

Distribution Game (BDG) – a model to represent a 4-echelon supply chain structure. The paper 20 

addresses also to a methodological gap by investigating the suitability of macro SM in the 21 

context of management-oriented organizational analysis and design, and also tries to answer 22 

the question how management dynamics of systems are dependent on systems’ structures.  23 

In fact, the management quality improvement is primarily a design problem and encourage  24 

a use of SM models with team/group communications to identify design/redesign requirements. 25 

  26 

                                                 
1 A business game called BDG (Beer Distribution Game) was developed at the Sloan School of Management, 

Massachusetts Institute of Technology (MIT) in the 1960s as a version of the earlier (1958) Refrigerator Game. 

Demonstrated during the System Dynamics Conference (SDC) in Chestnut Hill - Boston by John D. Sterman 

(Sterman, 1989), it gained worldwide recognition and popularity among management theoreticians and 

practitioners. It has also an interactive Internet version (Machuca et al., 1997). In Poland, it was presented for 

the first time during a session of the Economic Systems Simulation School in Węgierska Górka in 1990 by 

Bogusław Wąsik (AE Kraków) and described in (Wąsik, 1992). 
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2. Research method 1 

2.1. Systems thinking paradigm and SD modeling method 2 

For the ambitious research, a challenge of dynamic system structure influence to system 3 

behavior analysis is considered particularly with an application of System Dynamics (SD) 4 

method. This method, originated by J.W. Forrester (Forrester, 1961; Forrester, 1972), belongs 5 

to systems thinking and macroscopic continuous simulation modeling methodologies.  6 

The SD method relies extensively on system’s structure (particularly feedback loops and 7 

delays) in order to analyze and explain how system structure drives behavior and leads to 8 

particular patterns of behavior. Even some formal methods are being developed for an analysis 9 

of “structure-behavior” relations (e.g. loop polarity dominance, behavioral analysis for loop 10 

dominance, pathway participation metrics, graph theory measurements), still practical analysis 11 

by simulation modeling and one- and multi-factor experimenting have largely been restricted 12 

to laboratory simple examples as guides to intuition. In social complex systems’ SD modeling 13 

and analysis practice, large-scale models with many loops are still analyzed in a largely 14 

informal way, using trial-and-error simulation. Although this is not a weakness, any formal tool 15 

that might help identify important structures in the model as they affect a particular mode of 16 

behavior could be of enormous utility, particularly in large models trying to map complexity 17 

relations in social systems. According to control system theory, behavior of a system must be 18 

considered in a complex – as input/system/output framework. System dynamics particularly is 19 

analyzed in the context of input and system structure influences on system responses, as outputs. 20 

The most important dynamic system properties to be analyzed in feedback control systems are: 21 

stability, robustness, time and frequency response, and equilibrium state (Kampmann et al., 22 

2008). System dynamics stability issues are an important part of feedback control system theory 23 

and practice. 24 

Systems approach is a creative and epistemological approach, which focuses on systems 25 

and structure relations. In that sense it corresponds closely with structuralism - a philosophical 26 

school dealing with basic assumptions on ways of perceiving the world by the cognitive subject. 27 

The most important assumption is relativism, reducing cognitive forms of seeing entities 28 

(objects, subjects, elements) only to relations between entities (cognition in the structural 29 

context). It also corresponds to nativism which assumes genetic and biological skills of people 30 

to make some order and collect experiences in structural forms. The history of system sciences 31 

is an evolution of three branches: systems philosophy, systems theory and systems 32 

methodology. The systems philosophy, neglecting reductionism, determinism and linearity of 33 

cause-effect descriptions - tends towards interactive holistic thinking with perceiving final goals 34 

of systems. The systems theory describes systems of various domains in universal 35 

categorization - it implies some ambitious efforts to find general theory of systems.  36 

The systems methodology, with some philosophical and theoretical elements, is a theory of 37 
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systems science developing system concepts, strategies to investigate, analyze and design 1 

systems. The systems approach in research implies accepting basic principles of "systems 2 

thinking". That is why both terms are also treated as synonyms. The dynamic simulation 3 

modeling in economic and social sciences is more difficult than in physical sciences 4 

(Kampmann et al., 2014). Cognitive subject and observer is also a part of a system - an active 5 

element of research object - and it is not a problem of an observer relativism and his/her 6 

measurement instruments. In one of the modern philosophy concepts - hermeneutics - 7 

experience and ways of world descriptions in models are proposed in no-foundation and no-8 

atomic introspective analysis. It means that the "atomization" is treated as an epistemological 9 

deformation. 10 

The macro-scope SD modeling method in social system is adopting also a systems thinking 11 

concept and approach. A model that is helpful for understanding “global” (holistic and 12 

systemic) issues in system SD modeling, is the Iceberg Model (Figure 1), often used in systems 13 

thinking and problem resolving or solving.  14 

 15 

Figure 1. The systems thinking with Iceberg Model and SD modeling paradigms in system’s analysis, 16 
forecasting, planning and design. 17 

Source: own work based on http://www.systemsthinking.com. 18 

In SD modeling life-cycle stages, global issues can be looked at in some research and 19 

analytical layers, allowing successful system and process restructures and improvements.  20 

The Iceberg Model is the systems thinking tool designed to help an individual or group discover 21 

the patterns of behavior, supporting structures, and mental models that underlie a particular 22 

system event. If we apply this model to SD modeling procedure, we could say by an iceberg 23 

metaphor, that at the tip above the water, are events, or thing that we see or hear about happening 24 

in the whole system. If we look just below the water line, we often start to see patterns,  25 

or the recurrence of events. Finally, at the very base of the iceberg are the assumptions and 26 

worldviews that have created or sustained the structures that are in place. The important thing 27 

to understand is that in problems’ solving, the greatest leverage is in changing the structure. 28 

Events 
What happened? 

Patterns of behavior 

What’s been happening? 

What changes have occurred? What are the trends? 

Underlying structures 
What has influenced the patterns (e.g. policies, structures)? 

What are the relationships among the parts? 

Mental models 
What assumptions, beliefs, and values do people hold about the system? 

Reaction 

Forecasting 
Planning 

Design 

Mental 
change 
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Like the different levels of an iceberg, deep beneath the patterns are the underlying structures 1 

or root causes that create or drive those patterns. SD method in system modeling allows to 2 

analyze a managed system so as to: model the ways in which its information, action and 3 

consequences components interact to generate dynamic behavior; diagnose the causes of faulty 4 

behavior; tune its feedback loops to get better behavior. 5 

The first stage in SD application to system modeling is to recognize the problem and to find 6 

out which people care about it, and why. Secondly, and the first stage in SD as such, comes the 7 

description of the system by means of an influence diagram, sometimes referred to as a “causal 8 

loop diagram” (CLD) or “cause-effect diagram”. This is a diagram of the forces at work in the 9 

system, which appear to be connected to the phenomena underlying people's concerns about it. 10 

Influence diagrams are constructed following well-established techniques – basically “least-11 

extension” technique. Having developed an initial diagram, attention moves to the third stage - 12 

'qualitative analysis' - looking closely at the influence diagram in the hope of understanding the 13 

problem better. This is, in practical SD, a most important stage, which often leads to significant 14 

results (sometimes it is the end of modeling project). If qualitative analysis does not produce 15 

enough insight to solve the problem, work proceeds to fourth stage, the construction of  16 

a simulation model with operationalizing “stock and flow diagram” (SFD). The next stage  17 

(the fifth one) is where results based on quantitative analysis start to emerge. Initially,  18 

use is made of the bright ideas insights and pet theories from qualitative analysis. This stage 19 

represents exploratory modeling of the system's characteristic patterns of behavior by 20 

experimenting with the aim of enhancing understanding and designing new polices and rules 21 

for system. 22 

SD method is originally based on feedback control theory which includes both hard 23 

(quantitative) and soft (qualitative) approaches in analyzing dynamic behaviors of the 24 

development and changes of a system. SD approach assists to improve decision making process 25 

and policy formation through its characteristics of incorporating all relevant cause-effect 26 

relationships as well as feedback loops in dynamic behavior modes of systems. By developing 27 

a mathematical model as a set of differential equations solved by numerical integration  28 

(e.g. by Euler method) and in a computer simulation environment, SD is capable to resolve any 29 

dynamic, inter-dependent, counter-intuitive and complex problem, such as problem of 30 

investigating the impact of social (management and economic) factors on system outcomes. 31 

2.2. Methods of analytical and simulation based loop dominance analysis 32 

The dominant feedback loop in a multi-feedback system determines the behavior of the 33 

system. The concept of dominance is a temporal one, depending on the operating conditions of 34 

the system - different feedback loops can be activated and deactivated, causing a change in the 35 

feedback loop dominance (Richardson, 1995; Kampmann et al., 2006; Kampmann et al., 2006; 36 

Güneralp, 2006; Rahmandad et al., 2009; Kampmann, 2012; Abdelbari et al., 2017; Naumov  37 

et al., 2018). 38 
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The concept of feedback loop polarity, particularly important in a mathematical method of 1 

feedback loop polarity dominance (LPD), is a concept that allows to read loop dominance in  2 

a certain way. The feedback in the system contains (should contain) at least one state variable 3 

as an integration variable (SD method stock x(t) at time t). Let us consider feedback loop with 4 

a stock (resource) x and the flow variable described by the differential equation: 5 

dtdxx / , (1) 

The polarity of the feedback loop containing the resource variable x and its derivate (dx/dt), 6 

representing a dynamic of the resource, is calculated as: 7 

    dxdtdxsigndxxdsign ///  . (2) 

Determination of any feedback loop polarity and dominant feedback loop polarity in more 8 

complex systems (with number of feedback loops n > 2), as well as polarity turning points 9 

becomes analytically more difficult. In practice of any system’s SD method modeling there is 10 

also a need to introduce many types of variables, as levels (stocks), rates (flows) and auxiliaries 11 

(converters), which in turn depend on the other system’s variables belonging to particular 12 

feedback loops. For the case, where in a given feedback loop there are: state variable x, its rate 13 

dtdxx / variable, and auxiliary 1a , 2a , …, na  variables, the sequence of cause – effect 14 

relations is x  → 1a → 2a →… → na → x → x. Polarity in such a feedback loop is therefore 15 

referred to as a complex function: 16 

            nnn axaaaaaaxasignxxsign   //...//// 123121
 . (3) 

The LPD method is a part of a set of eigenvalue elasticity analysis (EEA) methods to 17 

analyze and evaluate the effect of structure on behavior in dynamic systems’ models.  18 

The other proposal as a method for the identification and behavioral analysis of feedback 19 

loop dominance (BAFLD) consists of an iterative 8-step heuristic procedure (Ford, 1999): 20 

1. Identification and selection of a model variable of interest to the analyst from the point 21 

of view of feedback loop dominance, for which a preliminary simulation is performed 22 

and a trajectory of time behavior is determined. 23 

2. Identification of time periods in which the selected model variable behaves in  24 

an elementary way. Reference patterns of behavior are linear, exponential and 25 

logarithmic. The conditions for obtaining elementary standards are determined by the 26 

system structure and model parameters. 27 

3. Identification of the model feedback loops affecting the tested model variable and 28 

selection of one feedback loop as the dominant loop to be found, starting from the 29 

feedback loop containing the tested variable inside. 30 

4. Identification or creation of a control variable in the tested feedback loop, which is not  31 

a variable belonging to other model feedback loops at the same time. This variable should 32 

influence the polarity of the test feedback loop and is used to activate or deactivate the 33 

test feedback loop. 34 
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5. Simulation of behavior of the tested variable in time intervals with the tested feedback 1 

loop in the deactivation state and identification of an elementary pattern(s) of behavior 2 

of the tested variable in time intervals. 3 

6. Identification of time periods in which the observed variable behaves in an elementary 4 

pattern. If the elementary behavior in the time interval determined in the previous step is 5 

different from the behavior initially determined (in step 2), the feedback loop under test 6 

is dominant for the behavior of the model variable under test under system conditions.  7 

If the behavior is the same, two situations are possible: a) the tested feedback loop is not 8 

a dominant loop, b) the tested feedback loop is a dominant loop, but it also has  9 

a “parallel" feedback loop, a “shadow" type loop. In order to identify the shadow loop, 10 

repeat steps 4-6 with the tested feedback loop deactivated, which will allow to 11 

unambiguously identify the parallel loops. After the identification of a shadow loop,  12 

it should be deactivated and then the dominance tests for the tested loop should be 13 

repeated. If there is no change in the model variable being tested, it is to conclude that 14 

there is no dominance of the feedback loop for the model variable being tested. 15 

7. Repeat steps 3-6 with the active test feedback loop to identify possible multiple dominant 16 

feedback loops in the test intervals. 17 

8. Repeat steps 1-7 for different time periods to identify changes in feedback loop 18 

dominance and loop dominance for other model variables. 19 

Unfortunately, in the BAFLD heuristic approach there is an emerging computational and 20 

experimental challenge to test all the possible structure paths and to identify possible “parallel” 21 

(shadow) feedback loops and to identify time intervals for patterns of behavior comparisons. 22 

The next heuristic method as a feedback loop pathway participation metrics analysis 23 

(PPMA) is based on the use of feedback loop participation metrics in the overall behavior of 24 

the dynamic system (Mojtahedzadeh et al., 2004). Since the influences of different feedback 25 

loops may be crossing in the model variable under test, the analysis of the model is based on 26 

the identification of the most significant feedback loops by evaluating the effects of single 27 

paths. The basic intuitive assumption of the PPMA method is also based (similarly to the 28 

BAFLD method) on the identification of elementary patterns of behavior. The analysis is based 29 

on the following 7 elementary patterns of behavior: linear growth, linear decline, reinforcing 30 

growth, reinforcing decline, balancing growth, balancing decline, equilibrium. The results of 31 

the SD model simulation for selected model variables are analyzed in relation to the model 32 

variables and the simulation time intervals. The mathematical algorithm (Mojtahedzadeh et al., 33 

2004; Mojtahedzadeh, 2011) identifies variables with the same polarity by calculating the first 34 

and second derivative on time. The non-linear dynamic system under consideration has a form: 35 

  36 
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 px,fx  , (4) 

where: 1 

x is a vector of n state variables,  2 

x  is a derivative of the x vector in time,  3 

p is a vector of model parameters.  4 

For the k-th state variable, the model equation has a form: 5 

 p,,...,, 21 nk xxxfx  . (5) 

Differentiating the changes occurring in the feedback loop for the tested k-th state variable 6 

for 0kx from the same variable we get: 7 
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In the equation above, feedback loops and their possible paths, beginning on i-th state 8 

variable and ending on k-th state variable being a subject of analysis, are represented.  9 

The decomposition of each feedback loop and its paths with xk state variable influences is done 10 

by a calculation: 11 
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where m(i) is the number of loops and paths that start with the i-th state variable and end with 12 

k-th state variable, i

j

k xf   is a polarity of a path or feedback loop. The xi/xk expresses the 13 

relative changes of i-th state variable and the relative changes of the k-th state variable. The 14 

influence of each feedback path can be normalized in such a way, that it can be expressed 15 

between -1 and 1. Therefore, for each path leading to a state variable under study, a metrics can 16 

be used to measure the influence of that path (or irrelevant feedback loops) on the behavior of 17 

the variable under study. The Path Participation Metrics (PPM) is defined as: 18 
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For the dominant path or feedback loop, the participation metrics (PPM) is the largest one 19 

and it has the same sign (polarity) as the expression 7. If the model variable being tested is not 20 

a state variable, the relative changes for the selected variable should be determined, and the 21 

same procedure should be followed. Let us consider a dynamic system model in which a is  22 

a vector of model variables that are not state variables and are associated with state variables 23 

by g function, while p is a vector of parameters: 24 

 px,ga  , (9) 

 25 

  26 
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If the variable under consideration is ka , the relative changes of this variable in time dt 1 

(numerical integration step) are expressed as: 2 
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When calculating a derivative of the change, we get it as: 3 
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and after transformation it means: 4 
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The procedure of the PPMA method consists of the following stages: 5 

1. Identification and selection of a model variable of interest to the analyst from the point 6 

of view of feedback loop dominance, for which a preliminary simulation is performed 7 

and a trajectory of time behavior is determined. 8 

2. Division (decomposition) of the trajectory of the tested model variable into phases 9 

corresponding to one of the 7 elementary patterns of system behavior (identification of 10 

elementary phases). 11 

3. Looking for fragments of structures responsible for elementary patterns of system 12 

behavior identified at the step of decomposition in appropriate feedback loops, i.e. being 13 

a significant reason for the observed behavior of a variable. In the appropriate 14 

mathematical procedure for a given model variable (x) the influence of the change of this 15 

variable (dx/dt) on the calculated variable   dxdtdxdxxd ///  , which is a measure of  16 

a given path participation in the Total Pathway Participation Metrics, is determined.  17 

This metrics shall contain information about the derivatives (1st and 2nd) for the model 18 

variable being tested. 19 

4. Identification of the feedback loop path that has a significant influence on the behavior 20 

using the calculated participation metrics. The dominant feedback loop path is identified 21 

as the one for which the calculated metrics is the largest and has the same polarity as the 22 

total changes. 23 

An automated calibration (AC) approach - to systems dynamics modeling, a new interesting 24 

concept for classical ‘structure – behavior’ problem solving with an application of graph theory 25 

and its tools was also created (Oliva, 2004). This approach aims at formalizing the heuristics 26 

for model partitions and a sequencing strategy for the calibration/testing process in modeling. 27 

Even it tends only towards incremental improvements of a SD model confidence (validity) in 28 

the model design process, it can be helpful to identify and assess particular system structure 29 

elements in the context of their influence to overall system behavior. Given an available set of 30 

data (model variables and input parameters for which historical data are available), it is possible 31 
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to iteratively identify the set of equations (for variables and parameters) that are directly 1 

involved in the outcome variable calculations. Therefore, it is possible to identify the minimum 2 

equation set that can be used for estimations. The minimum equation set will guarantee that all 3 

parameters used in the estimation are involved in the generation of the selected model outcomes 4 

and, hence, that the best use of the input data is made. Confidence in a dynamic system 5 

hypothesis is usually built by step-by-step procedure to integrate more complex and strongly 6 

connected system’s components into simple and observable parts of structure. 7 

The dynamic system independent loop set (ILS) consists of feedback loops with at least one 8 

edge not included in the previous accepted loops. Then, after an application of graph theory 9 

optimization it is possible to find the shortest independent loop set (SILS) and because of 10 

reflexive property of reachability matrix (non-zero values of elements on main diagonal),  11 

it is possible to find distance matrix, that shows in each cell the length of the shortest path  12 

(a sequence of non-repeating connected vertices and edges) between two vertices, as a walk,  13 

a sequence of connected vertices and edges, with non-repeating vertices (Huang et al., 2012). 14 

The GTA method (Oliva, 2004) for the identification and behavioral analysis of feedback 15 

loop dominance, and model parameters calibration consists of an iterative 5 step heuristic 16 

procedure with some graph theory optimizations: 17 

1. Identification of dynamic system model relations between quantities (variables and 18 

parameters) and setting relational matrixes – adjacency matrix (AM) and reachability 19 

matrix (RM) in graph theory formalisms to visualize and analyze model structure. 20 

2. Identification of data-availability partitions according to empirical set of data. 21 

3. Structural partitions for SD model levels. Identification of level partitions in AM by 22 

blocking (i.e. block consists of only one model level) – the algorithm generates an array 23 

with the list of vertices that correspond to each level in each cell. If the adjacency matrix 24 

(AM) is reordered according to level structure, the resulting matrix is a lower block 25 

triangular with each block representing a level. 26 

4. Structural partitions for SD model feedback loop cycles. Identification of cycle partition 27 

as a set of strongly connected elements that contain all the feedback complexity of  28 

a dynamic system model structure. By an application of RM, it is possible then to 29 

calculate the distance matrix (DM) that shows in each cell the length of the shortest path 30 

(a sequence of non-repeating connected vertices and edges) between two vertices.  31 

A path is a walk, a sequence of connected vertices and edges, with non-repeating 32 

vertices. 33 

5. Identification of minimal structures by calculation of geodetic cycle lists and model 34 

graph parameters. 35 

Unfortunately, the GTA method algorithm only identifies “geodetic circuits” and does not 36 

detect all the feedback loops in the cycle partition. Moreover, simple logical tests can ensure 37 

that only cycles, circuits with non-repeating nodes are included in the list. The geodetic cycle 38 

list generated by this algorithm is unique if the cycle partition has no shortest paths of equal 39 
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length between any two vertices in the cycle set. While the algorithm has no explicit way of 1 

selecting among alternative shortest paths of equal length (if they exist), it does guarantee that, 2 

if it exists, a shortest cycle linking every vertex-pair is included in the list. While the number 3 

of geodetic cycles is still large, the algorithm is more efficient than an exhaustive loop search. 4 

And also by adopting the GTA representation of a SD model, we can focus on structural 5 

complexity feedback loops components rather than the dynamic complexity that arises from 6 

linear or nonlinear relations with delays and amplifications. 7 

The algorithmic detection of archetypal structures (ADAS) method (Yucel et al., 2011; 8 

Shoenenberger et al., 2015) is an approach to test dynamic hypotheses about archetypal 9 

structures belonging to the four generic system’s archetypes (i.e.: the underachievement, 10 

relative achievement, relative control, and out-of-control) as a result of intended and unintended 11 

consequences of system’s feedback loops. This approach is based on classical (analytical) 12 

feedback loops and cycles’ partitions, and it takes also graph theory analysis (GTA) method as 13 

an assumption. However, for the detection of generic structure archetypes, it requires not only 14 

vertices and edges but also other dynamic parameters as input data – polarities, magnitudes and 15 

delays. A qualitative, algorithmic procedure of ADAS method consists of the following stages: 16 

1. Identification of archetype reference behavior of a variable of interest. 17 

2. Formulation of a hypothesis (SFD model) to explain particular system’s behavior. 18 

3. Conversion of SFD model into directed graph in adjacency matrices (AM) for polarities 19 

and delays. 20 

4. Setting the variable of interest (from stage 1) as the outcome (observable) variable in the 21 

algorithm. 22 

5. Algorithmic checking for the variable of interest the other archetype structures with  23 

a presence of this variable. 24 

6. Identification of plausible archetypal structures that cause the problematic behavior of 25 

the variable of interest, and then reinterpreting the archetypes in stage 5 in the context of 26 

SFD model in stage 2. 27 

7. Introducing policies as classical SD solutions. 28 

8. Simulation of the model and reviewing the behaviors for the variable of interest. 29 

The ADAS approach (as a practical application of GTA) to feedback loop analysis, is based 30 

on an assumption that the dynamic system structure represented in a model can be relevant to 31 

and accurately described as a directed graph. It implies that model variables and relations must 32 

be translated into vertices and edges, respectively, and to analyze complex and large scale 33 

dynamic systems with complex feedback loops to return to many types of archetypal structures. 34 

This problem can be effectively solved by reduction of structure partitions with feedback loops 35 

(e.g. by SILS algorithm or by identification of minimal feedback loop structures). 36 

  37 
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2.3. Comparison of analytical and heuristic methods of loop dominance analysis 1 

To compare structure and behavior analysis methods we must have some assumptions 2 

regarding relevant classification criteria and measuring metrics to be identified. Particularly, 3 

feedback loop impact as the most important structure issue is taken first into consideration. 4 

However, the presented above an arbitrary selection of feedback loop dominance analysis 5 

methods, which are presented in most of research applications and published SD journals and 6 

reports, form different level of maturity. Some approaches are rather only theoretical concepts 7 

without serious practical implementations, some other approaches are practical algorithms to 8 

solve particular research problem (e.g. calibration of model parameters). The methods and 9 

algorithms for feedback loop dominance identification and analysis, as described above,  10 

have many common features. However, there are also some fundamental differences in the 11 

proposed approaches (Table 1). 12 

Table 1. 13 
A comparison of feedback loop dominance analysis methods 14 

Criterion Method 

LPDA BAFLD PPMA GTA ADAS 

Method type 
Mathematics Heuristics 

Mathematics/ 

heuristics 
Heuristics Heuristics 

Method aim Identification 

of dominant 

feedback 

loop polarity 

Identification 

of dominant 

feedback 

loop polarity 

Identification of 

dominant feedback 

loop polarity 

Calibration of 

the model 

parameters 

Identification of 

intended and 

unintended 

archetypes 

Problem 

solving 

Differential 

calculus 
Iterative Iterative 

Graph 

optimization 
Iterative 

Behavioral 

patterns 

No 

Linear, 

exponential, 

logarithmic 

Linear growth, 

linear decline, 

reinforcing growth, 

reinforcing decline, 

balancing growth, 

balancing decline, 

equilibrium 

No 

Underachievement, 

relative 

achievement, 

relative control, 

out-of-control 

Metrics Relative 

change 
No Path participation Distance Edge weights 

Model 

variable 
All types All types All types Levels All types 

Shadow 

feedback 

identification 
No 

Yes  

(no 

dominance 

analysis) 

No No No 

Model 

simplification 
No 

Yes 

(versions) 
No 

Yes 

(minimization) 

Yes  

(minimization) 

Software 

No No 
Yes 

(Digest prototype) 

Yes 

(SILS 

algorithm) 

No 

 15 

The 5 methods being analyzed (LPDA, BAFLD, PPMA, GTA, ADAS) are a result of  16 

an attempt to implement a sound postulate expressed by many systems’ analysts (particularly 17 

simulation –oriented modelers of SD community) – to develop tools for feedback loop analysis 18 

with the use of formal dynamic system representation. 19 
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According to the above overview of some loop polarity detection methods, there are some 1 

prospects to have in a near future some effective software tools to support an analytical process 2 

of management systems’ behavior identification. However, we also cannot give any hope for  3 

a unified theory of systems analysis, that is able to automatically provide modelers with any 4 

guideline to identify directly dominant structures. But this is also not to say that formal  5 

(or even heuristic) methods should not be developed. In practice, by the implementation of 6 

many SD modeling simulation projects and customer-oriented modeling techniques (customer 7 

knowledge and experience, needs and expectations), the issue of dominant feedback loop 8 

identification and analysis can be solved/resolved by an intuitive, heuristic, and subjective 9 

experimental procedure. Properly designed simulation experiment allows to recognize those 10 

parts of the model (paths and feedback loops, delays) which determine model behavior. 11 

3. Supply chain dynamics – BDG analysis 12 

3.1. Generic supply chain models – basic analysis 13 

For example, in a dynamic generic supply chain system structure (Figure 2) with two 14 

feedback loops of the 1st order and dynamic equation given as: 15 

  xbaxbxax  , (13) 

where x is an inventory level, a and b are constant parameters describing dynamic rates for 16 

supply inflow (a) and supply outflow (b). According to this definition, polarity of the system 17 

with the two feedback loops is equal to sign(a-b). It means, that when a > 0 and b > 0,  18 

the polarity as sign(a – b) > 0 if a > b, and polarity as sign(a – b) < 0 if a < b (Table 2). 19 

 20 

 21 

Figure 2. Dynamics of 1-echelon generic supply chain system example with 2 feedback loops and some 22 
canonical (exponential increase/decrease) behaviors by the change of a parameter {a=0.002, 0.03, 0.04, 23 
0.05}, and x(0)=100, b=0.03. 24 
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Table 2. 1 
Polarity in a system with 2 feedback loops of the 1st order 2 

 
Polarity 

+ - - + - + 

Conditions 

a>0 

b>0 

a>b 

a>0 

b>0 

a<b 

a<0 

b>0 

a>0 

b<0 

a<0 

b<0 

ǀaǀ>ǀbǀ 

a<0 

b<0 

ǀaǀ<ǀbǀ 

 3 

For example of more complex, 2-echelon inventory supply chain example (Figure 3) with 4 

four feedback loops of the 1st and 2nd orders, dynamic equations are given as: 5 

  xbycynax  , (14) 

ycxby  , (15) 

where x and y are inventory levels, a, b, c, n, are constant parameters describing dynamics rates 6 

for supply inflows (a and b) and supply outflows (b and c), and n as a constant parameter 7 

describing desired (normative) level of y inventory (Figure 4). The four feedback loops  8 

(Figure 3) are as follows: (1) x → Outflow-x → y → Outflow → Inflow → x, (2) x → Outflow-9 

x → y → Inflow → x, (3) x → Outflow-x → x, (4) y → Outflow → y. 10 

 11 

Figure 3. Influence diagram of the 2-echelon inventory supply chain model with 4 feedback loops. 12 

 13 

 14 

Figure 4. Dynamics of 2-echelon generic supply chain system example with 4 feedback loops and some 15 
canonical (goal seeking, S-shape, oscillation) behaviors by the change of a parameter {a=0.75, 1.00, 16 
5.00}, and x(0)=0, y(0)=0, b=1, c=1, n=100. 17 
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According to the polarity definition, dominant polarity of the system with the four feedback 1 

loops possible to identify in this supply system above is more complex and must be determined 2 

by equation (3). In fact, due to a, b, c, and n parameters positive or negative values, we can 3 

expect rather combinations of elementary polarities. For positive values, we can identify  4 

a dominant negative polarity in order to get steady state behavior – very fundamental one in 5 

any inventory control system with temporal exponential growth, S-shaped, and oscillation 6 

patterns of dynamics behavior (Table 3). 7 

Table 3. 8 
Polarity in a system with 4 feedback loops of the 1st order 9 

Conditions 
Polarity 

+/- 

Critically overdamped inventory control – Exp-1 (b + c)2 > 4·a·b 

Critically damped inventory control – Exp-2 (b + c)2 = 4·a·b 

Critically underdamped inventory control – Exp-3 (b + c)2 < 4·a·b 

3.2. BDG supply chain – upstream vs. downstream information impact 10 

Now let us consider a more complex 4-echelon supply chain model, possible to identify in 11 

a very famous supply chain business BDG game. This game is a commonly recognized game, 12 

as a most important tool to educate and train logistics managers, particularly to illustrate 13 

dynamics aspects of decision making in logistics management, and also a very negative impact 14 

of BWE phenomenon to supply chain performance. There are many analytical (e.g. operations 15 

research) and simulation oriented studies regarding decision making ordering principles and 16 

possible co-operations of game actors in order to increase effectiveness, efficiency, and also 17 

adaptability (e.g. resilience) of supply chain management. The model described below is  18 

a representation of BDG game in forms of cause-effect relationships (Figure 5) and Vensim 19 

simulator, developed with SD continuous simulation modeling approach (Figure 6).  20 

The model consists of four independent organizations (4-echelon structure), as supply chain 21 

cooperating actors: retailer (RetInv), wholesaler (WhoInv), distributor (DisInv), manufacturer 22 

(ManInv) and one actor as a source of demand (CustDem). Within each organization, manager 23 

as a decision maker, is responsible for placing orders to direct upstream supplier and for filling 24 

orders placed by direct downstream customers (Figure 5). The decisions must be made 25 

repeatedly over periods, and within each period events occur in the following sequence:  26 

a) shipments arrive from direct upstream supplier, b) new orders arrive from direct downstream 27 

customer, c) new orders are filled and shipped from inventory (e.g. RetOut), however when 28 

order quantity than available inventory (inventory on hand), unfilled order is placed in backlog 29 

(e.g. BlRetOrd) and filled once the inventory becomes available in a future, and d) each supply 30 

chain actor places an order to a direct upstream supplier. In the SD model presented below,  31 

also some economic aspects of overall supply chain performance are included (Total cost). 32 
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 1 

Figure 5. Influence diagram of the basic (no information sharing) BDG 4-echelon supply chain model. 2 

 3 

Figure 6. Stock and flow diagram (SFD) of the basic BDG 4-echelon supply chain model with inventory 4 
control by norms, and no information sharing. 5 

In simulation experiments made on the model above, an impact of 3 customer demand 6 

functions to overall supply chain performance was tested: a sinusoidal function (Figure 7) 7 

CustDem=4+4∙SIN((2∙π/26)∙Time), a step function (Figure 8) CustDem=4+STEP(4,∙26),  8 

and random uniformly distributed function (Figure 9) CustDem=RANDOM(0,8,1). 9 

 10 

Figure 7. Dynamics of 4-echelon generic BDG supply chain system example with 4 feedback loops, 11 
with goal seeking behaviors, inventory control by norms, and no information sharing, as a response to 12 
customer demand sinusoidal function. 13 
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 1 

Figure 8. Dynamics of 4-echelon generic BDG supply chain system example with 4 feedback loops, 2 
goal seeking behaviors, inventory control by norms, and no information sharing, as a response to 3 
customer demand STEP function. 4 

 5 

Figure 9. Dynamics of 4-echelon generic BDG supply chain system example with 4 feedback loops, 6 
goal seeking behaviors, inventory control by norms, and no information sharing, as a response to 7 
customer demand RANDOM function. 8 

To compare no information sharing supply chain performance with information sharing 9 

supply chain performance, 2 versions of the model above were developed: a downstream 10 

information sharing model, where ordering decisions are made by exponential smoothing 11 

averages of direct downstream orders (Figure 10), and an upstream information sharing model, 12 

where ordering decisions are made by backlogs and an information on current inventory levels 13 

of direct upstream actors (Figure 11).  14 

 15 

Figure 10. Stock and flow diagram (SFD) of the basic BDG 4-echelon supply chain model with 16 
inventory control by average demand with direct downstream information sharing. 17 
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 1 

Figure 11. Stock and flow diagram (SFD) of the basic BDG 4-echelon supply chain model with 2 
inventory control by average demand by direct upstream inventory information sharing. 3 

The simulation results of all these BDG model versions in the case of 3-type exogenous 4 

CustDem input functions (sinusoidal, step, and random) have proved better performance of 5 

upstream and downstream information sharing ordering policies in the supply chain (Table 3). 6 

Table 3. 7 
Total cost of supply chain in BDG model with 3 options to share information 8 

Demand pattern Information sharing 

no information direct downstream direct upstream 

Sinusoidal 3139.43 3173.24 2476.43 

Step 3897.79 3073.89 2608.58 

Random 2891.73 2413.65 2218.93 

4. Summary and final remarks 9 

The methodology of dynamic system analysis and understanding, e.g. the issue of supply 10 

chain system’s structure influence to system’s behavior, is still an important research challenge 11 

for theory and practice of systems science, systems’ modeling and management. As presented 12 

above in a loop polarity detection methods comparison, we cannot give any hope for a unified 13 

theory of systems analysis, that is able to automatically provide modelers with any guideline to 14 

identify directly dominant structures. But this is also not to say that formal (or even heuristic) 15 

methods should not be worked out. Relatively well developed mathematical methods and 16 

techniques concern gradient systems as well as some classes of non-linear systems. In practice, 17 

in the implementation of many simulation projects with an application of SD modeling method 18 

and customer-oriented modeling techniques (customer knowledge and experience, needs and 19 

expectations), the issue of dominant feedback loop identification and analysis is solved 20 
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(resolved) rather by an intuitive, heuristic, and subjective experimental procedure. The lack of 1 

an effective mathematical (or heuristic) methods to select structurally responsible systems’ 2 

paths and feedback loops for systems’ behavior is a limit to disseminate SD approach in 3 

systems’ modeling. Existing solutions in the form of software tracking tools for feedback loops 4 

in SD models in some software packages (Vensim, IThink, Stella, PowerSim) are far to provide 5 

satisfactory results (Heyward et al, 2014). 6 

Important challenges for the future SD modeling of social and economic systems aiming  7 

at dynamic systems’ analysis, diagnosis, and design (redesign) for management purposes  8 

(e.g. in supply chains) still remain. It contains development of theory foundations, technological 9 

and model implementation environments, and education with training resources. In the theory 10 

context, the most important challenges are nonlinearity and complexity of dynamic systems, 11 

social and economic evolution processes, influence of mental models (e.g. individual models, 12 

group models, team models) on systems’ comprehension and decision making policies design, 13 

identification of potential behavior of a dynamic system just from the structure, and some 14 

typical theory of modeling issues, i.e. aggregation (e.g. metamodeling) and disaggregation  15 

(e.g. agent-based modeling), relevance of models (e.g. validity, verification, certification).  16 

In the technological and implementation context, the future challenges are improvements in 17 

available modeling technologies and software tools, i.e. effective and efficient algorithms, 18 

functions and methodological integration, standardization, parameters’ calibration, automated 19 

and interactive modeling stages with help and assistance, visualization of model runs, input and 20 

output data analysis, consensus development in soft systems (e.g. group model building 21 

approaches, communication in modeling). In the context of knowledge propagation (education 22 

and training), the future research issues are systems thinking and dynamic systems modeling 23 

knowledge-based systems’ design (e.g. best modeling practice and guidance library collection), 24 

new (better) curricula and pedagogy for schools (primary, secondary, high), and universities. 25 
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Footnotes 15 

A business game called BDG (Beer Distribution Game) was developed at the Sloan School 16 

of Management, Massachusetts Institute of Technology (MIT) in the 1960s as a version of the 17 

earlier (1958) Refrigerator Game. Demonstrated during the System Dynamics Conference 18 

(SDC) in Chestnut Hill - Boston by John D. Sterman (Sterman, 1989), it gained worldwide 19 

recognition and popularity among management theoreticians and practitioners. It has also  20 

an interactive Internet version (Machuca et al., 1997). In Poland, it was presented for the first 21 

time during a session of the Economic Systems Simulation School in Węgierska Górka in 1990 22 

by Bogusław Wąsik (AE Kraków) and described in (Wąsik, 1992). 23 


