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Abstract. A stochastic model describing the concentration of the drug in the body
during its IV-administration is discussed. The paper compares a deterministic model
created with certain simplifications with the stochastic model. Fluctuating and irregular
patterns of plasma concentrations of some drugs observed during intravenous infusion
are explained. An illustrative example is given with certain values of drug infusion rate
and drug elimination rate.
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1. INTRODUCTION

From the point of view of both the doctor and the patient, it is very important to
know what the body does with the drug. The effect of the drug on the organism can
be determined by studying the relationship between the dosing regimen and the time
profile of the concentration of the drug in the plasma, i.e. by observing and controlling
the absorption, distribution, metabolism and excretion of the drug from the body
over time.

Since the effect of a drug is related to its concentration at the site of action, it
would be useful to control this concentration at that site. However, drug receptor sites
are usually inaccessible or abundant in the body for such observations, making direct
measurement of drug concentration at these sites impractical and often impossible.
Therefore, indirect methods such as compartmental models are used to describe the
process of drug action in the body.

Compartment models are based on the assumption of the existence of certain
barriers that molecules of the active substance must overcome and that limit their
movement. A key process of drug movement is the diffusion of molecules through
biological barriers, which facilitates a mathematical description of the rate at which
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the drug is distributed in the body. The compartment can be considered the only
entity that has a capacity in which the drug is homogeneously dispersed. Drug delivery
into the compartment and its removal are characterized by rate constants. Most drugs
use one or two compartment models that are used to study their effects on the body,
see [10] and references therein.

It follows from the published results of the pharmacokinetic study that deterministic
models created in this way are the most suitable mathematical model for describing
intravenous plasma drug concentrations.

However, the deterministic model is constructed assuming certain basic simplifica-
tions, which were discussed in [11]. Therefore, the deterministic equation expresses
only a simplified model of the real process, which in most cases should not distort the
time dependence of the plasma drug level, but in some cases the deterministic model
may not reflect the real process.

Some phenomena modeled using stochastic systems or systems with a random
structure were studied by the authors in [5–8,12]. Specifically, in [12] the considered
problem of navigating to a target is described by a differential equation with random
parameters. In [6], the mathematical model of the foreign exchange market is considered
in the form of a stochastic linear differential equation with coefficients dependent on
the semi-Markov process. The stability of the zero solution to nonlinear differential
equations under the influence of white noise is considered in [8]. A dynamical system
with a random structure, which is very suitable for use as models for protecting
information in cyberspace, is considered in [7].

In this paper, we first derive a deterministic model, then we recall the results
of [11], and in the main part of the work we present a model describing the drug
concentration in the body using a stochastic differential equation.

2. DETERMINISTIC MODEL

Due to the fact that the drug is rapidly absorbed into the body when administered
intravenously, the one-compartment pharmacokinetic model is in many cases the most
appropriate deterministic model for describing the distribution of IV-administered
drugs. The one-compartment model is the simplest deterministic model representing
the body as a whole, characterized by the entry of the drug into and out of its
volume [2].

In the construction of the deterministic model, it is assumed that the drug input
is equal to the infusion rate I

(
mg h−1)

and the drug output is proportional to the
elimination rate constant k(h−1). The amount of drug in the body changes over time
due to its elimination, and this change is described by the rate of elimination. Thus,
in this simplest deterministic model, the rate of drug elimination is assumed to be
proportional to its concentration, so the mathematical model of the process is equation

dA(t)
dt

= I − kA(t) (2.1)

where A(mg) is the amount of drug in the body.
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It is obvious that the amount of drug in the body at any given time is equal to
the difference between the amount of drug introduced into the body and the amount
of drug eliminated from it, which varies over time depending on the amount of drug
available for elimination. It should be noted that the equation (2.1) takes into account
absolute values and does not take into account the so-called volume of compartment
cells V (L), i.e. the volume in which the drug is located. If it is desired to create
a model that takes into account the cell volume of the compartment, it is necessary
to introduce the concept of drug concentration in plasma, denoted as C

(
mg L−1)

and defined as the amount of drug in the body per unit volume, i.e. C = A
V . Than,

the change in plasma drug concentration over time is determined by the differential
equation

dC(t)
dt

= I

V
− k C(t). (2.2)

Typically, drugs are eliminated from the body through various elimination processes,
which involve many complex rate processes and may vary in each organ. Here we
describe drug elimination in terms of a known factor in drug elimination from the
body, known as clearance and referred to as Cl(L h−1).

Clearance describes the process of drug elimination from the body without spec-
ifying the individual processes involved, so it can be defined as the volume of fluid
cleared of the drug that is eliminated from the body per unit time. Since all drugs
dissolve and distribute in body fluids, the volume concept is appropriate. However,
clearance is not an indicator of how much drug is excreted from the body, it is just
a hypothetical volume of blood that is completely cleared of the drug per unit time.
The proportion of the drug eliminated per unit of time is represented by the elimination
rate constant k. Since clearance expresses the rate of drug elimination divided by the
plasma concentration, which expresses the volume of plasma from which the drug is
completely eliminated per unit time, the relationship between the elimination rate
constant k and the clearance Cl is Cl = k V , see [2]. Than equation (2.2) takes the form

dC(t)
dt

= I − Cl C(t)
V

, (2.3)

which is a non-homogeneous linear differential equation of the first order. Such an
equation is solvable, and if we assume that there is no drug in the body at the beginning
of the infusion, then the initial condition can be written as C(0) = 0, and

C(t) = I

Cl

(
1 − e− Cl

V t
)

(2.4)

is the unique solution to (2.3) that satisfies this initial condition.
Graph of the solution with Cl

V = 0.4 (h−1) and I
V = 0.68 (mg L−1 h−1) see in

Figure 1. From (2.4) it can be seen that the amount of drug per volume increases
gradually until it reaches equilibrium (steady state) Css = I

Cl
, that is, if the rate of

elimination is the same as the rate of infusion. Thus, the plasma drug concentration
as a function of time using the equilibrium can be written as

C(t) = Css

(
1 − e− Cl

V t
)

. (2.5)
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Fig. 1. The amount of drug (in mg / L) in the body during and after intravenous infusion,
using models (2.3) and (2.6) with values k = Cl

V
= 0.4 (h−1), I

V
= 0.68 (mg L−1 h−1)

and Cs = 1.68

Now consider that at time t = ts, when the concentration reaches state C(ts) = Cs,
the infusion is stopped and therefore the plasma drug concentration starts to decrease
in accordance with the rate of first-order kinetics. The differential equation describing
the elimination of drugs from the body has the form

dC(t)
dt

= −Cl

V
C(t) (2.6)

and its solution satisfying the initial condition C(ts) = Cs can be written in the form

C(t) = Cs exp
(

−Cl

V
(t − ts)

)
, t ≥ ts, (2.7)

which expresses an exponential decrease in plasma concentration. Graph of the solution
with values k = Cl

V = 0.4 (h−1), Cs = 1.68, see in Figure 1.

2.1. INACCURACIES OF DETERMINISTIC MODELS

Published results, for example in [1,2], show that (2.3) is the most suitable mathematical
model describing plasma drug concentration during intravenous infusion. However,
in some studies, when interpreting the experimental results, the concentration of the
drug in the body at some time points does not fully correspond to the expected values,
but one or more peaks or undulations occur, see Figure 2 ([3]). Significant inter-subject
variability in the nature and magnitude of fluctuations or deviations from the normal
smooth pattern was noted in the measurements [3].
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Fig. 2. Fluctuating plasma concentration apparent during intravenous infusion to a dog
(taken over from [3])

The question arises: how to explain the fluctuations and irregular patterns of
plasma concentrations of certain drugs that occur during intravenous administration?
Several medical explanations of this phenomenon was suggested in [3]. However, these
proposals cannot explain completely the undulations found in in vivo studies. We will
propose a mathematical explanation of this phenomenon.

Deterministic models (2.3) and (2.6), like most mathematical models, are con-
structed with certain simplifications that usually do not distort the time-dependence
of the drug concentration in plasma, but there are cases when the simplified model
shows certain deviations from reality.

2.2. ELIMINATION RATE VALUE

In general, these deterministic models include some parameters, such as the elimination
rate constant, corresponding to certain values that are not fully known. There are
several ways to obtain the elimination rate constant k for an individual patient, but
these typically involve taking multiple plasma samples at accurately recorded times.
This pharmacokinetic approach carries a potentially significant degree of bias in the
estimate of k and may lead to the development of an inappropriate dosing regimen with
associated risks. A mathematical approach to determining the elimination constant k
of an individual patient is described, for example, in paper [2].

Whatever method we use to determine the constant, it will always be inaccurate
with a greater or lesser degree of calculation error. Therefore, it is appropriate to
assume that the value of k varies between certain two constants k0, k1 ∈ R+, so that
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the elimination rate is described by a bounded function k(t) satisfying the inequalities
0 < k0 ≤ k(t) ≤ k1. In this case, the plasma drug concentration is more accurately
described by a differential equation of the form

dC(t)
dt

= I

V
− k(t) C(t). (2.8)

With the initial condition C(0) = 0, the solution to the initial Cauchy problem, i.e.,
the drug concentration in the plasma at any time t, can be found as

C(t) = I

V

t∫

0

exp


−

s∫

0

k(z)dz


 ds. (2.9)

Then the drug concentration in the body, as the solution (2.9) to equation (2.8) with
initial condition C(0) = 0 is also bounded (see Figure 3) and the steady state Css

satisfies the inequalities I/V k1 < Css < I/V k0.

Fig. 3. The amount of drug (in mg / L) in the body in the case if the drug infusion rate
divided by volume is I/V = 0.68 (mg h−1L−1) and the drug elimination rate depends on

a bounded function k(t), 0.27 ≤ k(t) ≤ 0.41

It is obvious that if the function k(t) is not monotonic, but k varies between certain
two constants, undulations may appear on the time curve of the plasma level. Such
mathematical model can explain the measured values obtained in the experiments
listed in [1] and shown in Figure 2. The obtained result can be formulated in the form
of the following theorem.
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Theorem 2.1. Let k(t) be a continuous function defined on [0, ts) and let there be
constants k0, k1 ∈ R+ such that 0 < k0 ≤ k(t) ≤ k1. Then the unique solution to
Eq. (2.8) satisfying the initial condition C(0) = 0 satisfies the iequality

I

V k1

(
1 − e−k1t

)
< C(t) <

I

V k0

(
1 − e−k0t

)
. (2.10)

2.3. ELIMINATION OF THE DRUG WITH A DELAY

All pharmacokinetic models assume that elimination begins simultaneously with drug
administration. The administration, distribution, and elimination of the drug from
the body does not begin immediately, but some time passes from the beginning of the
individual phases.

In the phenomena under consideration, the administration of the drug does not
manifest its effect immediately at the moment of its onset, but affects the future level
of the drug concentration. The time elapsed from the start of the infusion to the start
of the elimination of the drug from the body is called the delay and is denoted by
τ (h), τ > 0. Therefore, the drug concentration level in this case is better described
by the so-calleddifferential equation with delayed argument

dC(t)
dt

= I − Cl C(t − τ)
V

(2.11)

than (2.3). If the infusion is stopped, the plasma concentration of the drug is also
described by a differential equation with a delay of the form

dC(t)
dt

= −k C(t − τ), k := Cl

V
> 0. (2.12)

Such a mathematical model can explain the observed phenomenon where, after
intravenous administration, there is no gradual increase in plasma levels, but one or
more peaks or waves occur during the increase in plasma concentration, as reported
in [3]. The conditions under which a ripple in the plasma concentration occurs or
does not occur, in accordance with the results in [9], are formulated in the following
theorem.

Theorem 2.2. Taking into account the elimination of the drug with a delay τ , the
ripple of plasma concentration in accordance with Eq. (2.12) occurs if and only if
kτe > 1.

Therefore, in the case of elimination with a delay τ , undulations may appear
depending on the product of the values of k and τ , see Figure 4. Otherwise, if kτe ≤ 1,
the behavior of the solutions can be explained using the results in [4].
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Fig. 4. Plasma concentration during intravenous infusion, with respect to a delay, using
model (2.11)

3. STOCHASTIC MODEL

In the previous Section, we explained the discrepancies between the solutions to
equations and the experimental ones based on simplifications in creating deterministic
models. However, in general we do not have sufficient information about the parame-
ters in deterministic models due to noise. Therefore, it is reasonable to modify the
deterministic model by adding this noise term to obtain a stochastic model. This type
of mathematical modeling can provide more accurate information about phenomena
occurring in the real world than their deterministic counterparts. Using the stochastic
differential equation, we can better explain the variable and irregular fluctuations in
plasma levels of some drugs.

3.1. ADMINISTRATION OF THE DRUG INTO THE BODY

We now modify the deterministic model (2.3) obtained with certain simplifications by
adding random variables to the equation. Mathematically, this means adding white
noise to Eq. (2.3), namely

dC(t) = I − ClC(t)
V

dt + white noise.

Then, assuming that

white noise = ξ(t)dt = σdW (t)
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where W (t) is Brownian motion and σ is the variability parameter, we get equation

dC(t) =
(

I

V
− Cl

V
C(t)

)
dt + σdW (t).

If we denote X(t) = C(t) and the parameters I
V = α, µ = Cl

V , we get the stochastic
equation

dX(t) =
(
α − µX(t)

)
dt + σdW (t), (3.1)

which is the equation of the so-called Ornstein–Uhlenbeck process.
To find a solution to the stochastic differential equation (3.1), we first consider the

differential of the expression eµt(α − µX(t)). By the usual calculations we get

d
(
eµt(α − µX(t))

)
= eµtd

(
α − µX(t)

)
+ deµt

(
α − µX(t)

)

= −µeµtdX(t) + µeµt
(
α − µX(t)

)
dt.

(3.2)

Substituting the expression −µeµtdX(t) into equation (3.2) with the right side of
equation (3.1) multiplied by −µeµt, we have

d
(
eµt(α − µX(t))

)
= −µeµt

((
α − µX(t)

)
dt + σdW (t)

)
+ µeµt

(
α − µX(t)

)
dt

= −µeµtσdW (t).

The obtained equation

d
(
eµt(α − µX(t))

)
= −µeµtσdW (t)

can be easily integrated.
We assume that the initial condition is the same as we considered in the deter-

ministic model, i.e. X(0) = 0, so we integrate from zero to t, which leads us to the
relationship

eµt
(
α − µX(t)

)
−

(
α − µX(0)

)
= −µσ

t∫

0

eµsdW (s),

from where we get the solution

X(t) = X(0)e−µt + α

µ

(
1 − e−µt

)
+ σ

t∫

0

eµ(s−t)dW (t) (3.3)

to stochastic equation (3.1).
Figure 5 shows ten possible paths of the stochastic process described by Eq. (3.1)

with solution (3.3) i.e. the ten possible time courses of drug levels in the body. For
comparison, the mean value of these ten paths is shown in blue, and the solution
to the deterministic equation is shown in red. Graphs were made with parameters
α = 0.68, µ = 0.34, σ = 0.3.
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Fig. 5. Plasma concentration of the drug during intravenous infusion, with the addition of
white noise (mean value - blue color), according to model (3.1) with parameters α = 0.68,

µ = 0.34, σ = 0.3 and the deterministic model (red color)

Remark 3.1. Each of the stochastic pathways contains several peaks and may reflect
plasma concentration fluctuations that occur during intravenous infusion in dogs.

Figure 6 shows a one of these paths, chosen at random. The points on the graph
represent the measured values of one measurement from Figure 2. Therefore, the
variable and irregular characteristics of some drugs observed during intravenous
infusion can be explained in this way.

Fig. 6. One randomly chosen path of the stochastic process (3.1). The points represent the
measured values of one measurement from Figure 2
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Using more of paths of the stochastic process described by Eq. (3.1) with solu-
tion (3.3), it can be confirmed that the solution to deterministic model (2.3) behaves
like the mean value of the considered stochastic process. One hundred random solutions
of the stochastic process for the values α = 0.68, µ = 0.34, σ = 0.3 are shown in
Figure 7. Their mean value is a very good approximation of the solution to the
deterministic model (2.3). By increasing the number of simulations to a thousand we
get an almost perfect match with the mean value.

Fig. 7. Plasma concentration of the drug during intravenous infusion with the addition of
white noise (mean value - blue color) according to model (3.1) with parameters α = 0.68,

µ = 0.34, σ = 0.3 and deterministic model (Red color)

3.2. EXCRETION OF THE DRUG FROM THE BODY

As in the case of drug administration into the body, we modify the deterministic
model (2.6) describing drug excretion. Since we consider this part of the process
separately, we use the start time t = 0 for simplicity.

This means that we have the equation and the initial condition in the form of the
initial Cauchy problem 




dC(t) = − Cl

V C(t)dt,

C(0) = Cs,
(3.4)

which has the unique solution

C(t) = C(0)e− Cl
V t. (3.5)

Now we will model the metabolic processes responsible for the elimination of the drug
from the body under the influence of some random phenomena. This means adding
white noise to Eq. (3.4)

dC(t) = −Cl

V
C(t)dt + ξ(t)dt.
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Then, since ξ(t)dt = σdW (t) where W (t) is the Brownian motion and σ variability
parameter, we get

dC(t) = −Cl

V
C(t)dt + σdW (t).

We denote
X(t) = C(t)

and the parameter

µ = Cl

V
,

then we get equation
dX(t) = −µX(t)dt + σdW (t), (3.6)

which is also the equation for the Ornstein-Uhlenbeck process.
We solve this equation in the same way as before, but first consider the differential

of the expression eµtX(t)). Thus we get

d
(
eµtX(t)

)
= eµtdX(t) + deµtX(t)
= eµtdX(t) + µeµtX(t)dt.

(3.7)

Replacing the expression eµtdX(t) in equation (3.7) with the expression on the right
side of equation (3.6) multiplied by eµt, we obtain

d
(
eµtX(t)

)
= eµt

(
− µX(t)dt + σdW (t)

)
+ µeµtX(t)dt = eµtσdW (t).

Then, integrating both sides of the equation

d
(
eµtX(t)

)
= eµtσdW (t)

from zero to t, we obtain

eµt
(
X(t) − X(0)

)
= σ

t∫

0

eµsdW (s),

from where we can write

X(t) = X(0)e−µt + σ

t∫

0

eµ(s−t)dW (t),

which is the solution to stochastic process (3.6). The drug level in the body described
by equation (3.6) shown in Figure 8.
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Fig. 8. Plasma drug concentration during its excretion from the body under the influence
of white noise (mean value – blue color) according to model (3.6) and deterministic model

(red color)

4. CONCLUSION

In this article, a deterministic one-compartment pharmacokinetic model was obtained as
the most appropriate mathematical model to describe plasma drug concentration during
intravenous infusion. Derived-type deterministic models include some parameters that
are not fully known, so they carry a potentially significant degree of bias in the
parameter estimates and may lead to an incorrect dosing regimen with associated risks.
In fact, considerable intersubjective variability in nature and magnitude of fluctuations
or deviations from a normal smoothed pattern has been reported in measurements,
for example in [3].

In this article, we have discussed the mathematical explanation of fluctuating and
irregular patterns of plasma concentrations of some drugs observed during intravenous
infusion. Some solutions to this problem offer modified deterministic models in which
two changes are taken into account: the elimination rate constant varies within a certain
interval or the elimination time of the drug is delayed from the start of its intravenous
administration.

Since we do not have enough information about the parameters in deterministic
models to be able to determine them precisely, it is convenient to estimate these
inaccuracies using white noise. Mathematical modeling using stochastic differential
equations can provide more accurate information about phenomena occurring in the
real world than their deterministic counterparts. The solution to such a stochastic
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model is a random process, each path of which contains multiple peaks and may reflect
the fluctuations in plasma concentration observed during intravenous infusion in a dog.

It would be interesting to understand the stochastic model of the investigated
phenomenon, which additionally includes a delay in the elimination of the drug from
the start of its intravenous administration. We leave this as an open problem.
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