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Abstract. This paper concerns a viscoelastic Kirchhoff-type equation with the
dispersive term, internal damping, and logarithmic nonlinearity. We prove the local
existence of a weak solution via a modified lemma of contraction of the Banach
fixed-point theorem. Although the uniqueness of a weak solution is still an open
problem, we proved uniqueness locally for specifically suitable exponents. Furthermore,
we established a result for local existence without guaranteeing uniqueness, stating
a contraction lemma.
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1. INTRODUCTION

In elasticity, the existing theory accounts for materials that can store mechanical
energy with no energy dissipation. On the other hand, a Newtonian viscous fluid
in a non-hydrostatic stress state can dissipate energy without keeping it. Materials
outside the scope of these two theories would be those for which some work done to
deform can be recovered. This material has a capacity for storage and dissipation of
mechanical energy. An example of this kind of material is viscoelastic.

Viscoelastic materials are those for which the behavior combines liquid-like and
solid-like characteristics. Viscoelasticity is essential in biomechanics, the power industry
or heavy construction, synthetic polymers, wood, human tissue, cartilage, metals at
high temperatures, and concrete, among others. Polymers, for instance, are viscoelastic
materials since they exhibit an intermediate position between viscous liquids and
elastic solids.

Physically, Boltzmann’s theory inspired the relationship between stress and strain
history. The formulation of Boltzmann’s superposition principle leads to a memory
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term involving a relaxation function of exponential type. But, it was observed that
the relaxation functions of some viscoelastic materials are not necessarily exponen-
tial. See [21].

In this work, we are concerned with the following viscoelastic problem in Ω×(0,∞),




|ut|ρRutt+M(∥u∥2)(−∆u)−∆utt+
t∫

0

g(t− s)∆u(s)ds+ut =u|u|p−2
R ln |u|kR,

u = 0 on ∂Ω × [0,∞),
u(x, 0) = u0(x) in Ω,
ut(x, 0) = u1(x) in Ω.

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with a smooth boundary ∂Ω, p > 2 and
ρ > 0 are constants and g : R+ → R+, M : [0,∞) → R are C1 functions, left to be
defined later.

Dafermos first considered the viscoelastic problem with the power source term
in 1970 [9]. Since then, several works have been considered, including combining
damping and source terms. The source given by logarithmic nonlinearity appears in
several branches of physics, such as inflationary cosmology, nuclear physics, optics,
and geophysics, see [22].

With all this specific underlying meaning in physics, the global-in-time
well-posedness of a solution to the problem of an evolution equation with such
logarithmic-type nonlinearity captures lots of attention. See [7,22] for the references
to each branch listed above.

The dispersive term ∆utt arises in the study of extensional vibrations of thin rods,
see Love [20], via the model

utt − ∆u− ∆utt = f.

The function M(λ) related to the Kirchhoff term in (1.1) has its motivation in the
mathematical description of vibration of an elastic stretched string, modeled by the
equation

utt −M




∫

Ω

|∇u|2dx


 ∆u = 0,

which for M(λ) ≥ m0 > 0 was studied in [8, 17, 18, 23, 25]. Some recent works on
hyperbolic wave equation with Kirchhoff-type term can be found in [19,24,26].

As a benchmark model, one may also take as in Love [20] the equation

d

dt
(ρ(ut)) − ∆utt − γ∆ut = ∆u

with γ ≥ 0 and nonlinearity density ρ(s) a monotone increasing function, which
models problems in the mechanics of solids, which account for variable material density
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(depending on the velocity ut) and potential mechanical damping. It is of a particular
interest when it is assumed of the form ρ(s) = 1

ρ+1 |s|ρs (see also [3]).
From the physical point of view, the logarithmic nonlinearity if of much use in

physics, since it naturally appears in inflation cosmology and supersymmetric field
theories, quantum mechanics, and nuclear physics (see refs [1, 10]). The mathematical
approach for equation with logarithmic nonlinearity involving global and local existence
and blow of solution can be checked in [5, 12,14,15].

Although the uniqueness of a weak solution of equation (1.1) is still an open
problem, in this work, we have proved uniqueness locally for a specific set of ρ,
namely ρ ≥ 1, through the method of Banach fixed point. Now, for ρ small, we have
also established a result for local existence, without guarantee of uniqueness, stating
a contraction lemma.

This work is split into three parts. Section 2 presents the notation and results
underlying the methods used in this paper. Section 3 proves the global solution for
an elliptic-associated problem. Section 4 treats the proof of the local existence of the
solution via a modified lemma of contraction of the Banach fixed-point theorem.

2. PRELIMINARIES AND ASSUMPTIONS

Definition 2.1. Let B be a Banach space and u : [0, T ] → B a measurable function.
The vector function spaces Lp(0, T ;B), 1 ≤ p ≤ ∞, are defined by

Lp(0, T ;B) =
{
u :

( T∫

0

∥u∥p
Bdt

)1/p

< ∞, 1 ≤ p < ∞
}

and

L∞(0, T ;B) =
{
u : ess sup

0<t<T
∥u(t)∥B < ∞, p = ∞

}
.

If B is reflexive, 1 ≤ p < ∞, and q satisfies 1
p + 1

q = 1, the dual of Lp(0, T ;B) is
algebraic and topologically identified with Lq(0, T ;B′) (see [13]).

Definition 2.2. If V and W are Banach spaces and 1 ≤ p ≤ ∞, then we define

Wp(0, T ;V,W ) := {f ∈ Lp(0, T ;V ) : f ′ ∈ Lp(0, T ;W )}.

The spaces in Definition 2.2 are Banach spaces with the natural norms.

Proposition 2.3. Let V and H be two separable Hilbert spaces, with V dense and
injectively included in H. Then is valid the canonic injection

W2(0, T, V, V ′) ⊂ C([0, T ], H).
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A very useful result from Measure Theory will be required.

Lemma 2.4 ([28, p. 171]). Given 1 ≤ p ≤ ∞, every sequence in Lp that converges
in Lp has a subsequence converging almost everywhere.

Now we present a well-known compactness result. The compactness is needed to
extract a sequence in the set of approximate solutions, which converges strongly.

Lemma 2.5 (Aubin–Lions Lemma, [16, Theorem 5.1, p. 58]). Let B0, B and B1
be Banach spaces, Bi, i = 0, 1, reflexive spaces with B0 ↪→ B compactly, B ↪→ B1
continously. Defining

W = {u : u ∈ Lp0(0, T ;B0), ut ∈ Lp1(0, T ;B1)},

where T > 0 and 1 < pi < ∞, i = 0, 1. Then, W ⊂ Lp0(0, T ;B) equipped with the norm

∥w∥ = ∥u∥Lp0 (0,T ;B0) + ∥ut∥Lp1 (0,T ;B1)

is a Banach space and W ↪→ Lp0(0, T ;B) is compact.

For simplicity of notations hereafter we denote by | · | the Lebesgue space
L2(Ω)-norm, by

∥ · ∥ :=
∫

Ω

|∇(·)|2Rndx

the Sobolev space H1
0 (Ω)-norm, and ∥ · ∥r := ∥ · ∥Lr(Ω). The absolute value in R will

be denoted by | · |R.
We start setting some hypotheses for the problem (1.1). Firstly, we shall assume that

ρ ∈ Iρ and p ∈ Ip, (2.1)

where

Iρ:= (0,∞) if n = 1, 2 or Iρ :=
(

0, 2
3

)
∪ [1, 2] if n = 3, (2.2)

Ip:= (2,∞) if n = 1, 2 or Ip :=
(11

5 , 3
]

if n = 3. (2.3)

Secondly, we assume that:

(H1) M ∈ C1([0,∞),R) is such that

M(λ) ≥ m0 > 0, ∀λ ∈ [0,∞),

(H2) g : R+ → R+ is a Lebesgue integrable and C1(R+) function such that

g(0) > 0, g′(t) < 0, 1 −
∞∫

0

g(s)ds = l > 0.
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We will need the very useful relation
t∫

0

g(t− τ)(∇u(τ),∇ut(t))dτ= 1
2(g′ ⋄ ∇u)(t) − 1

2(g ⋄ ∇u)′(t)

+ d

dt





1
2




t∫

0

g(s)ds


 |∇u(t)|2



 − 1

2g(t)|∇u(t)|2
(2.4)

that can be checked directly, where

(g ⋄ y)(t) =
t∫

0

g(t− s)|y(t) − y(s)|2ds. (2.5)

Let us denote M̂(s) =
∫ s

0 M(τ)dτ .

3. THE ASSOCIATED NONHOMOGENEOUS EQUATION
WITH KIRCHHOFF NONLINEARITY TERM

In this section, we prove the global existence of solution for the nonhomogeneous
equation with Kirchhoff nonlinearity term associated with the problem (1.1).
Definition 3.1. Let T > 0 and f ∈ L2(0, T ;H−1(Ω)). A function

u ∈ C1([0, T ], H1
0 (Ω))

is a weak solution for




ut +M(∥u∥2)(−∆u) − ∆utt +
t∫

0

g(t− s)∆u(s)ds = f,

u(0) = u0, ut(0) = u1,

(3.1)

if for any ω ∈ H1
0 (Ω) and t ∈ [0, T ],




(ut, ω) +M(∥u(t)∥2)(∇u(t),∇ω) + (∇utt(t),∇ω)

−
t∫

0

g(t− s)(∇u(s),∇ω)ds = ⟨f, ω⟩,

u(0) = u0, ut(0) = u1,

is satisfied.
Theorem 3.2. Assume (H1), (H2) and that m0 + l− 1 > 0. Let f ∈ L2(0, T ;H−1(Ω))
and u0, u1 ∈ H1

0 (Ω). Then there exists a unique weak solution u for the problem (3.1).
Further, utt belongs to the class L∞(0, T ;H1

0 (Ω)).
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Proof. Let (ων)ν∈N ⊂ H1
0 (Ω) ∩H2(Ω) be a basis of L2(Ω) from the eigenvectors of the

operator −∆. It is known that (ων)ν∈N is a complete and orthonormal system of H1
0 (Ω).

Let Vm = span[ω1, . . . , ωm] be the space generated by the first m eigenvector of the
system (ων)ν∈N and um(t) =

∑m
j=1 gjm(t)ωj be a solution in the interval [0, tm) of

the approximated problem

M(∥um(t)∥2)(∇um(t),∇ω) + (∇um
tt (t),∇ω) −

t∫

0

g(t− s)(∇um(s),∇ω)ds

+ (um
t , ω) = ⟨f, ω⟩, ∀ω ∈ Vm,

(3.2)

um(0) = u0m → u0 strongly in H1
0 (Ω), (3.3)

um
t (0) = u1m → u1 strongly in H1

0 (Ω). (3.4)

The system (3.2)–(3.4) has a local solution (um) in [0, tm] by virtue of
Carathéodory’s theorem (see [4]).

3.1. FIRST A PRIORI ESTIMATE

Setting ω = um
t in (3.2) and using (2.4) and notation (2.5), we obtain

d

dt

{1
2M̂(∥um∥2) + 1

2 |∇um
t |2 + 1

2(g ⋄ ∇um) − 1
2

( t∫

0

g(s)ds
)

∥um∥2
}

= −1
2g(t)|∇um|2 + 1

2(g′ ⋄ ∇um) − |um
t |2 + ⟨f, um

t ⟩.

We know that g′ < 0 by hypothesis (H2), which gives us

d

dt

{1
2

[
M̂(∥um∥2) −

( t∫

0

g(s)ds
)

∥um∥2
]

+ 1
2 |∇um

t |2 + 1
2(g ⋄ ∇um)

}

≤ ⟨f, um
t ⟩ ≤ 1

2

(
∥f∥2

H−1(Ω) + ∥um
t ∥2

)
.

Integrating (3.5) from 0 to t ∈ [0, T ] and regarding that m0 + l − 1 > 0, it yields

(m0 + l − 1)∥um∥2 + 1
2∥um

t ∥2 ≤ C +
t∫

0

∥um
t (s)∥2ds. (3.5)

Employing the Grönwall inequality in (3.5), we find a constant C1 > 0 such that

∥um∥2 + ∥um
t ∥2 ≤ C1. (3.6)

We can extend, thereby, the approximated solution um(t) to the interval [0, T ]. It is
inferred particularly from (3.6) that

(um), (um
t ) are bounded in L∞(0, T ;H1

0 (Ω)).
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3.2. SECOND A PRIORI ESTIMATE

Taking now ω = um
tt in (3.2), we have

∥um
tt ∥2 = −(um

t , u
m
tt ) −M(∥um(t)∥2)(∇um,∇um

tt )

+
t∫

0

g(t− s)(∇um(s),∇um
tt )ds+ ⟨f, um

tt ⟩

+
C2

p

4η ∥um
t ∥2 + C2

pη∥utt∥2 +m

(
1
4η ∥um∥2 + η∥um

tt ∥2
)

+ ∥um
tt ∥

t∫

0

|g(t− s)|∥um(s)∥ds+ ∥f∥H−1(Ω)|um
tt |

≤ C2
p

4η ∥um
t ∥2 + C2

pη∥um
tt ∥2 +m

(
1
4η ∥um∥2 + η∥um

tt ∥2
)

+ η∥utt∥2 + 1
4η

t∫

0

|g(t− s)|∥um(s)∥ds

+ 1
4η ∥f∥2

H−1(Ω) + C2
pη∥um

tt ∥2.

The first a priori estimate allows us to find a constant C > 0 for that

∥utt∥2 ≤ (2C2
p +m+ 1)η∥um

tt ∥2 + 1
4η ∥f∥2

H−1(Ω) + C.

The constant η can be chosen small enough for that η(2C2
p +m+1) ≤ 1

2 . Thus, we find
a positive constant L2 independently on m and t for which

∥um
tt ∥2 ≤ L2.

Here we conclude the second a priori estimate, from which we have

(um
tt ) is bounded in L∞(0, T ;H1

0 (Ω)). (3.7)

3.3. THIRD A PRIORI ESTIMATE

We set ω = −∆um
t in (3.2). We have

M(∥um∥2) d
dt

|∆um|2 + d

dt
|∆um|2

≤ 1
2∥g∥L∞(0,∞)

t∫

0

|∆um(s)|2ds

+ 1
2∥g∥L1(0,∞)|∆um

t |2 + ∥um
t ∥2 + 1

2∥f∥2
H−1(Ω) + 1

2 |∆um
t |2.
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By owing to first and second a priori estimates, we get

d

dt

(
M(∥um∥2)|∆um|2 + |∆um

t |2
)

≤ d

dt
M(∥um∥2)|∆um|2 + 1

2∥g∥L1(0,∞)|∆um
t |2

+ 1
2∥g∥L∞(0,∞)

t∫

0

|∆um(s)|2ds+ C.
(3.8)

Since {∥um(t)∥} is uniformly bounded for t ∈ [0, T ] and m ∈ N, and M ∈ C1[0,∞),
there exists M̃ > 0 such that d

dt (M(∥u∥2)) ≤ M̃ . Integrating from 0 to t inequality (3.8)
we obtain

M(∥um∥2)|∆um|2 + |∆um
t |2 ≤ M̃

t∫

0

|∆um(s)|2ds+ 1
2∥g∥L1(0,∞)

t∫

0

|∆um
t (s)|2ds

+ 1
2∥g∥L∞(0,∞)T

t∫

0

|∆um(s)|2ds+ C

= C1

t∫

0

|∆um(s)|2ds+ C2

t∫

0

|∆um
t (s)|2ds+ C

≤ C3

t∫

0

(m0|∆um(s)|2 + |∆um
t (s)|2)ds+ C.

Hence,

m0|∆um|2 + |∆um
t |2 ≤ C3

t∫

0

(m0|∆um(s)|2 + |∆um
t (s)|2)ds+ C.

From the Grönwall inequality it follows there is a constant L3 > 0 independently on
m and t such that

m0|∆um|2 + |∆um
t |2 ≤ L3.

Particularly,

|∆um|2 is bounded in L∞(0, T ;L2(Ω)).

Combining the above boundedness with the first estimate a priori, we obtain

(um) is bounded in L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), (3.9)

(um
t ) is bounded in L∞(0, T ;H1

0 (Ω)). (3.10)
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3.4. PASSAGE TO THE LIMIT

In this subsection, the reader interested in further details on the compactness argument
involving Aubin Lion’s Lemma used in the passage to limit in the related Kirchhoff
nonlinearity, we strongly recommend [2,8].

From the boundedness (3.7) and (3.9), it follows from the Banach–Alaoglu–Bourbaki
Theorem (see [2]) that

∇um ∗
⇀ ∇u weakly star in L∞(0, τ ;L2(Ω)), (3.11)

∇um
tt

∗
⇀ ∇utt weakly star in L∞(0, T ;L2(Ω)), (3.12)

with 0 < τ < T .
Since

L∞(0, T ;L2(Ω)) = (L1(0, T ;L2(Ω)))′,

from (3.12) we have, for every φ ∈ L1(0, T ;L2(Ω)), that
T∫

0

∫

Ω

∇um
tt (t, x)φ(t)dxdt →

T∫

0

∫

Ω

∇utt(t, x)φ(t)dxdt. (3.13)

Taking, in particular, φ(t)(x) = ∇ω(x)θ(t) in (3.13), where ω ∈ H1
0 (Ω) and

θ ∈ D(0, T ), we obtain
T∫

0

(∇um
tt (t),∇ω)θ(t)dt →

T∫

0

(∇utt(t),∇ω)θ(t)dt. (3.14)

Similarly, since
L∞(0, τ ;L2(Ω)) = (L1(0, τ ;L2(Ω)))′,

then, for every ψ ∈ L1(0, τ ;L2(Ω)), we have
τ∫

0

∫

Ω

∇um(s, x)ψ(t)dxds →
τ∫

0

∫

Ω

∇u(s, x)ψ(t)dxds.

Hence, putting ψ(s)(x) = g(τ − s)∇ω(x), it comes
τ∫

0

g(τ − s)(∇um(s),∇ω)ds →
τ∫

0

g(τ − s)(∇u(s),∇ω)ds, (3.15)

for all ω ∈ H1
0 (Ω).

Multiplying (3.15) by θ(τ), it follows from the Dominated Convergence Theorem
that

T∫

0

τ∫

0

g(τ − s)(∇um(s),∇ω)dsθ(τ)dτ →
T∫

0

τ∫

0

g(τ − s)(∇u(s),∇ω)dsθ(τ)dτ. (3.16)
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From the boundedness (3.10) and by the continous injections

L∞(0, T ;H1
0 (Ω)) ↪→ L2(0, T ;H1

0 (Ω)),

there exists, from Kakutani’s Theorem (see [2]), a subsequence of (um), also denoted
by (um), such that

um
t ⇀ ut weakly in L2(0, T ;H1

0 (Ω)). (3.17)

The convergence (3.17) means that, for every α ∈ L2(0, T ;H−1(Ω)), the conver-
gence

T∫

0

∫

Ω

α(t)um
t (t)dxdt →

T∫

0

∫

Ω

α(t)ut(t)dxdt (3.18)

holds. Taking, in particular, α(t)(x) = ω(x)θ(t), with ω ∈ H1
0 (Ω) and θ ∈ D(0, T ),

it follows that
T∫

0

(um
t (t), ω)θ(t)dt →

T∫

0

(ut(t), ω)θ(t)dt (3.19)

for all ω ∈ H1
0 (Ω) and θ ∈ D(0, T ).

We need to consider the variational limit corresponding to the nonlinearity M .
Note that from (3.9), (3.10) we have

(um) is bounded in L2(0, T ;H1
0 (Ω) ∩H2(Ω)), (3.20)

(um
t ) is bounded in L2(0, T ;L2(Ω)). (3.21)

Thus putting, in the notations of Lemma 2.5, B0 = H1
0 (Ω) ∩ H2(Ω), B = H1

0 (Ω),
B1 = L2(Ω), p0 = p1 = 2, and

W = {u : u ∈ Lp0(0, T, B0), ut ∈ Lp1(0, T, B1)}

equipped with the norm

∥w∥ = ∥u∥Lp0 (0,T,B0) + ∥ut∥Lp1 (0,T,B1)

results from (3.20) and (3.21) that

(um) is bounded in W.

Then, by the Aubin–Lions Lemma (Lemma 2.5) we obtain a subsequence of (um)
for which we continue to denote in the same way, such that

um → u strongly in L2(0, T ;H1
0 (Ω)). (3.22)

Hence, using ∣∣∣∥um∥ − ∥u∥
∣∣∣
2

≤ ∥um − u∥2,
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we have
∥um∥ → ∥u∥ strongly in L2(0, T ).

It follows from Lemma 2.4 that, up to a subsequence, that

∥um∥ → ∥u∥ a.e. in [0, T ].

Since M is continuous, using the formula

T∫

0

|M(∥um(s)∥2) −M(∥u(s)∥2)|2ds

=
T∫

0

M(∥um(s)∥2)2ds− 2
∫
M(∥um(s)∥2)M(∥u(s)∥2)ds+

T∫

0

M(∥u(s)∥2)2ds

it follows from the Dominated Convergence Theorem that

M(∥um∥2) → M(∥u∥2) strongly in L2(0, T ). (3.23)

Therefore,

(M(∥um∥2)∇um, w) → (M(∥u∥2)∇u,w) strongly in L1(0, T ) (3.24)

for every w ∈ H1
0 (Ω). Indeed,

T∫

0

|(M(∥um(s)∥2)∇um(s), w) − (M(∥u(s)∥2)∇u(s), w)|Rds

≤
T∫

0

|M(∥um(s)∥2)∇um(s) −M(∥um(s)∥2)∇u(s)||ω|ds

+
T∫

0

|M(∥um(s)∥2)∇u(s) −M(∥u(s)∥2)∇u(s)||ω|ds

≤ ∥M(∥um(s)∥2)∥L2(0,T )∥um(s) − u(s)∥L2(0,T ;H1
0 (Ω))|ω|

+ ∥M(∥um(s)∥2) −M(∥u(s)∥2)∥L2(0,T )∥u∥L2(0,T ;H1
0 (Ω))|ω|.

By the convergences (3.22) and (3.23), we obtain (3.24). Particularly the convergence
in (3.24) is also valid in D′(0, T ) for every w ∈ H1

0 (Ω), i.e.

T∫

0

(M(∥um(t)∥2)∇um(t), w)θ(t)dt →
T∫

0

(M(∥u(t)∥2)∇u(t), w)θ(t)dt. (3.25)
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Multiplying (3.2) by θ ∈ D(0;T ) and integrating the obtained result over (0;T ),
it holds that

T∫

0

M(∥um(t)∥2)(∇um(t),∇ω)θ(t)dt+
T∫

0

(∇um
tt (t),∇ω)θ(t)dt

−
T∫

0

τ∫

0

g(τ − s)(∇um(s),∇ω)θ(τ)dsdτ

+
T∫

0

(um
t , ω)θ(t)dt =

T∫

0

(f(t), ω)θ(t)dt, ∀ω ∈ Vm.

(3.26)

Taking the limit in (3.26) with m → ∞ by using the convergences (3.14), (3.19),
(3.15) and (3.25), for all w ∈ ⋃

m∈N Vm, yields

T∫

0

M(∥u(t)∥2)(∇u(t),∇ω)θ(t)dt+
T∫

0

(∇utt(t),∇ω)θ(t)dt

−
T∫

0

τ∫

0

g(τ − s)(∇u(s),∇ω)θ(τ)dsdτ +
T∫

0

(ut, ω)θ(t)dt

=
T∫

0

(f(t), ω)θ(t)dt.

This means that

M(∥u∥2)(∇u,∇ω)+(∇utt,∇ω)−
t∫

0

g(t−s)(∇u(s),∇ω)ds+(ut, ω) = (f(t), ω) (3.27)

holds in D′(0, T ) for all ω ∈ ⋃
m∈N Vm.

As
⋃

m∈N Vm is dense in H1
0 (Ω), (3.27) is valid for all ω in H1

0 (Ω). Since
we proved u, ut, utt ∈ L2(0, T ;H1

0 (Ω)), then owing to Proposition 2.3, results that
u ∈ C1([0, T ], H1

0 (Ω)).

3.5. VERIFICATION OF INITIAL DATA

Recalling the boundedness of {um
t } in L2(0, T ;H1

0 (Ω)) and the compact embedding
L2(0, T ;H1

0 (Ω)) ⊂⊂ L2(0, T ;H−1(Ω)), we can get, up to a subsequence, that

um
t → ut strongly in L2(0, T ;H−1(Ω)). (3.28)

Hence, the convergences (3.22) with (3.28) and Proposition 2.3 yield

um → u strongly in C(0, T ;H1
0 (Ω)).
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Hence, u(0) makes sense and

um(0) → u(0) in H1
0 (Ω).

Also, we assumed in the Faedo–Galerkin’s method that

um(0) → u0 in H1
0 (Ω).

Hence, u(x, 0) = u0(x).
Next, recall that

(um
t ) is bounded in L2(0, T ;H1

0 (Ω)), (3.29)
(um

tt ) is bounded in L2(0, T ;L2(Ω)). (3.30)

Thus, (3.29) and (3.30) and Lemma 2.5 yield to obtain, up to a subsequence,

um
t → ut strongly in L2(0, T ;L2(Ω)). (3.31)

Similarly as before, by the boundedness of {um
tt } in L2(0, T ;H1

0 (Ω)) and the compact
embedding L2(0, T ;H1

0 (Ω)) ⊂⊂ L2(0, T ;H−1(Ω)), we have, up to a subsequence, that

um
tt → utt strongly in L2(0, T ;H−1(Ω)). (3.32)

Therefore, the convergences (3.31) and (3.32) and Proposition 2.3 yield

um
t → ut strongly in C(0, T ;L2(Ω)).

Hence ut(0) makes sense and

um
t (0) → ut(0) in L2(Ω).

Since in Faedo–Galerking’s method we assumed that

um
t (0) → u1 in H1

0 (Ω),

we also obtain ut(x, 0) = u0(x).

3.6. UNIQUENESS

We shall prove first the continuous dependence of initial conditions for the problem
(3.1) and then the uniqueness of the solution follows as a consequence. Let us consider
u, v two weak solutions of (3.1) corresponding to the initial condition u(0) = u0,
ut(0) = u1 and v(0) = v0, vt(0) = v1, respectively. Setting U = u− v, we see that U
solves the equation

(∇Utt,∇ω) −
t∫

0

g(t− s)(∇U(s),∇ω)ds+ (Ut, ω)

= (M(|∇u|2)∇v −M(|∇v|2)∇v,∇ω) for all ω ∈ H1
0 (Ω).

(3.33)
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Setting ω = Ut in (3.33), and next using (2.4), we obtain

1
2
d

dt

[
|∇Ut|2 + M̂(|∇U |2) −

t∫

0

g(s)ds|∇U |2 + g ⋄ ∇U
]

+ |Ut|2

=
(
M(|∇v|2)∇v −M(|∇u|2)∇u+M(|∇U |2)∇U,∇Ut

)

+ 1
2(g′ ⋄ ∇U)(t) − 1

2g(t)|∇U |2 ≤ G(t)

(3.34)

where
G(t) =

(
M(|∇v|2)∇v −M(|∇u|2)∇u+M(|∇U |2)∇U,∇Ut

)
.

Next we estimate G(t). By the Mean Value Theorem, there exists µ ∈ (0, 1) such
that

M(∥u∥2) −M(∥v∥2) = M ′(∥u∥2 + µ(∥v∥2 − ∥u∥2))(∥u∥2 − ∥v∥2).
We have

|M(∥v∥2)∇v −M(∥u∥2)∇u| ≤
∣∣∣M(∥v∥2)∇v −M(∥v∥2)∇u

∣∣∣

+
∣∣∣M(∥u∥2)∇u−M(∥v∥2)∇u

∣∣∣M(∥v∥2)∥u− v∥

+
∣∣∣M ′(∥u∥2 + µ(∥v∥2 − ∥u∥2))|R|∥u∥ − ∥v∥|R

∣∣∣∇u|
≤ m̃∥u− v∥

(3.35)
where m̃ is obtained from the boundedness of M and M ′ in [0, T ], and the fact that
u, v ∈ L∞(0, T ;H1

0 (Ω)).
We have from Hölder and Young’s inequalities

(
M(|∇v|2)∇v −M(|∇u|2)∇u,∇Ut

)
≤ m̃

(1
2 |∇U |2 + 1

2 |∇Ut|2
)
. (3.36)

Now combining (3.34) with (3.36), and then integrating over [0, t], it follows

1
2

[
|∇Ut|2 + M̂(|∇U |2) −

t∫

0

g(s)ds|∇U |2
]

≤ |∇U1|2 + M̂(|∇U0|2)
2

+ m̃

2

t∫

0

(
|∇U(s)|2 + |∇Ut(s)|2

)
ds,

(3.37)

where U0 = u0 − v0 and U1 = u1 − v1. The condition m0 + l − 1 > 0 implies
M̂(|∇U |2) − g(t)|∇U |2 > 0. Thus,

m0 + l − 1
2 |∇U |2 + 1

2 |∇Ut|2 ≤ |∇U1|2 + M̂(|∇U0|2)
2

+ m̃

2

t∫

0

(
|∇U(s)|2 + |∇Ut(s)|2

)
ds.
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From the Grönwall inequality it follows that

|∇U |2 + |∇Ut|2 ≤ L
|∇U1|2 + M̂(|∇U0|2)

2 . (3.38)

This proves the continuous dependence on the initial condition and particularly the
uniqueness of the solution.

4. LOCAL WEAK SOLUTION

Definition 4.1. We say that u ∈ C1([0, T ], H1
0 (Ω)) is a weak solution for





|ut|ρRutt+M(∥u∥2)(−∆u)−∆utt+
t∫

0

g(t− s)∆u(s)ds+ut =u|u|p−2
R ln |u|kR,

u = 0 on ∂Ω × [0,∞),
u(x, 0) = u0(x) in Ω,
ut(x, 0) = u1(x) in Ω,

on [0, T ] if for any ω ∈ H1
0 (Ω) and t ∈ [0, T ], we have





d
dt (|ut(t)|ρut(t), ω) +M(∥u(t)∥2)(∇u(t),∇ω) + (∇utt(t),∇ω)

−
t∫

0

g(t− s)(∇u(s),∇ω)ds+ (ut, ω) = (u(t)|u(t)|p−2 ln |u(t)|k, ω),

u(0) = u0, ut(0) = u1.

(4.1)

For our purposes hereafter, let us define

W :=
{
w : w,wt ∈ C(0, T ;H1

0 (Ω)), wtt ∈ L∞(0, T ;H1
0 (Ω))

}

equipped with the norm

∥w∥2
W := α∥w∥2

L∞(0,T ;H1
0 (Ω)) + δ∥wt∥2

L∞(0,T ;H1
0 (Ω)) + γ∥wtt∥2

L2(0,T ;H1
0 (Ω)),

where α := m0+l−1
2 and δ and γ are large and left to be defined later.

It is easy to check that W is a Banach spaces with the norm ∥ · ∥W.
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The next lemma states that for a weaker condition than a contraction map, a fixed
point existence is still valid, but not necessarily the uniqueness. The proof of the
lemma can be done in a very similar way as the Banach fixed point Theorem, i.e. by
showing that any sequence generated by iterations of such map starting from any
initial point is a Cauchy sequence.
Lemma 4.2. Let (X, d) be a complete metric space and F : X → X an application
satisfying d(F (x), F (y)) ≤ q1d(x, y)ρ +q2d(x, y), for all x, y ∈ X, for which 0 < q1 < 1,
0 < q2 < 1, ρ > 0. Then F admits a fixed point x∗ ∈ X.
Theorem 4.3. Let u0, u1 ∈ H1

0 (Ω) and assume that H1–H2, m0 + l− 1 > 0 and (2.1)
are valid. Then the problem (1.1) has a local weak solution u in W for T small enough,
which is unique if ρ ∈ Iρ ∩ {ρ ≥ 1}.
Proof. Let M > 0 sufficiently large and T > 0 and denote Z(M,T ) the class of
functions w belonging to W, satisfying w(0) = u0, wt(0) = u1 and ∥w∥W ≤ M .
Notice that Z(M,T ) in nonempty since w(t) = u0 + tu1 is an element of this set for
some M > 0. Let us consider the application A : Z(M,T ) → W defined in the following
way. For each v ∈ Z(M,T ), take u := A(v) as the unique solution of the problem (3.1)
with f = v|v|p−2 ln |v|k − |vt|ρvtt. We shall prove that A is a contraction from Z(M,T )
from itself. In order to prove that u ∈ Z(M,T ), we use the inequality obtained from
the energy of the equation (3.1). For our goal we are multiplying this equation by ut

and integrate over Ω and obtain

d

dt

{1
2

[
M̂(∥u∥2) −

t∫

0

g(s)ds∥u∥2
]

+ 1
2 |∇ut|2 + 1

2(g ⋄ ∇u)(t)
}

+ |ut|2

= −
∫

Ω

|vt|ρvttutdx+
∫

Ω

v|v|p−2 ln |v|kutdx.

(4.2)

By using the generalized Hölder’s inequality regarding that
ρ

2(ρ+ 1) + 1
2(ρ+ 1) + 1

2 = 1

and Young’s inequality, we estimate the first term of the right side of (4.2) as

−
∫

Ω

|vt|ρvttutdx ≤ 1
2(∥vt∥ρ

2(ρ+1)∥vtt∥2(ρ+1))2 + 1
2 |ut|2. (4.3)

In the second term, we employ Young’s inequality and notice the elemental loga-
rithmic inequality

∣∣∣ξ|ξ|p−2 ln ξ
∣∣∣ ≤ a0(|ξ| + |ξ|p), ξ ∈ R \ {0}, (4.4)

which leads us to
∫

Ω

v|v|p−2 ln |v|kutdx ≤ a2
0

2

∫

Ω

(
|v|R + |v|pR

)2
dx+ 1

2

∫

Ω

|ut|2dx. (4.5)
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Denoting

Γ(t) := 1
2

[
M̂(∥u∥2) −

t∫

0

g(s)ds∥u∥2
]

+ 1
2∥ut∥2 + 1

2(g ⋄ ∇u)(t)

and using (4.3) and (4.5) in (4.2) and then integrating (4.2) from 0 to T , we obtain

Γ(t) ≤ ã0T
(

∥v∥2
L∞(0,T,H1

0 (Ω)) + ∥v∥p+1
L∞(0,T,H1

0 (Ω)) + ∥v∥2p
L∞(0,T,H1

0 (Ω))

)

+ ∥vt∥2ρ
L∞(0,T,H1

0 (Ω))∥vtt(s)∥2
L2(0,T ;H1

0 (Ω)),

where ã0 is the aftermath constant obtained from the embeddings H1
0 (Ω) ↪→ L2(Ω),

H1
0 (Ω) ↪→ Lp+1(Ω) and H1

0 (Ω) ↪→ L2p(Ω).
Taking the essential supremum in t ∈ [0, T ] in the inequality (4.6), we obtain

m0 + l − 1
2 ∥u∥2

L∞(0,T ;H1
0 (Ω)) + δ∥ut∥2

L∞(0,T ;H1
0 (Ω))

≤ ã0T
(

∥v∥2
L∞(0,T,H1

0 (Ω)) + ∥v∥p+1
L∞(0,T,H1

0 (Ω)) + ∥v∥2p
L∞(0,T,H1

0 (Ω))

)

+ ∥vt∥2ρ
L∞(0,T,H1

0 (Ω))∥vtt(s)∥2
L2(0,T ;H1

0 (Ω))

+2δ
{
ã0T

(
∥v∥2

L∞(0,T,H1
0 (Ω)) + ∥v∥p+1

L∞(0,T,H1
0 (Ω)) + ∥v∥2p

L∞(0,T,H1
0 (Ω))

)

+
( M√

δ

)2ρ( M√
γ

)2
}
.

(4.6)

Hence, choosing T > 0 small and γ large enough, we obtain

m0 + l − 1
2 ∥u∥2

L∞(0,T ;H1
0 (Ω)) + δ∥ut∥2

L∞(0,T ;H1
0 (Ω)) ≤ M2

2 . (4.7)

Next, we multiply both sides of (3.1) by utt and integrate it over Ω, and we obtain

∫

Ω

|vt|ρvttuttdx+ ∥utt∥2 = −(ut, utt) −M(∥u∥2)(∇u,∇utt)

+
t∫

0

g(t− s)(∇u(s),∇utt)ds

+ (v|v|p−2 ln |v|k, utt).
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Hence,

∥utt∥2 ≤ Cp∥vt∥ρ
2(ρ+1)∥vtt∥2(ρ+1)∥utt∥ + C2

p∥ut∥∥utt∥

+m∥u∥∥utt∥ + 1
4η

t∫

0

g(t− s)∥u(s)∥2ds+ η

t∫

0

g(t− s)ds∥utt∥2

+ a2
0

4η

∫

Ω

(|v|R + |v|pR)2dx+ ηC2
p∥utt∥2

≤ CpC
ρ+1
∗ ∥vt∥ρ∥vtt∥2∥utt∥ + ηC4

p∥utt∥2 + 1
4η ∥ut∥2 + ηm2∥utt∥2

+ 1
4η ∥u∥2 + 1

4η

t∫

0

g(t− s)∥u(s)∥2ds+ η(1 − l)∥utt∥2

+ ã0
4η (∥u∥2 + ∥v∥p+1 + ∥v∥2p) + ηC2

p∥utt∥2.

Gathering the terms with ∥utt∥2, we obtain
[
1 − η

(
C4

p +m+ (1 − l) + C2
p

)]
∥utt∥2

≤ CpC
ρ+1
∗ ∥vt∥ρ

L∞(0,T ;H1
0 (Ω))∥vtt∥∥utt∥

+ 1
4η ∥ut∥L∞(0,T ;H1

0 (Ω)) + 1
4η ∥u∥2

L∞(0,T ;H1
0 (Ω)) + 1 − l

4η ∥u∥2
L∞(0,T ;H1

0 (Ω))

+ ã0
4η

(
∥v∥2

L∞(0,T ;H1
0 (Ω)) + ∥v∥p+1

L∞(0,T ;H1
0 (Ω)) + ∥v∥2p

L∞(0,T ;H1
0 (Ω))

)
.

(4.8)

Choosing η small enough for that 1 − η
(
C4

p + m + (1 − l) + C2
p

)
≥ 1

2 , and next
integrating both side of inequality (4.8) from 0 to T , it follows

1
2

T∫

0

∥utt(s)∥2ds

≤ CpC
ρ+1
∗

( M√
δ

)ρ
T∫

0

∥vtt(s)∥∥utt(s)∥ds

+ T
{ 1

4η
M2

δ
+ 1

4η
M2

α
+ 1 − l

4η
M2

α
+ ã0

4η

(M2

α
+ Mp+1

α
p+1

2
+ M2p

αp

)}

≤ CpC
ρ+1
∗

( M√
δ

)ρ(1
2

T∫

0

∥vtt(s)∥2ds+ 1
2

T∫

0

∥utt(s)∥2ds
)

+ T
{M2

4η

(1
δ

+ 2 − l

α

)
+ ã0

4η

(M2

α
+ Mp+1

α
p+1

2
+ M2p

αp

)}
.



Local existence for a viscoelastic Kirchhoff type equation with the dispersive term. . . 37

Rearranging similar terms, we have

1
2

(
1 − CpC

ρ+1
∗

( M√
δ

)ρ) T∫

0

∥utt(s)∥2ds

≤ 1
2CpC

ρ+1
∗

( M√
δ

)ρM2

γ

+ T
{M2

4η

(1
δ

+ 2 − l

α

)
+ ã0

4η

(M2

α
+ Mp+1

α
p+1

2
+ M2p

αp

)}
.

(4.9)

The constants γ and δ can be chosen even smaller for that it satisfies

1 − CpC
ρ+1
∗

( M√
δ

)ρ

≥ 1
2 .

Now we multiply the both sides of (4.9) by 4γ, and then choose δ and γ large enough
and T small for that finally obtain

γ

T∫

0

∥utt(s)∥2ds ≤ M2

2 . (4.10)

The inequalities (4.7) and (4.10) leads us to ∥u∥W ≤ M . Therefore we have
completely proved that A : Z(M,T ) → Z(M,T ) is well defined.

Next, we verify that, for suitable values of the constants M , δ, γ and T , the
application A is a contraction if ρ ∈ Iρ ∩ {ρ ≥ 1}, and satisfies Lemma (4.2) if
ρ ∈ Iρ ∩ {ρ < 1}. Let U = u− ũ and V = v − ṽ, where u = A(v) and ũ = A(ṽ). It is
easy to check that U satisfies the problem





−M(∥U∥)∆U +
t∫

0

g(t− s)∆U(s)ds− ∆Utt + Ut

= M(∥u∥2)∆u−M(∥ũ∥2)∆ũ−M(∥U∥)∆U
+v|v|p−2 ln |v|k − ṽ|ṽ|p−2 ln |ṽ|k − |vt|ρvtt + |ṽt|ρṽtt,

U(0) = Ut(0) = 0 in Ω,
U = 0 on [0, T ) × ∂Ω.

(4.11)

Multiplying (4.11) by Ut and integrating over Ω, we obtain

d

dt

{1
2

[
M̂(∥U∥2) −

t∫

0

g(s)ds∥U∥2
]

+ 1
2∥Ut∥2

}
+ |Ut|2

=
∫

Ω

{
M(∥u∥2)∆u−M(∥ũ∥2)∆ũ−M(∥U∥)∆U

+ v|v|p−2 ln |v|k − ṽ|ṽ|p−2 ln |ṽ|k − |vt|ρvtt + |ṽt|ρṽtt

}
Utdx.

(4.12)
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By (3.35), we find ˜̃m > 0 such that
∫

Ω

[M(∥u∥2)∆u−M(∥ũ∥2)∆ũ−M(∥U∥)∆U ]Utdx ≤ ˜̃m∥U∥∥Ut∥.

Since ∥U(t)∥ ≤ 1√
α

∥U∥W and ∥Ut(t)∥ ≤ 1√
δ
∥U∥W for all 0 ≤ t ≤ T , it follows that

∫

Ω

M(∥u∥2)∆u−M(∥ũ∥2)∆ũ−M(∥U∥)∆UUtdx ≤ C0∥U∥2
W. (4.13)

We also can find a constant C1 > 0 such that
∫

Ω

(
v|v|p−2 ln |v|k − ṽ|ṽ|p−2 ln |ṽ|k

)
Utdx ≤ C1∥V ∥∥Ut∥. (4.14)

Indeed, since
d

dξ

(
ξ|ξ|p−2 ln |ξ|k

)
= k(p− 1)|ξ|p−2 ln |ξ| + k|ξ|p−2,

from (4.4) we have
∣∣∣ d
dξ

(
ξ|ξ|p−2 ln |ξ|k

)∣∣∣ ≤ C(|ξ| + |ξ|p−1 + |ξ|p−2).

By the Mean Value Theorem, for each (x, t) ∈ Ω × (0,∞) fixed, there exists
θ(x, t) ∈ (0, 1) such that, if we denote v(x, t) := v(x, t) + θ(x, t)(v(x, t) − ṽ(x, t)), then

∣∣∣v|v|p−2
R ln |v|kR − ṽ|ṽ|p−2

R ln |ṽ|kR
∣∣∣
R

≤ C
(

|v|R + |v|p−1
R + |v|p−2

R

)
V.

Hence,
∫

Ω

(
v|v|p−2

R ln |v|kR − ṽ|ṽ|p−2
R ln |ṽ|kR

)
Ut

≤ C

∫

Ω

(
|v|R + |v|p−1

R + |v|p−2
R

)
V Utdx

≤ C
( ∫

Ω

(|v|R + |v|p−1
R + |v|p−2

R

)s

dx
) 1

s
( ∫

Ω

|V |rdx
) 1

r
( ∫

Ω

|Ut|qdx
) 1

q

≤ C̃
(

∥v∥s + ∥v∥p−1
s(p−1) + ∥v∥p−2

s(p−2)

)
∥V ∥r∥Ut∥q,

where 1
s + 1

r + 1
q = 1.

In order to have suitable embeddings for our estimate, we set s, r and q as follows:
s = p−1

p−2 and r = q = 2(p− 1) if n = 1 or 2, and s = r = q = 3 if n = 3. Hence,
∫

Ω

(
v|v|p−2

R ln |v|kR − ṽ|ṽ|p−2
R ln |ṽ|kR

)
Utdx ≤ ˜̃C

(
∥ṽ∥ + ∥ṽ∥p−1 + ∥ṽ∥p−2

)
∥V ∥∥Ut∥.
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Since ∥v∥, ∥ṽ∥ ≤ M√
α

for all t ∈ [0, T ], there exists C1 > 0 satisfying (4.14). Or
∫

Ω

(
v|v|p−2 ln |v|k − ṽ|ṽ|p−2 ln |ṽ|k

)
≤ C̃1∥V ∥W∥U∥W. (4.15)

Next, notice that

|vt|ρvtt − |ṽt|ρṽtt = 1
2(|vt|ρ + |ṽt|ρ)Vtt + 1

2(|vt|ρ − |ṽt|ρ)(vtt + ṽtt). (4.16)

Thus multiplying both sides of (4.16) by Ut and integrating over Ω, it follows
∫

Ω

(
|vt|ρRvtt − |ṽt|ρRṽtt

)
Utdx ≤

(
∥vt∥ρ

2(ρ+1) + ∥ṽt∥ρ
2(ρ+1)

)
∥Vtt∥2(ρ+1)|Ut|

+
∫

Ω

1
2(|vt|ρR − |ṽt|ρR)(vtt + ṽtt)Utdx.

(4.17)

Owing to the embedding H1
0 (Ω) ↪→ L2(ρ+1)(Ω) and recalling that ∥vt∥ ≤ M√

δ
,

∥ṽt∥ ≤ M√
δ

and |Ut| ≤ Cp∥Ut∥ ≤ Cp
1√
δ
∥U∥W, for all 0 ≤ t ≤ T , we obtain from (4.17):

∫

Ω

(
|vt|ρRvtt−|ṽt|ρRṽtt

)
Utdx ≤ C2∥Vtt∥∥U∥W+ 1

2

∫

Ω

(|vt|ρR−|ṽt|ρR)(vtt+ṽtt)Utdx. (4.18)

In order to estimate the second term of the right side of (4.18), we consider two
cases for ρ.
Case 1. ρ ∈ Iρ ∩ {ρ < 1}. Let r := 2

1−ρ if n = 1 or 2, or r := 6 if n = 3. Notice that

1
1
ρ

+ 1
r

r(1−ρ)−1
+ 1
r

= 1.

From the generalized Hölder inequality we have

1
2

∫

Ω

(|vt|ρR − |ṽt|ρR)(vtt + ṽtt)Utdx ≤ 1
2

[ ∫

Ω

∣∣∣|vt|ρR − |ṽt|ρR
∣∣∣

1
ρ

dx
]ρ

∥vtt + ṽtt∥ r
r(1−ρ)−1

|Ut|.

It is easy to check that the function

ξ ∈ R+ \ {1} 7→ |ξρ − 1|
|ξ − 1|ρ

is bounded. Also we can use the embedding H1
0 (Ω) ↪→ L

r
r(1−ρ)−1 (Ω). Hence,

1
2

∫

Ω

(|vt|ρR − |ṽt|ρR)(vtt + ṽtt)Utdx ≤ C3

[ ∫

Ω

|Vt|Rdx
]ρ

∥vtt + ṽtt∥∥Ut∥

≤ C̃3∥Vt∥ρ∥vtt + ṽtt∥∥Ut∥

≤ ˜̃C3
∥V ∥ρ

W√
δ

ρ ∥vtt + ṽtt∥
∥U∥W√

δ
.

(4.19)
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Case 2. ρ ∈ Iρ ∩ {ρ ≥ 1}. By the Mean Value Theorem there exists a function
λ : (0, T ) → (0, 1) such that

∣∣∣|vt|ρR − |ṽt|ρR
∣∣∣ ≤ ρ|vt + λ(vt − ṽ)t|ρ−1

R |vt − ṽt|R.

Using the generalized Hölder inequality with

1
r

ρ−1
+ 1

3r
r−(ρ−1)

+ 1
3r

r−(ρ−1)
+ 1

3r
r−(ρ−1)

= 1,

where r ≥ ρ, if n = 1 or 2, or r = 6 if n = 3, and the embeddings H1
0 (Ω) ↪→ Lr(Ω)

and H1
0 (Ω) ↪→ L

3r
r−(ρ−1) (Ω), we obtain

1
2

∫

Ω

(|vt|ρR − |ṽt|ρR)(vtt + ṽtt)Utdx

≤ ρ

2∥vt+λ(vt−ṽt)∥ρ−1
Lr(Ω)∥vt−ṽt∥

L
3r

r−(ρ−1) (Ω)
∥vtt+ṽtt∥

L
3r

r−(ρ−1) (Ω)
∥Ut∥

L
3r

r−(ρ−1) (Ω)

≤ ˜̃C4∥vt + λ(vt − ṽt)∥ρ−1∥Vt∥∥vtt + ṽtt∥∥Ut∥

≤ ˜̃C4

(∥v + λ(v − ṽ)∥W√
δ

)ρ−1 ∥V ∥W√
δ

∥vtt + ṽtt∥
∥U∥W√

δ

≤ ˜̃̃
C4

1
√
δ

ρ+1 ∥V ∥W∥vtt + ṽtt∥∥U∥W.

(4.20)

Thus, if ρ ∈ Iρ, we have

1
2

∫

Ω

(|vt|ρR − |ṽt|ρR)(vtt + ṽtt)Utdx

≤ C5
1

√
δ

ρ+1

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥vtt + ṽtt∥∥U∥W,

(4.21)

where k0 = 1 if ρ ∈ Iρ ∩ {ρ ≤ 1} and k0 = 0 if ρ ∈ Iρ ∩ {ρ > 1}.
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Integrating (4.12) from 0 to T , and use (4.13),(4.15), (4.18) and (4.21), we obtain

m0 + l − 1
2 ∥U∥2 + 1

2∥Ut∥2

≤ TC0∥U∥2
W + TC̃1∥V ∥W∥U∥W + C2

T∫

0

∥Vtt(s)∥∥U∥Wds

+ C5
1

√
δ

ρ+1

T∫

0

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥vtt + ṽtt∥∥U∥Wds

≤ TC0∥U∥2
W + TC̃1∥V ∥W∥U∥W + C2

√
T√
γ

∥V ∥W∥U∥W

+ 2MC5
1

√
δ

ρ+1

√
T√
γ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥U∥W.

(4.22)

Taking the essential supremum in t over [0, T ] in (4.22), it leads us to

m0 + l − 1
2 ∥U∥2

L∞(0,T ;H1
0 (Ω)) + δ∥Ut∥2

L∞(0,T ;H1
0 (Ω))

≤ (2δ + 1)
{
TC0∥U∥2

W + TC̃1∥V ∥W∥U∥W + C2

√
T√
γ

∥V ∥W∥U∥W

+ 2MC5
1

√
δ

ρ+1

√
T√
γ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥U∥W
}
.

(4.23)

The next step is to multiply (4.11) by Utt and integrate over Ω, and then to apply
similar estimates that led to the estimates (4.13),(4.15), (4.18) and (4.21). Following
this way we have

∥Utt∥2 ≤ 1
2

t∫

0

g(t− s)∥U(s)∥2ds+ 1
2

t∫

0

g(t− s)ds∥Utt∥2

+ C6∥U∥∥Utt∥ + C7∥V ∥∥Utt∥

+ C8
1√
δ

ρ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥vtt + ṽtt∥∥Utt∥

≤ 1
2α∥U∥2

W(1 − l) + 1 − l

2 ∥Utt∥2 + C6

(∥U∥2

4η + η∥Utt∥2
)

+ C7
1√
α

∥V ∥W∥Utt∥

+ C8
1√
δ

ρ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥vtt + ṽtt∥∥Utt∥,
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or yet

(
1 − (1 − l)

2 − ηC6

)
∥Utt∥2 ≤ 1

2α∥U∥2
W(1 − l) + C6

∥U∥2

4η

+ C7
1√
α

∥V ∥W∥Utt∥

+ C8
1√
δ

ρ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥vtt

+ ṽtt∥∥Utt∥.

(4.24)

Integrating the both sides of (4.24) from 0 to T , it follows

(
1 − (1 − l)

2 − ηC6

) T∫

0

∥Utt∥2ds

≤ T

2α∥U∥2
W(1 − l) + C6T

∥U∥2

4η

+ C7

√
T√
α

∥V ∥W
( T∫

0

∥Utt(s)∥2ds
) 1

2

+ C8
1√
δ

ρ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

×
( T∫

0

∥vtt(s) + ṽtt(s)∥2ds
) 1

2
( T∫

0

∥Utt(s)∥2ds
) 1

2

≤ T

2α∥U∥2
W(1 − l) + C6T

∥U∥2
W

4αη + C7

√
T√
αγ

∥V ∥W∥U∥W

+ 2C8
1√
δ

ρ
M

γ

(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥U∥W.

(4.25)

Choosing η > 0 small enough for that 1 − (1−l)
2 − ηC6 >

1+l
4 and then multiplying

(4.25) by 4γ, we get

γ(1 + l)
T∫

0

∥Utt∥2ds ≤ 2Tγ
α

∥U∥2
W(1 − l) + C6Tγ

∥U∥2
W

αη

+ 4C7

√
T

√
γ√

α
∥V ∥W∥U∥W

+ 8C8
1√
δ

ρM
(
k0∥V ∥ρ

W + (1 − k0)∥V ∥W
)

∥U∥W.

(4.26)
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Now we combine (4.23) with (4.26):

(1 + l)
(m0 + l − 1

2 ∥U∥2
L∞(0,T ;H1

0 (Ω)) + 1
2∥Ut∥2

L∞(0,T ;H1
0 (Ω)) + γ

T∫

0

∥Utt(s)∥2ds
)

≤ T
[
(2δ + 1)(1 + l)C0 + γ

α

(
2(1 − l) + C6

η

)
+ C6γ

αη

]
∥U∥2

W

+
[
(2δ + 1)(1 + l)

(
TC̃1 + C2

√
T√
γ

)
+ 4C7

√
T

√
γ√

α

]
∥V ∥W∥U∥W

+
(

2MC5
1

√
δ

ρ+1

√
T√
γ

+ 8C8
1√
δ

ρM
)

(k0∥V ∥ρ
W + (1 − k0)∥V ∥W)∥U∥W.

Thus,
{

(1 + l) − T
[
(2δ + 1)(1 + l)C0 + γ

α

(
2(1 − l) + C6

η

)
+ C6γ

αη

]}
∥U∥2

W

≤
[
(2δ + 1)(1 + l)

(
TC̃1 + C2

√
T√
γ

)
+ 4C7

√
T

√
γ√

α

]
∥V ∥W∥U∥W

+
(

2MC5
1

√
δ

ρ+1

√
T√
γ

+ 8C8
1√
δ

ρM
)

(k0∥V ∥ρ
W + (1 − k0)∥V ∥W)∥U∥W.

(4.27)

Let us now investigate (4.27) for the two possible values for k0.
Possibility one: k0 = 0. We have ρ ∈ Iρ ∩ {ρ ≥ 1}. The inequality (4.27) becomes

{
(1 + l) − T

[
(2δ + 1)(1 + l)C0 + γ

α

(
2(1 − l) + C6

η

)
+ C6γ

αη

]}
∥U∥W

≤
{[

(2δ + 1)(1 + l)
(
TC̃1 + C2

√
T√
γ

)
+ 4C7

√
T

√
γ√

α

]

+
(

2MC5
1

√
δ

ρ+1

√
T√
γ

+ 8C8
1√
δ

ρM
)}

∥V ∥W.

Now we choose δ and γ large and T small enough for that
{

(1 + l) − T
[
(2δ + 1)(1 + l)C0 + γ

α

(
2(1 − l) + C6

η

)
+ C6γ

αη

]}
< l

and
[
(2δ + 1)(1 + l)

(
TC̃1 + C2

√
T√
γ

)
+ 4C7

√
T

√
γ√

α

]

+
(

2MC5
1

√
δ

ρ+1

√
T√
γ

+ 8C8
1√
δ

ρM
)
< 1.
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This means that the application A is a contraction and therefore the problem (1.1)
posses a unique local weak solution u in W.
Possibility two: k0 = 1. This case corresponds to ρ ∈ Iρ ∩ {ρ < 1}. Thus from (4.27)
we have

{
(1 + l) − T

[
(2δ + 1)(1 + l)C0 + γ

α

(
2(1 − l) + C6

η

)
+ C6γ

αη

]}
∥U∥W

≤
[
(2δ + 1)(1 + l)

(
TC̃1 + C2

√
T√
γ

)
+ 4C7

√
T

√
γ√

α

]
∥V ∥W

+
(

2MC5
1

√
δ

ρ+1

√
T√
γ

+ 8C8
1√
δ

ρM
)

∥V ∥ρ
W.

(4.28)

We then choose δ and γ large and T small enough in order to the application A
satisfies the Lemma 4.2. Hence, if ρ ∈ Iρ ∩ {ρ < 1}, the problem (1.1) admits a local
(not necessarily unique!) weak solution u in W.

Remark 4.4. In the proof of Theorem 4.3, the choices of the constants γ, δ and T
in order to obtain the required estimates can be made setting δ := 1√

T
, γ := 1

4√
T

and
taking T small.

5. CONCLUSIONS

It is worth mentioning a blow up result for the problem (1.1) considered in [11], without
a formal proof of local existence.

A natural investigation concerning (1.1) lies in its extension considering variable
exponents and unbounded domain, particularly,

|ut|ρutt − ∇ · (|∇u|γ(x)−2∇u) − ∆utt +
t∫

0

g(t− s)∆u(s)ds

+ b(x, t)ut|ut|m(x)−2 = u|u|p(x)−2 ln |u|p(x) on Rn × [0, T ]

which is in course to obtain the first results by the authors.
Throughout the paper, the reader will realize the recurrent mention of Mean

Value Theorem (MVT), for which the use demanded diferentiability of real functions
involving the nonlinear terms, namely, ξ|ξ|p−2 ln |ξ|, |ξ|ρ and M(ξ). Consequently,
the derivative in the formula of MVT depends on objects which also depends on t.
However, as a function of t, such derivatives remains bounded due to their arguments
varies in a ball of W. This shows the Lipschitz character of the nonlinearities, but the
same not happens for | · |ρ near zero when ρ < 1. We recommend [6] for a study of
well-posedness of a kind of equation with |ut|ρutt and ρ < 1.

Alternatively to the Mean Value Theorem used for nonlinear terms ξ|ξ|p−2 ln |ξ|,
|ξ|ρ and M(ξ), we can employ an argument involving a property of Gâteaux derivative
as in [27, Lemma 4].
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