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Abstract
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite trans-
formation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm 
Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest 
normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the 
time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected 
methods, and the best optimization strategies for the problem to be solved were selected on their basis.
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1. Introduction

Optimization is a field of science whose goal is to find 
the best (minimum or maximum) solution to a given 
problem that meets all constraints and conditions, and 
that can be presented in the form of a mathematical 
model. There are many optimization methods that can 
be selected individually depending on the problem un-
der consideration. In the case of the optimization of 
the parameters of models for which the probability of 
the occurrence of a significant number of local min-
ima is high, and the classical methods are too slow, 
heuristic search methods are usually used (Gili et al., 
2019).

The most important features of a heuristic search 
method include:

	– improving efficiency in solving complex problems;
	– finding a solution along the most likely path while 

avoiding less promising paths;
	– avoiding checking so-called “dead ends”, for ex-

ample, by using previously acquired information;
	– formulation of simple criteria for selecting direc-

tions of conduct without unequivocally defining 
good and bad states (Boccardo et al., 2015; Hepp 
et al., 2012; Zimba et al., 1999).

The use of optimization algorithms to adapt numer-
ical models to experimental values is widely used in the 
manufacturing industry (Essaid et al., 2018; Tang et al., 
2013). Their use contributes to reducing production costs, 
for example by reducing the number of laboratory tests. 
However, the application of optimization in the metal 
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casting sector is significantly limited. In the case of ADI 
manufacturing, one can only find the results of studies 
from a few research centers in the literature, where au-
thors have attempted to model changes in the microstruc-
ture of ductile iron in order to obtain ADI (Boccardo et al., 
2015; Hepp et al., 2012; Zimba et al., 1999). The model 
developed by Zimba (Zimba et al., 1999) concerned the 
austenitic transformation of cast iron with a ferritic ma-
trix. This model makes it possible to calculate changes in 
the carbon concentration in austenite over time, depend-
ing on the size of the so-called ferritic cells of ductile iron. 
It was assumed that each cell covers one graphite sphere 
and that the cell boundary coincides with the ferrite grain 
boundary. In turn, the modeling of the austenite → fer-
rite transformation was tackled, among others, by Hepp 
and Boccardo. To describe the transformation of austenite 
into ferrite in the bainite range, Hepp used the solution 
of Fick’s second law using the finite difference method. 
In 2015, Boccardo and co-authors published a  paper 
(Boccardo et al., 2015) in which they presented a  ther-
mo-mechanical-metallurgical model enabling the simu-
lation of ausferritization of ductile iron. The model they 
proposed made it possible to predict the volume fraction 
of individual phases (graphite, ferrite, residual and resid-
ual austenite, martensite), the shape of changes, as well 
as residual stresses based on the initial microstructure, 
chemical composition and transformation temperature. 
The metallurgical model was based on Avrami’s theory 
and allowed one to predict the volume fraction of the 
main phases occurring in the microstructure after the aus-
ferritization process. As part of the presented research, an 
attempt was made to perform Particle Swarm Optimiza-
tion (PSO) and with an Evolutionary Optimization (EO) 
algorithm to determine the parameters of a mathematical 
model describing the phase changes occurring in ductile 
iron during isothermal heat treatment. The results and ef-
fectiveness of both methods are presented in this article.

2. State of the art

ADI is a  material with unique properties, combining 
high tensile strength and abrasion resistance with very 
good ductility. Due to these properties and relative-
ly low production costs, it is used in many industries 
as a  substitute for alloy cast steel and carburized or 
heat-treated steel. ADI owes its unique properties to the 
characteristic microstructure called ausferrite, which is 
shaped in the process of isothermal heat treatment in 
the bainite range. As research has shown (Nofal, 2013; 
Kuziak et al., 2010), the wide range of the mechani-
cal properties of ADI can be obtained by appropriately 
selecting isothermal strength parameters leading to the 

formation of the final microstructure. As part of the re-
search, to calculate the bainite transformation time in 
ductile cast iron, the mathematical Bhadeshia model 
(Equation (1)) was used, which was originally used for 
high-silicon steels (Chester & Bhadeshia, 1997; Ole-
jarczyk-Wożeńska et al., 2017):
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and:
λ1, λ2 – experimental constants; K1′, K2 – experimental 
constants [J/mol]; ξ = 0.01 – relative volume fraction of 
bainite; � � � � � �( . ) ( ) / ( . )1 0 1 0 37C x Cgsr gsr  – the max-
imum volume fraction of bainite; β = λ1 ∙(1 – λ2 ∙ x̅m) –  
autocatalysis factor; Q′ = 243200, C4 = –135, p = 5,  
z = 20 – experimental constants; K K u1 1� � /  – aus-
tenite grain size function [1/(mm3⋅s)]; ut  = 0.011 – the 
length of the ferrite needles [µm3]; uw  = 0.001077 ∙ 
Tpi – 0.2681 – the width of the ferrite needles [µm3]; 
u = ut

2 ∙ (uw ∙ 0.001) – unit volume of bainite ferrite 
[µm3]; r = 2540 – experimental constant [J/mol];  
R = 8,314 – universal gas constant [J/(mol⋅K)]; Tpi ∈ 
(280 – 400) – temperature of isothermal transforma-
tion [°C]; Taus = 420 – austenitizing temperature [°C],  
ΔGm

0 ∈ (–1377.71 – 2269.05) – initial value of the  
maximum possible change in the free energy of nu-
cleation [J/mol]; Gn = 3.637 ∙ Tpi – r – universal 
nucleation function [J/mol]; x
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Cgsr = –0.0000033708 ∙ Tpi
2 + 0,0005114718 ∙ Tpi + 

2.1581768606 – average carbon content in austenite [%]; 
Wc = 12 – carbon atomic mass [u]; WFe = 55.85 – iron 
atomic mass [u]; L̅ = 80 – average grain size of austen-
ite [µm]; zSi = 2.55 – silicon content in cast iron [mol]; 
n – number of iterations.

Some of the parameters included in the mathemat-
ical Bhadeshia model, i.e.: K1′, K2, λ1 and λ2 are con-
stants, the values of which are determined on the basis 
of time-consuming and expensive experiments. As part 
of the presented work, these parameters were identified 
using the PSO and EO algorithms, and the effective-
ness of these methods was analyzed. The mathematical 
model and optimization algorithms were implemented 
in the C# programming language in the Visual Studio 
2019 environment.

3. Research methodology

3.1. Identification of model parameters

The inverse calculation method was used to identify 
selected parameters of the bainite transformation time 
model in ductile cast iron. This method identifies the 
parameters of the model by searching for the minimum 
of the objective function based on the value of the 
model determined on the basis of previously conduct-
ed experimental studies (Mrzygłód et al., 2017). The 
objective function described by Equation (2) is the nor-
malized mean square error (NMSE) between the bain-
ite transformation time in the ductile cast iron, calculat-
ed on the basis of the mathematical Bhadeshia model 
(Equation (1)) and the time derived from dilatometric 
experiments (Tab. 1).
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where:
texp i – i-th time of bainite transformation in ductile 
cast iron coming from the experiment (dilatometric 
tests) [s];
tcomp i = fi(K1′, K2, λ1, λ2) – i-th time of bainite transfor-
mation in ductile cast iron calculated on the basis of the 
mathematical Bhadeshia model (Equation (1)) [s].

The ranges of the calculated coefficients were deter-
mined based on the articles (e.g. Chester & Bhadeshia, 
1997; Rees & Bhadeshia, 1992), and their boundaries 
are presented in Table 1.

Table 1. The boundaries of the search area for each of 
the optimized parameters

Coefficient xmin xmax

K1′ 0.000000339 0.388
K2 1.93 37700
λ1 4.756 259.20
λ2 0.00 39.69

During the experiment and during the calcula-
tions, the bainite transformation time was measured for 
different ausferritization temperatures (Tpi) and for dif-
ferent values of the maximum free energy of nucleation 
(ΔGm

0) (Tab. 2).

Table 2. Time values of 99% bainite transformation in ductile 
iron and the maximum free energy of nucleation for different 

ausferritization temperatures

Ti [℃] texp i [s] ΔGm
0

400 5754.399 −1377.71
380 6760.83 −1520.32
360 8317.638 −1665.57
340 10010.61 −1813.27
320 10964.78 −1963.20
300 12882.5 −2115.19
280 13818.48 −2269.05
260 14971.28 −2424.60
240 16042.02 −2581.65

3.2.  Particle Swarm Optimization (PSO) 
algorithm 

Particle Swarm Optimization begins with the process of 
initiating the velocity dimensions and the position of all 
particles in the swarm with the help of random values 
coming from a specific search area. Once the initiation 
process is complete, each particle calculates its target 
function. If the target function of a given particle is better 
than the others, it and the position on the basis of which 
it was calculated are remembered globally. After all of 
the particles have computed the objective function, the 
main optimization stage begins, consisting of an iterative 
search of the solution space. In the course of this search, 
in each iteration, the particles determine their new veloc-
ities from Equation (3) (Dai et al., 2018):

vi(t + 1) = w ∙ vi(t) + c1 ∙ r1i(pi – xi(t)) +
c2 ∙ r2i(pg – xi(t))�

(3)

where:
w – weight of inertia; 
vi(t) – the current speed of the i-th particle; 
r1i, r + 2i – random numbers from the interval [0, 1]  
computed separately for each component; 
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c1, c2 – cognitive and social learning coefficients;
pi – the best position of the i-th particle;
pg – best position of all particles.

By identifying new speeds, they then determine 
their new position based on the formula: 

xi(t + 1) = xi(t) + vi(t + 1)� (4)
where:
xi(t) – previous i-particle position; 
vi(t + 1) – new position of the i-particle.

Due to the fact that particles are abstract entities, 
unlike their real counterparts they can occupy the same 
positions, so the issues related to avoiding collisions 
are ignored. If the new position of the particle is better 
than the initiated one, but also, in the course of the it-
eration procedure, it is better than any of its previously 
determined positions, then this position is remembered 
as the best position found so far by this particle. When 
all particles remember their new positions, they recal-
culate their target functions. The procedure for deter-
mining these functions is the same as in the initial step. 
After all iterations have passed or the stop condition is 
met, the PSO ends. The result of this optimization is 
the particle that achieves the best value of the objective 
function (Dai et al., 2018). 

Then, the values of coefficients of inertia weight, 
cognitive and social learning were selected based on 
the literature (Wang et al., 2007). The coefficients were 
selected to ensure the convergence of the algorithm. 
In the case of the inertia weight, it could be a constant 
value (lower algorithm efficiency) or with a linear de-
crease (higher algorithm efficiency) – Equation (5) 
(Tab. 3) (Eberhart & Shi, 2001; Wang et al., 2007).

w w w
i i
i

wLinearDecrase MAX MIN
current

MIN� � �
�

�( )
( )max

max �
(5)

where: 
wMAX – the maximum value of the inertia weight (0.9); 
wMIN – the minimum value of the inertia weight (0.4); 
imax – total iteration number; 
icurrent – current iteration number.

In the case of cognitive and social learning, these 
could be constants with the same values (Tab. 3).

Table 3. Values of the weight of inertia  
and cognitive and social learning

Coefficient Value
wconst 0.729

wLinearDecreasing (0.9–0.4)
c1 1.49445
c2 1.49445

Finally, the number of iterations and swarm par-
ticles were determined using random values ranging 
from 1 to 1000. After the identification of the initial 
settings of the PSO algorithm was completed, its im-
plementation began.

3.3. Evolutionary Optimization (EO) 
algorithm 

The Evolutionary Optimization algorithm is based 
on an iterative process of improving the solution 
sought, where the improvement is achieved by ran-
domly searching the solution space, reproducing 
the best and mutating solutions. The result of this 
optimization is the individual whose objective func-
tion achieved the best value (McCaffrey, 2012). 
The method of selection and overcrossing based on 
randomization was used in this work. This method 
is responsible for the iterative search of the solu-
tion space, during which, in each iteration, a  pair 
of parents is randomly determined from the entire 
population (Sumathi, 2008). This pair of parents is 
made up of two children (with a gene pool defined by 
a  random crossing point), who are mutated and for 
whom the objective functions are calculated. Repro-
duction ends with the creation of new descendants. 
New descendants are then subjected to a  mutation 
that changes the values of their genes, but not all, 
only a certain number of them, the size of which de-
pends on the value of the mutation rate. The value 
of the mutation rate mutationRate = 1/n, where n is 
the number of optimized parameters, in the analyzed 
case n = 4. After the mutation is complete, the de-
scendants calculate their target functions. When the 
objective functions are calculated, an additional in-
dividual is created known as an immigrant, whose 
task is to introduce a  new pool of genes into the 
population (preventing the algorithm from getting 
stuck in local minima). This immigrant, along with 
the newly created descendants, is added to the pop-
ulation, replacing the same number of individuals 
in this population whose target functions were the 
worst. After adding new individuals to the popula-
tion, it is checked whether the value of the objective 
function of one of them is better than the best one so 
far. If so, then the target function of such an individ-
ual becomes the new best. As soon as all iterations 
are completed, or the stop condition is present, the 
EO optimization is complete. The result of this opti-
mization is the individual whose objective function 
achieved the best value. 
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4. Calculation results

The best result of the normalized mean square error 
(objective function) obtained by the PSO algorithm is 
0.0057, for parameters K1′ = 0.0000050, K2 = 8436.89,  
λ1 = 202.20, λ2 = 19.213.

The best result (NMSE – objective function) ob-
tained using the EO algorithm was the error of 0.0057, 
for parameters K1′ = 0.0000097, K2 = 8010.362,  
λ1 = 216.309, λ2 = 11.7789.

Figure 1 shows the results of the calculation of 
the transformation time using the optimized parameters 
and the results of the experiment. The diagram on the 
left is for the PSO algorithm and the diagram on the 
right is for the EO algorithm.

Based on the obtained results, the maximum 
NMSE was determined for the PSO and EO algo-
rithms. It was assumed that the permissible maxi-
mum value of the objective function should be less 
than 0.006.

a) 

b)

 

Fig. 1. Comparison of bainite transformation time in ductile cast iron at different ausferritization temperatures obtained 
with the PSO (a) and EO (b) algorithms and the experiment

Tables 4 and 5 show ten sets of identified pa-
rameters derived from the best optimization results 

for the PSO algorithm (Tab. 4) and EO algorithm 
(Tab. 5).
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Table 4. The values of the top ten parameters of the model optimized with the PSO algorithm

No. K1′ K2 λ1 λ2 Goal function
1 5.01E-06 8436.892 202.2037 19.21305 0.00572809785
2 4.98E-06 8440.847 142.0599 15.80991 0.00572809790
3 4.94E-06 8446.756 147.7473 16.35244 0.00572809843
4 5.07E-06 8427.809 93.19192 9.377675 0.00572809870
5 4.92E-06 8448.681 106.2462 12.08332 0.00572809875
6 5.08E-06 8426.808 134.9443 14.93806 0.00572809887
7 5.08E-06 8425.532 85.37225 7.686909 0.00572809905
8 5.09E-06 8424.932 154.6197 16.49391 0.00572809925
9 5.10E-06 8424.271 146.2274 38.96477 0.00572809939
10 5.10E-06 8423.901 82.78194 6.990056 0.00572809947

Table 5. The values of the top ten parameters of the model optimized with the EO algorithm

No. K1′ K2 λ1 λ2 Goal function
1 9.73E-06 8010.362 216.309 11.77898 0.00572962869
2 1.27E-05 7895.355 178.947 2.178666 0.00573114332
3 1.83E-05 7645.972 252.2327 1.200476 0.00573305373
4 3.26E-06 8576.834 88.09056 39.06593 0.00573335937
5 5.54E-06 8169.649 248.8016 34.73644 0.00573339272
6 1.67E-05 7794.549 221.4534 0.133712 0.00573347868
7 1.30E-05 8009.958 236.079 7.7524 0.00573511829
8 1.79E-05 7526.145 235.5786 0.247519 0.00573650762
9 1.69E-05 7712.015 257.2354 3.734918 0.00573713206
10 1.15E-05 8137.582 212.2943 8.070432 0.00573802421

Based on the values from Table 5, it was found 
that the global minimum obtained using the PSO algo-
rithm, with a constant number of particles equal to 10 
and a constant number of iterations equal to 1000, is 
achieved when the values of the optimized parameters 
are within the following ranges: K1′ ∈ (0.00000492 
– 0.00000510), K2 ∈ (8423.901 – 8448.681), λ1 ∈ 
(82.78194 – 202.2037) and λ2 ∈ (6.990056 – 38.96477).

Based on the data contained in Table 6, it was 
found that the global minimum obtained by the EO al-
gorithm, with a constant number of individuals equal 
to 10 and a constant number of iterations equal to 1000, 
is achieved when the values of the optimized parame-
ters are within the following ranges: K1′ ∈ (0.00000326 
– 0.0000183), K2 ∈ (7526.145 – 8576.834), λ1 ∈ 
(88.09056 – 257.2354) and λ2 ∈ (0.133712 – 39.06593).

5. Testing the effectiveness of models

In order to test the effectiveness of the analyzed optimi-
zation models, a number of tests were carried out. The 
influence of the number of particles and the number of 
iterations on the algorithm convergence was analyzed. 

The number of iterations necessary to perform was test-
ed and the number of calls to the objective function for 
both algorithms was compared. Based on the conduct-
ed tests, the best optimization strategies for the problem 
being solved were selected.

5.1.  Influence of the number of iterations on 
the convergence of identification

Based on the performed calculations, it was found that 
the PSO algorithm achieved 98.7% coverage, while 
the EO algorithm achieved 6.8% coverage. Then, tests 
were carried out to check the influence of particles (in 
PSO algorithm) and individuals (in EO algorithm) and 
the number of iterations on the normalized mean square 
error. Figure 2 shows the results of the analysis with the 
PSO and EO algorithms, respectively for 5 particles or 
individuals and a variable number of iterations: 10, 100 
and 1000.

Figure 3 shows the results of the analysis with the 
PSO and EO algorithms, respectively, for 10 particles 
and individuals and a variable number of iterations: 10, 
100 and 1000.
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a) 

b) 

Fig. 2. Effect of the number of iterations on the convergence of PSO (a) and EO (b) algorithms  
with a constant number of particles equal to 5

a) 

b) 

Fig. 3. Effect of the number of iterations on the convergence of PSO (a) and EO (b) algorithms  
with a constant number of particles equal to 10
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Based on the data illustrated in Figure 2 and Fig-
ure  3, it can be concluded that the number of itera-
tions affects the convergence of both algorithms. The 
normalized mean square error obtained with the PSO 
and EO algorithms at a  constant number of particles 
decreases with an increasing number of iterations. The 
magnitude of this decrease depends on the type of al-
gorithm and is greater for the PSO. In the case of the 
PSO algorithm, the results were convergent for 100 and 
1000 iterations. However, in the case of EO algorithm, 
this was only true for 1000 iterations.

5.2.  The influence of the number of  
particles and individuals  

on the coincidence of identification

Another test concerned the influence of the number of 
particles and individuals (with a constant number of iter-
ations) on the calculation results. The analyzes were car-
ried out for a variable number of particles: 3, 5, and 10, 
and for two iteration variants: 100 and 1000. Figure 4 
shows the results of convergence for 3, 5 and 10 particles 
and for 100 iterations for the PSO and EO algorithms.

a)

 

b) 

Fig. 4. Influence of the number of individuals on the convergence of PSO (a) and EO algorithms (b)  
with a constant number of iterations equal to 100

The results shown in Figure 4 showed that for the 
PSO algorithm, convergence was achieved for both 
10, 5 and 3 particles. However, in the case of the EO 
algorithm, convergence was not achieved even at 100 
iterations.

Figure 5 shows the convergence of calculations 
for 1000 iterations and 3, 5 and 10 particles for the PSO 
and EO algorithms.

The results shown in Figure 5 confirmed that the nor-
malized mean square error obtained by the PSO and EO 
algorithms, with a constant number of iterations equal to 
1000, decreases with an increasing number of particles and 
individuals. Much better results were obtained for the PSO 
algorithm, where very good convergence was obtained for 
3, 5 and 10 particles. In the case of EO for 1000 iterations, 
the convergence was noticeable for 5 and 10 subjects.
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a) 

b)

 
Fig. 5. Influence of the number of individuals on the convergence of PSO (a) and EO (b) algorithms  

with a constant number of iterations equal to 1000

5.3. Testing the necessary number of  
iterations of algorithms  

and the number of  
calls to the objective function

Subsequent tests were performed to determine the min-
imum number of iterations required to obtain the global 
minimum for 5 and 10 particles and individuals. During 
this test, both algorithms were run 100 times and the 
convergence was analyzed for each call. Based on the 
test results, it can be noticed that the PSO algorithm 
needs an average of 411 iterations for 5 particles, and 
an average of 285 iterations for 10 particles to achieve 
the global minimum, while the EO algorithm for 5 indi-
viduals needs approximately 700, and for 10 individuals, 
approximately 600 (although it does not always con-
verge). The conducted analysis confirms that the number 
of iterations needed to determine the global minimum 
decreases as the number of particles increases.

Figure 6 presents a comparison of the number of 
calls to the objective function for both algorithms, for 5 
and 10 particles and individuals.

Fig. 6. The minimum number of iterations needed to determine 
the global minimum using the PSO and EO algorithms 
(for 100 runs) and with a constant number of particles and 

individuals equal to 5 and 10
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The analyzes carried out in terms of the number 
of calls to the objective function showed that for both 5 
and 10 particles and individuals, EO algorithm shows 
a much smaller number of calls to the objective func-
tion than PSO.

5.4. Determining the best  
optimization strategies

Table 6 shows the percentage convergence of the ana-
lyzed algorithms depending on the number of iterations 
and the number of particles and individuals. It was as-
sumed that the algorithm obtains a satisfactory conver-
gence if the value of the objective function is less than 
0.006 (the adopted maximum allowable value of the 
objective function).

Table 6. Percentage convergence of the PSO and EO algorithms 
depending on the number of particles and the number of 

iterations

Iterations
PSO [%]

3 particles 5 particles 10 particles
10 0 0 0
100 16 31 62
1000 59 86 98

Iterations
EO [%]

3 individuals 5 individuals 10 individuals
10 0 0 0
100 0 0 0
1000 0 7 11

Based on the results presented in Table 6, it was de-
termined that the best strategies could only be obtained 
for the PSO algorithm for 5 particles and 1000 iterations 
(86%) and for 10 particles and 1000 iterations (98%).

The EO algorithm did not converge above 50% for 
any of the configurations tested.

6. Summary

As part of the presented research, two optimization al-
gorithms (PSO, EO) were developed and implemented, 
allowing for the satisfactory determination of the coeffi-
cients of the model of phase transformations occurring in 
ductile cast iron during isothermal heat treatment in the 
field of bainite transformation. The obtained results give 
the correct values in relation to the experimental values. 
The parameters of the developed model were identified 
on the basis of inverse analysis, experimental research 
and literature data. The inverse analysis was performed 

based on the results of dilatometric tests. The PSO and 
EO methods were used to optimize the objective function.

The conducted research revealed that there are 
configurations of the number of particles and individu-
als and the number of iterations that ensure the determi-
nation of the identified parameters. The convergence of 
both methods largely depends on the number of parti-
cles and individuals as well as the number of iterations. 
On the basis of the conducted analyzes, it was found 
that the objective function minimized with the use of 
both algorithms, with a  constant number of particles, 
decreases with an increase in the number of iterations. 
The magnitude of this decrease depends on the type of 
algorithm and is much greater for the PSO method.

Tests for a fixed number of iterations and a variable 
number of particles and individuals also showed the ef-
fect of this parameter on the algorithm’s convergence. 
The tests carried out revealed that in the case of PSO, 
satisfactory results were achieved for 5 particles and 
100 and 1000 iterations, and for 10 particles and 100 and 
1000 iterations. However, in the case of EO, satisfactory 
convergences were obtained only for 5 individuals and 
1000 iterations, and for 10 individuals and 1000 iterations.

For the analyzed problem, the PSO algorithm with the 
used parameters shows a much better convergence. How-
ever, it would definitely be worth testing other parameters 
of these models during subsequent tests. With 1000 itera-
tions for 100 runs of the algorithm, more than 50% con-
vergence was achieved for both 10, 5 and 3 particles. In 
addition, the PSO algorithm achieved 86% convergence 
for 1000 iterations and 5 particles, and for almost 100% 
convergence (98%) for 10 particles. On the other hand, EO 
did not converge to more than 50% for any of the analyzed 
configurations (number of particles – number of iterations).

The analysis of the number of calls to the objec-
tive function for 1000 iterations showed that the PSO 
algorithm for 5 and 10 particles triggers this function 
much more often than EO. The conducted research 
allowed to select the best optimization strategies for 
the presented problem. The best result obtained using 
the PSO algorithm was characterized by an NMSE er-
ror of 0.005728, for which the optimized coefficients 
were: K1′ = 0.0000050, K2 = 8436.89, λ1 = 202.2037, 
λ2 = 19,213. However, for the EO algorithm, the best 
result was an NMSE error of 0.005729, for which  
K1′ = 0.0000097, K2 = 8010.36, λ1 = 216.309, λ2 = 11.77.
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