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Abstract 

In this paper we present a complex strategy for the solution of ill posed, in-verse problems formulated as multiobjec-

tive global optimization ones. The strategy is capable of identifying the shape of objective insensitivity regions around 

connected components of Pareto set. The goal is reached in two phases. In the first, global one, the connected components 

of the Pareto set are localized and separated in course of the multi-deme, hierarchic memetic strategy HMS. In the second, 

local phase, the random sample uniformly spread over each Pareto component and its close neighborhood is obtained in 

the specially profiled evolutionary process using multiwinner selection. Finally, each local sample forms a base for the lo-

cal approximation of a dominance function. Insensitivity region surrounding each connected component of the Pareto set 

is estimated by a sufficiently low level set of this approximation. Capabilities of the whole procedure was verified using 

specially-designed two-criterion benchmarks. 
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1. INTRODUCTION 

1.1 Ill-posedness of Inverse Problems 

 The ill-posedness is a common feature of opti-

mal design problems appearing in technology (e.g., 

lens design (Isshiki et al., 2006), environmental en-

gineering (e.g., Rainfall-Runoff Models calibration 

(Duan et al., 1992), etc. In this paper we consider 

coefficient Inverse Problems (IPs) (see e.g. Taranto-

la, 2005) formulated as the global optimization prob-

lems (GOPs), such as those arising in the cancer 

diagnosis (see e.g. Paruch & Majchrzak (2007)) or 

the oil and gas resource investigation (see e.g. 

Smołka et al., 2015a). Such problems typically suf-

fer from several types of ill-posedness. One of the 

most serious is the insensitivity with respect to par-

ticular parameter changes. The insensitivity is mani-

fested in subregions or manifolds surrounding global 

or local minimizers where the objective is constant 

or exhibits very small variation. To raise the difficul-

ty, the insensitivity may be accompanied by multi-

modality, i.e., the objective may possess many glob-

al or local minimizers with disconnected insensitivi-

ty sets.  

1.2 Solving Inverse Problems expressed as a 

multiobjective optimization 

In case of inverse problems formulated as the 

global optimization ones, the objective is defined as 

the misfit between an actual measurement d of the 

studied phenomenon and the result of the simulation 

u(ω). Simulations are performed using a mathemati- 

cal/computer model and its parameters ω which 

form decision variables. If the phenomenon under 

consideration is complex, i.e. it is composed of sev-

eral coupled physical and information processes, it is 

possible to increase the amount of information by 

observing multiple parallel measurements of differ-

ent data which give rise to many misfits and puts the 

problem into the area of multi-objective Pareto anal-

ysis. Such approach was already studied in our earli-

er papers, e.g. (Gajda-Zagórska et al., 2017; Gajda-

Zagórska et al., 2015; Gajda-Zagórska, 2015). 
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To this end, let us consider the set of n physical 

processes with states ui(ω)  Vi, i = 1, . . . , n, asso-

ciated with the analyzed phenomenon. We assume 

that all processes are profiled with the same un-

known parameter 𝜔 ∈ 𝒟. We restrict ourselves to 

the cases in which ω is a discrete representation of a 

physical quantity not necessarily discrete in its na-

ture (e.g. heat conductivity). As a result, the admis-

sible set of parameters 𝒟 is embedded in a finite 

dimensional metric space, in most cases 𝒟 ⊂ ℝ𝑘 

for an integer k  1. The state spaces Vi are typically 

appropriate Sobolev spaces and A(u(ω)) is the rele-

vant system Ai(ui(ω)) = 0, i = 1, . . . , n of differential 

equations representing forward problems. The state 

coordinates ui(ω), i = 1, . . . , n are partially measur-

able and we denote by d; di  𝒪𝑖 the measurement 

vector, where O
i are the observation spaces specific 

to each physics. We consider the misfit operator: 

        

     

1 1 1, , ,....., ,

, 1,...,

n n n

i i i i i

f d u f d u f d u

d u f d u i n

  

  



    

 (1) 

where each coordinate f i represents the particular 

physics. The multi-objective optimization problem 

associated with multi-physics IP consists of finding 

the Pareto set  , such that all  satisfy: 

    , (m ; ) 0n )i (f d u A u


 


  (2) 

where the minimization is understood with respect to 

Pareto dominance relation, see e.g. (Miettinen, 1999). 

1.3 Insensitivity regions in multiobjective 

optimization 

To investigate insensitivity regions we introduce 

an auxiliary scalar function 𝛹: 𝒟 → ℝ which 

measures the degree of domination among points in 

 𝒟. Let 𝒫ℱ ⊂ ℝ𝑛 denote the Pareto front of our 

optimization problem. Function   is defined as: 

 ( ) , ( ) ( )
y

d F inf F y  


     (3) 

where 𝐹: 𝒟 → ℝ𝑛 is a mapping of the decision 

space to the criteria space, i.e.: 

   ( ) , ( ) , where  ( ) 0F f d u A u     (4) 

Function Ψ is continuous, provided criteria func-

tions fi are, and its zero set is precisely the Pareto 

front . Its level sets: 

 ( ) : ( )L        (5) 

are therefore open neighborhoods of 𝒫𝒮 in 𝒟. For a 

suitably low threshold value ϵ, connected compo-

nents of such a set can be then interpreted as the 

low-sensitivity regions of the problem 

1.4 State of the art 

The most classical way of improving ill-

posedness of a GOP is the Tikhonov regularization 

(Tikhonov et al., 1995), which consists in complet-

ing the misfit by the convex suplement. However, 

this method is restricted to the single-criterion prob-

lems which are conditionally well posed in sense of 

Tikhonov, see again (Tikhonov et al., 1995). 

If the misfit contains a noise which makes its be-

haviour difficult to analyze, the Uncertain Optimiza-

tion (UO) and Robust Optimization (RO) can be ap-

plied. In these methods the objective f(,) depends 

on the deterministic decision  and a random varia-

ble , which represent noise, see e.g. (Bertsimas & 

Brown, 2009; Jin & Branke, 2005). Usually, each 

component of  is associated with a design constant, 

a design value which isn’t modified by the optimiza-

tion algorithm, but which real-world realization is 

subject to uncertainty. As a consequence, the misfit is 

a random function too, and its realization might take 

different values for consecutive calls of the compu-

ting routine at the same decision . It is typically 

assumed by UO and RO analysis, that there exists an 

accurate objective  f   which corresponds with its 

noisy version, and it can be approximated by its 

statistics, e.g.  f    E[ f (,)]. Most often it is 

also assumed that the optimization problem imposed 

by  f   is well posed. If some information about 

the noise  are available, it is possible to compute 

some statistic of minimizers or try to evaluate the 

subsets of the admissible domain in which minimiz-

er might occur with a suffciently large probability.  

The problems of robust optimization are usually 

solved for single-objective cases. However, there are 

also attempts at taking RO into account in the multi-

objective problems. One such example is described 

by Gunawan and Azarm (2005), where a concept of 

worst-case sensitivity region (in the space of design 

constants) is proposed. It is a region, on which the 

objective values change within accepted bounds so, 

the larger the region, the more robust the design is. 

A constraint on the radius of such region is imposed, 

so that solutions which do not meet it are removed 

during the optimization process, yielding a Pareto 

front of robust solutions. 
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The uncertainty handling in multi-objective op-

timization problem by using Evolutionary Algorithm 

with the NSGA selection was mentioned by Petrone 

et al. (2013). 

If the local misfit insensitivity is a result of the 

serious lack of information e.g. caused by the re-

stricted observability or/and measurability, than ill-

posedness is irrecoverable, and could not be re-

moved by any stochastic or deterministic misfit reg-

ularization. 

In such cases the information about all connect-

ed components of the set 𝐿𝜖(𝛹) should be delivered 

to the user. 

1.5 The guideline of the paper 

The main contribution of this paper is a multi-

phase stochastic method of building a discrete ap-

proximation of  L  . The first phase of the meth-

od is a Hierarchic Memetic Strategy (HMS) 

equipped with the NSGA-II selection operator and a 

repository. Its aim is to detect the connected compo-

nents of the (approximate) Pareto set. NSGA-II is 

based on a rank function which can be treated as an 

analogue to . Then, points with suffciently low 

rank form the input to the second phase. In this 

phase a single-population evolutionary algorithm 

equipped with a special multiwinner-voting-type 

selection operator is executed separately for the in-

dividuals belonging to each connected component of 

the Pareto set approximation  L  . The aim of this 

phase is to approximate the shape of low-rank sets, 

and in consequence, level sets  L  . Finally, the 

results of the second phase form the basis for an 

approximation of , which results in boosting the 

accuracy of the approximation of  L  . 

2. THE STRATEGY 

The overall control flow of the strategy is pre-

sented in figure 1. The actions shown in the diagram 

represent the strategy phases, which shall be de-

scribed in subsections of this section. 

2.1 Hierarchic Memetic Search as a global phase 

The global phase of our strategy is based on the 

Hierarchic Memetic Strategy (HMS) framework al-

lowing the effective stochastic search for multimodal 

GOPs. The core of this framework was mentioned in 

(Gajda-Zagórska et al., 2017) and was broadly de-

scribed in the monograph (Smołka, 2015), so we de-

scribe here only crucial HMS steps and ideas. 

 

Fig. 1. Overall control flow of the described strategy (UML 
activity diagram). 

The HMS creates and processes a tree of demes. 

HMS tree has a restricted depth m < +∞ and usually 

the maximum number of child demes at each particu-

lar level is also restricted. Each deme of the maxi-

mum order m will be called the leaf-deme. 

Demes evolve according to specific selection, 

mixing and succession rules. Typically, HMS demes 

of the same order use the same encoding and the same 

evolutionary engine. The total HMS structure evolves 

in steps called metaepochs, while demes may perform 

more than one step of evolution during single 

metaepoch. 

At the end of a metaepoch, each deme except the 

leaf-demes, can sprout a new child deme by sampling 

its new population around the best fitted individual. 

Sprout is blocked if the new deme lies too close to an 

already sprouted one at the same level of HMS tree. 

The HMS deme structure and dynamics allow for 

fast encountering the promising regions in an admis-

sible domain and locating non-overlapping leaf-

demes there. 

The second leading HMS idea is profiling the 

search accuracy, typically lowest at the root and low 

order demes and maximum at leaf-demes. Frequently, 

the cost of the misfit evaluation depends monotonous-

ly on the required accuracy in the engineering inverse 

problems. In such case the HMS framework works 

especially economically, finding cheaply the promis-

ing regions (e.g. basins of attractions of minimizers or 

regions of insensitivity) and performing the accurate, 

expensive computations only there. 

2.2 Non-dominated Sorting selection 

The most popular evolutionary approach for 

multi-objective optimization called Multi-Objective 

Evolutionary Algorithm (MOEA) beside the com-

mon mixing operations (crossover and mutation) 

uses the special kind of selection called Non-

dominated Sorting operator (NS selection), see e.g. 

(Fonseca & Fleming, 1993). NS selection is based 
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on the set of ranks being its “domination” level with 

respect to all individuals in the current population 

e.g. rank(ω) = 0 if ω is not dominated by any other 

individual from the current population, generally, 

rank(ω) = k ≥ 0 if ω is dominated exactly by k other 

individuals from the current population. Typically, 

MOEA also maintains a repository ℛ in which the 

non-dominated individuals already found are gath-

ered. 

We use NS selection at each HMS level in the 

global phase of the presented strategy which leads to 

identify the insensitivity regions surrounding the 

Pareto set associated with an IP. For now, the reposi-

tory ℛ was input only the individuals from the leaf-

demes (the highest order demes). Individuals stored 

in the repository memorize their deme of origin 

identifiers. In contradiction to the MOEA, the repos-

itory will gather individuals with ranks smaller or 

equal to the particular, small integer k > 0. The rea-

son of attaching “weakly” dominated points to the 

repository is to collect broader information of the 

MOEA fitness behavior near the Pareto set. 

The repository was updated after each 

metaepoch. First, individuals from all leaf-demes 

active in the last metaepoch were added to the repos-

itory. Next, all individuals ω ∈ ℛ which have 

rank(ω) > k with respect to other repository mem-

bers were removed. 

2.3 Global phase dynamics 

The HMS starts with a single population called 

root-deme. After each metaepoch, all demes, except 

the leaves, try to sprout a single child-deme. An 

empty repository is introduced when the first leaf-

deme is sprouted. 

We use a simple termination condition of the ef-

ficiency type with two variants. The weaker of the 

two stops the strategy if the non-dominated part of 

the repository stays constant for a fixed number of 

epochs. The stronger termination condition becomes 

active if the whole repository does not change for a 

fixed number of epochs. 

After HMS is terminated, the repository is divid-

ed into clusters of individuals originating from dif-

ferent demes. The leaf-demes are almost always 

highly concentrated, i.e., it is very unlikely that such 

a deme covers more then one connected component 

of the Pareto set. In fact, such a situation hardly ever 

appears in real computations. As a consequence, a 

density clustering algorithm run on the final reposi-

tory would not provide any more information. 

On the other hand, multiple leaf-demes may be 

located in the single connected component of the 

Pareto set. Such clusters are merged, using the hill-

valley algorithm (Ursem, 1999). Finally, the global 

phase returns a family of clusters gathering individ-

uals located in different, separated, connected parts 

of the Pareto set and their topological neighbor-

hoods. Such family is then passed to the next phase 

of the strategy. 

2.4 Local phase activities 

The local phase activities lead to obtain the ap-

proximation of the shape of the insensitivity regions 

surrounding the connected parts of Pareto sets. The 

activities are performed in parallel for each cluster 

received from the global phase. 

For each cluster, we run two epochs of the evo-

lutionary algorithm with multiwinner (MW) selec-

tion (Łoś et al., 2017; Sawicki et al., 2018). The MW 

evolution uses standard mixing operators: normal 

mutation and arithmetic crossover. The fitness is 

based on the ranks obtained by non-dominated sort-

ing, as in the global phase. 

MW selection uses the utility function which de-

scribes the “utility” of each individual in the popula-

tion gives to other individuals. It is meant to pro-

mote good fitness values while also valuing nearby 

individuals. Based on it, the multiwinner election is 

run. The function is defined as follows in (Łoś et al., 

2017): 

 
  

 

( )

( )

( ) ( )
 

1 ,

j

p j

i i j

h f x
u x

d x x



 (6) 

where: h(x) =1/(1+x) - a reversal function, d - the 

Euclidean distance, x(i) ∈ 𝒟 - a member of a popula-

tion.  

In the first epoch of MW evolution we use h 

function defined by equation (6). The resulted popu-

lation becomes distributed more uniformly inside the 

analyzed connected part of the insensitivity region. 

In the second MW epoch we use a modified, 

“inverse” utility function. We substitute h with h'(x) 

= x forming a family of utility functions   'p

iu . Be-

cause the fitness is subject to minimization, such 

modified utility function will favor individuals with 

worse fitness, spreading the individuals of the popu-

lation. The random sample (population) obtained in 

the second MW epoch will spread to the neighbor-

hood of the first epoch population. It is necessary to 

properly approximate the fitness function at the bor-
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der of the insensitivity region. Otherwise, the ap-

proximation would appear flat, and so the level set 

of such approximation would be of no use. 

Approximation of the insensitivity region is con-

structed as a level set of a local approximation of the 

rank function, built using set 𝑃 of all the points pro-

duced in the first and second MW epoch and those 

inherited from the cluster. In case the insensitivity 

regions are large compared to the domain and not 

very numerous, this approach may be simplified by 

replacing the local approximation by a global one on 

the whole domain without a significant loss of accu-

racy. This approximation is created in two steps: 

first, a continuous linear Lagrange interpolation r  is 

constructed on a region Ω from the Delaunay trian-

gulation of 𝑃. Then r  is continuously extended to Q 

– the minimal hyperrectangle containing Ω. Let  𝒱 

denote the space of B-splines defined on Q, i.e. the 

tensor product of spaces of 1D B-splines with fixed 

degree p ≥ 1 and knot vectors. Then 𝒱 ⊂ 𝐿2(𝑄) and 

elements of 𝒱 are globally at least C1. Finally, a 

smooth approximation r  of the rank function is 

defined as the 𝐿2-projection of r , i.e. the unique 

element of 𝒱 with minimal distance to r  in 𝐿2 

norm: 

2 2inf
L Lv

r r v r


  ‖ ‖ ‖ ‖  (7) 

Such an element of 𝒱 can be effciently comput-

ed as a solution of certain linear system using the 

Alternating Direction Solver (ADS) (cf. Gao & Ca-

lo, 2014) thanks to the tensor product structure of 

the chosen basis. For more details on the employed 

approximation method, we refer to (Sawicki et al., 

2018). 

In addition, we compare this approach with a 

standard method – Simple Kriging with constant 

trend and exponential semivariogram model (Jin, 

2005). 

3. EXPERIMENTS 

We applied the described complex strategy to 

two two-criterion multimodal benchmark GOPs. The 

objectives in these problems were constructed in 

such a way that their Pareto sets have the following 

features: 

they can be determined analytically; 

 they are “thick”, i.e., they have positive Lebesgue 

measure. 

The first feature provides the reference level for 

checking the abilities of our strategy. The second 

one mimics analogous features of ill-posed inverse 

problems formulated as GOPs. 

 

To determine the quality of insensitivity region 

approximation we compare it with the known exact 

region by computing the Hausdor distance between 

these sets. Let A; B  X be subsets of a metric space 

(X; d), let:  

( , ) supinf ( , )
y Bx A

A B d x y


  (8) 

The Hausdor distance dH(A; B) is then defined 

as: 

( , ) max{ ( , ), ( , )}Hd A B A B B A   (9) 

3.1 First benchmark problem 

Let 𝒟 = [0; 10]2 and let us define: 

 
   

2 2
0 0

1 1 2 2

1 21 2

1 2

,

1 2,
, 1 2

x x x x

r rr r

x x
g x x

    
    
   
      (10) 

Then g is a smooth function with values between 

0 and 1 with g  0 0

1 2,x x  = 0. Objective function F1 = 

 1 1

1 2,f f : 𝛹: 𝒟 → ℝ2 is given by: 

 

 

1 (0.5,1.0) (0.5,1.0)

1 (2,2) (8,5)

1 (1.0,0.5) (1.0,0.5)

2 (3,3) (7,5)

( ) ( ) ( )

( ) ( ) ( )

f g g

f g g





 

 

x x x

x x x

 (11) 

where: 

1
2 1  if 

( ) max{2 1,0} 2

0  otherwise 

t t
t t


 

   



 (12) 

Components 1 1

1 2,f f  of the objective are present-

ed in figure 2. The functions are chosen in such a 

way that the Pareto set consists of two connected 

components situated in the vicinity of intersections 

of component functions’ global minima (see figure 

3).  

3.2 Second benchmark problem 

A weak side of the first benchmark is that its 

Pareto front (not Pareto set) is trivial, i.e., it reduces 

to singleton {(0,0)}. The second benchmark lacks 

this drawback: in this case neither Pareto front nor 

Pareto set is trivial. This time the domain is 𝒟 = 

[0,1]2. Objective function F2 = 1 1

1 2,f f : 𝒟 → ℝ2 is 

given by: 

 

 

2

1 1 2

2

2 1 2

( ) max 0.5 0.1,0

( ) 1 max 0.5 0.1,0

f x x

f x x

   

    

x

x
 (13) 
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a)  

b)  

Fig. 2. Objective functions 
1

1f  (a) and 
1

2f  (b) in the first 

benchmark. 

 

Fig. 3. Overall control flow of the described strategy (UML 

activity diagram). 

The Pareto front in this case is the segment of 

the line x1 + x2 = 1 contained in 𝒟 (see figure 4a). 

The Pareto set is the rectangle [0,1]  [0.4,0.6] (see 

figure 4b). 

3.3 Strategy configuration 

In the experiments we used two three-level HMS 

configurations differing in the evolutionary engine 

used in demes: 

 HMS-SSS: demes at all levels powered by the 

Simple Evolutionary Algorithm (SEA) with the 

Nondominated Sorting selection; 

 HMS-SSN: follows the same configuration as in 

the previous HMS-SSS case, except for that 

demes at the leaf level evolved along the lines of 

NSGA-II strategy, see e.g. (Deb et al., 2002). 

a)  

b)  

Fig. 4. Second benchmark: Pareto front (a) and squared norm 

||F2||2 of the objective (b). 

The first configuration was commonly used in 

our previous experiments (cf. Smołka et al., 2015a; 

Smołka et al., 2015b; Gajda-Zagórska et al., 2017), 

the second one engages the widely used multi-

objective evolutionary algorithm — NSGA-II. Both 

configurations were executed 10 times on each 

benchmark. The global phases were stopped after 

performing 10000 evaluations of the objective func-

tions. Then both above-described MW local phases 

(“direct” and “inverse”) were executed in each case. 

The archive retained candidate solutions from the 

global phase with rank less than or equal to k = 2. 

The whole final populations of both MW phases 

were also put into the archive. Afterwards, L2 and 

Kriging approximations (see above) of rank func-

tions were constructed for those final populations. 

As the final population highest rank varied signifi-

cantly not only between benchmarks but also be-
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tween particular executions, we modified the ob-

tained approximate rank function using the nonlinear 

scaling function. 

1
( ) 1

1
s x

x
 


 (14) 

This made it fair to use the same cutting level for 

all runs of both benchmarks. The final Pareto set 

shape approximations were thus obtained as the 

level sets for the scaled approximate rank functions 

at level 𝜖 = 0.2. 

3.4 Results for the first benchmark 

As the computational domain is relatively small 

and the well-known Pareto set components are close 

to each other, we decided to use the global approxi-

mation approach in the last phase of the strategy. 

The obtained Hausdor distance statistics are present-

ed in table 1 for HMS-SSS and in table 2 for HMS-

SSN. Both strategies managed to detect both com-

ponents of the Pareto set in every run. L2 approxima-

tion turned out to be significantly more accurate than 

Kriging in this case, especially when combined with 

HMS-SSS. Additionally, we show in figures 5a and 

7 the results of a successful execution of HMS-SSS, 

and in figures 5b and 8 the results of a relatively 

weak execution of this strategy. Figures 6a and 6b 

illustrate analogous results for HMS-SSN. The 

quality of final results depend highly on the second 

(’inverse’) MW phase of the whole strategy. The 

global phase produces hardly any dominated points. 

The first MW phase fills in detected areas appropri-

ately, but it is only the second MW phase that can 

surround these areas with a significant non-

dominated ’blanket’ that would allow the approxi-

mation phase to catch the shape of true Pareto set 

component. As it can be seen, the Kriging approxi-

mation is particularly sensitive to the extent of this 

blanket: in figure 5b the upper-right component was 

extended extraordinarily, in figure 6b we have even 

an additional false component of Pareto set. These 

artifacts are apparent result of significant gaps in the 

non-dominated blanket. The gaps can be seen in 

figure 8 where the points obtained from the MW 

phases are shown as red dots. Note that the effects of 

the gaps are significantly milder if L2 approximation 

is used. 

Table 1. HMS-SSS: Hausdorff distances in the first benchmark.. 

Approximation L2 Kriging 

Average distance  

Distance std. dev. 

0.36476 

 0.04052 

0.60703 

0.870822 

 

Table 2. HMS-SSN: Hausdorff distances in the first benchmark. 

Approximation L2 Kriging 

Average distance  

Distance std. dev. 

0.49464 

0.13170 

0.69073 

0.87405 

a)   

b)  

Fig. 5. HMS-SSS in first benchmark: Pareto set approximations 
for a’good’ run (a) and  a’bad’ run (b). 

a)  

b)  

Fig. 6. HMS-SSN in first benchmark: Pareto set approximations 
for a’good’ run (a) and  a’bad’ run (b). 
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a)  

b)  

Fig. 7. Rank approximations in HMS-SSS ’good’ run for L2 
approximation (a) and  Kriging approximation (b). 

a)  

b)  

Fig. 8. Rank approximations in HMS-SSS ’bad’ run for L2 

approximation (a) and  Kriging approximation (b). 

3.5 Results for the second benchmark 

As before, the obtained Hausdor distance statis-

tics are presented in table 3 for HMS-SSS and in 

table 4 for HMS-SSN. Also as in the previous sub-

section, we show in figures 9a and 9b the results of a 

successful and a weak execution of HMS-SSS, and 

in figures 10a and 10b the results of a relatively 

good and a relatively bad run of HMS-SSN. In this 

case we do not observe significant differences either 

between evolutionary engines or between approxi-

mation methods. A big part of artifacts observed in 

the figures is related to the shortage of points pro-

vided by global and MW phases near the domain 

boundary. Besides, the non-dominated blanket has a 

proper extent in virtually all runs resulting in a fair 

quality of Pareto set approximation independently 

upon the approximation method. 

Table 3. HMS-SSS: Hausdorff distances in the second benchmark.. 

Approximation L2 Kriging 

Average distance  

Distance std. dev. 

0.39259 

0.0063836  

0.39079  

0.0074297 

Table 4. HMS-SSN: Hausdorff distances in the second benchmark. 

Approximation L2 Kriging 

Average distance  

Distance std. dev. 

0.38975  

0.0050023  

0.38738 

0.0063584 

a)  

b)  

Fig. 9. HMS-SSS in second benchmark: Pareto set 
approximations for a ’good’ run (a) and  a ’bad’ run (b). 
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a)  

b)  

Fig. 10. HMS-SSN in second benchmark: Pareto set 
approximations for a ’good’ run (a) and  a ’bad’ run (b). 

4. CONCLUSIONS 

The presented complex strategy proved its capa-

bilities in identifying the shape of insensitivity re-

gions around solutions of multimodal multiobjective 

problems. The global phase of the algorithm suc-

cessfully detects basins of attraction of all the global 

minima. Afterwards, in two special evolutionary 

phases, the detected areas are properly filled and 

surrounded with an appropriate ’blanket’ of non-

dominated points. Both activities are key steps of the 

whole strategy, because their successful execution 

forms a solid base for the following approximation 

phase. The obtained results show that the presented 

strategy equipped with L2 approximation produces 

good-quality approximation of shapes of insensitivi-

ty sets in all cases. The Kriging method in turn can 

produce artifact sets when the second MW phase 

does not provide a gapless non-dominated blanket. 

We expect that this issue can be negotiated by, e.g. 

using two or more subsequent inverse MW phases.  

In this paper, for illustrative reasons we evaluat-

ed the strategy by means of twoobjective two-

dimensional benchmarks only. In the future we plan 

to test it using more-dimensional benchmarks on one 

hand and some real-world engineering multi objec-

tive inverse problems, like the several-frequency 

magnetotelluric problem, on the other hand. 
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    ROZPOZNAWANIE NIEWRAŻLIWOŚCI           

W WIELOKRYTERIALNYCH PROBLEMACH 

ODWROTNYCH PRZY UŻYCIU ZŁOŻONEJ 

STRATEGII EWOLUCYJNEJ 

Streszczenie 

Artykuł prezentuje złożoną strategię rozwiązywania źle posta-

wionych problemów odwrotnych sformułowanych jako wielo-

kryterialne zadania optymalizacji globalnej. Opisana strategia 

umożliwia identyfikację obszarów niewrażliwości funkcji celu 

wokół spójnych składowych zbioru Pareto. Cel jest osiągany  

w dwu etapach. W pierwszym z nich — globalnym — składowe 

spójne zbioru Pareto są lokalizowane i separowane przy pomocy 

wielopopulacyjnej hierarchicznej strategii memetycznej HMS.  

W etapie drugim — lokalnym — przy użyciu specjalnie sprofi-

lowanego procesu ewolucyjnego wykorzystującego operator 

selekcji wyborczej z wieloma zwycięzcami produkowana jest 

losowa próbka rozłożona jednostajnie na każdej składowej i jej 

bliskim otoczeniu. Finalnie każda lokalna próbka jest użyta jako 

baza  

do zbudowania lokalnej aproksymacji funkcji dominacji. Zbiory 

poziomicowe tej aproksymacji dla odpowiednio niskich pozio-

mów stanowią przybliżenie zbiorów niewrażliwości wokół 

składowych spójnych. Możliwości strategii zostały zweryfiko-

wane przy użyciu specjalnie zaprojektowanych dwukryterial-

nych funkcji testowych. 
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