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Network resource reallocatioN strategy 
based oN aN improved capacity-load model

strategia realokacji zasobów sieciowych oparta 
o udoskoNaloNy model przepustowości-obciążeNia

Network resource reallocation is a common way to help restore performance of network systems subject to cascading failures. 
Majority of current network resource allocation strategies either give little regard to or make impractical assumptions about the 
relationship between capacity and load of network nodes, despite this relationship is closely related to the propagation of network 
failures. In this work we present and verify an improved nonlinear network capacity-load model based on the actual relation be-
tween network capacity and load. According to the verified model and realistic dynamic characteristics of network loads, we pro-
pose a new network resource reallocation strategy for networks under attacks from the perspective of maintenance. The strategy 
aims to effectively reallocate new capacity to network nodes after cascading failures occur. Both theoretical analysis and empirical 
studies are performed on three typical types of complex networks. Results show that the proposed network resource reallocation 
strategy is more efficient in mitigating devastating impact of cascading failures on network performance, in comparison to other 
three existing network resource reallocation strategies.

Keywords: network reliability, maintenance, resource reallocation, cascading failures, capacity-load relation-
ship.

Realokacja zasobów sieci jest powszechnym sposobem, stosowanym w celu przywrócenia działania systemów sieciowych ob-
jętych awariami kaskadowymi. Większość współczesnych strategii alokacji zasobów sieciowych kładzie mały nacisk lub czyni 
niepraktyczne założenia dotyczące zależności między przepustowością i obciążeniem węzłów sieci, choć zależność ta jest ściśle 
związana z rozchodzeniem się awarii sieci. W niniejszej pracy przedstawiono i zweryfikowano udoskonalony nieliniowy model 
przepustowości-obciążenia sieci na podstawie rzeczywistej relacji między przepustowością sieci i jej obciążeniem. Na podstawie 
zweryfikowanych modelu i realistycznych cech dynamicznych obciążeń sieciowych, proponujemy nową strategię realokacji zaso-
bów dla sieci poddawanych atakom z perspektywy utrzymania ruchu. Celem strategii jest skuteczna realokacja nowej przepusto-
wości węzłom sieci po wystąpieniu kaskadowych awarii. Przeprowadzono zarówno teoretyczne analizy, jak i badania empiryczne 
na trzech typowych rodzajach sieci złożonych. Wyniki pokazują, że proponowana strategia realokacji zasobów sieci jest bardziej 
skuteczna w zwalczaniu niszczącego wpływu kaskadowych awarii na przepustowość sieci w porównaniu do pozostałych trzech 
wykorzystywanych strategii realokacji zasobów sieciowych.

Słowa kluczowe: niezawodnośćsieci, utrzymanie ruchu, realokacja zasobów, awarie kaskadowe, zależność 
przepustowość/obciążenie.

1. Introduction

Cascading failure is a common phenomenon in complex network 
systems, especially in some real-world infrastructure networks, such 
as transportation systems, power grids and the Internet. It could lead 
to a sharp degradation of network performance and even collapse the 
whole network. For example, an initial disturbance happening on Au-
gust 14, 2003 in Ohio, USA eventually brought about a disastrous 
blackout which affected millions of people for up to 15 hours [12]. A 
similar case occurred in Buenos Aires on November 7, 2012, in which 
the crippled critical power grids triggered large negative effects over 
one million households, resulting in prolonged chaos in many impor-
tant departments [15]. Massive cascading failures also take place in 
communication, social and economic network systems [7, 33]. Due to 
the devastating effects of cascading failures over the entire networks, 

it is of great significance to study characteristics of cascades as well 
as relevant mitigation strategies aiming to protect real-world infra-
structure networks.

Optimal resource allocation has been used as a usual way to im-
prove the network robustness to cascading failures [10, 22, 31]. Spe-
cifically, overloads (or congestion) on network nodes (edges) are one 
of the main reasons for triggering cascading failures in networks in 
reality. For instance, overloads (currents or voltages) on substations 
or buses in power grids often happen. Hereby, the optimal allocation 
of limited network capacity resource for reducing the occurrence of 
overload failures has been one of the hot topics in the complex net-
work study [11, 21, 29, 32, 35, 37]. Lee and Hui [21] proposed a 
dynamic reallocation scheme based on nodes’ willingness to share 
resources, upon which networks could achieve a better performance. 
Xia and Hill [35] presented an algorithm that adjusts flow rate and 
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capacity distribution to maximize the system utility and the utiliza-
tion ratio of capacity. Wang et al. [32] introduced an idea of cost-
based attacks on complex networks and investigated the problem of 
optimal limited network defence resource distribution for minimizing 
attacks’ damage to infrastructure networks. However, most of current 
resource allocation strategies are only attempt to optimally allocate 
resource for initial network construction, ignoring reallocating the 
subsequent resource after networks are established, and do not take 
the occurrence of cascading failures under dynamics of network loads 
into account. In addition, most of prior resource reallocation strat-
egies are still lack of considering essential dynamic characteristics 
of real-world infrastructure networks which have important impacts 
on network reliability. Particularly, the practical relationship between 
capacity and load of infrastructure network nodes is closely related to 
overload failures in networks.

Considerable research efforts have been carried out to investigate 
the underlying mechanism of cascading failures in complex networks 
and network reliability [3, 5, 8, 14, 16, 38, 39]. Crucitti et al. [5] pro-
posed a dynamic flow redistribution scheme for analyzing the cause 
and process of cascading failures in different complex networks. While 
most of previous research assumed constant [14, 24], random [17, 33], 
or linear [5, 20] relationship between capacity and load of nodes in 
network cascading simulation, Kim and Motter [18] found that there 
is a nonlinear capacity-load relationship actually exists in different 
complex infrastructure networks such as air transportation network, 
highway network, power-grid network and Internet router network. 
Consequently, prior research on complex infrastructure networks 
based on the three assumptions about capacity-load relationship men-
tioned above are inconsistent with real situations to some extent. Dou 
et al. [8] further researched the nonlinear relationship and presented a 
capacity-load model (hereinafter referred to as the C-L model) against 
cascading failures. However, the model has some limitations. For ex-
ample, it did not identify reasonable ranges of model parameters or 
give an adequate explanation about the meaning of those parameters. 
More recently, Fang et al. [10] tackled the issue of capacity-load re-
lationship by introducing the optimization of link capacity allocation. 
They found that cascade-resilient network systems tend to have a non-
linear capacity-load relation. But they just focused on the link capac-
ity resource used for initial network construction without considering 
the optimal allocation of subsequent node capacity resource.

To overcome these limitations, in this paper we propose an im-
proved nonlinear C-L model based on the capacity-load relationship 
of real-world infrastructure networks. Building upon this model and 
from the perspective of maintenance, we then put forward a new net-
work capacity resource reallocation strategy which takes the subse-
quently-added network capacity as well as dynamics of network load 
into consideration. By conducting comparative experiments with three 
existing capacity resource reallocation strategies, we demonstrate the 
validity and feasibility of our proposed strategy in mitigating severe 
influence of cascading failures caused by intentional attacks on com-
plex infrastructure networks.

The rest of this paper is organized as follows: in section 2, the 
improved nonlinear C-L model is proposed; in section 3, the novel 
resource reallocation strategy is introduced with theoretical analysis; 
in section 4, the process of simulating cascading failures in complex 
networks is described; in section 5, the improved C-L model is veri-
fied on two general networks which are subjected to different kinds 
of attacks, and the simulation results are analyzed; verification of per-
formance of the novel resource reallocation strategy, and comparison 
with other three existing strategies are presented in section 6. Finally, 
conclusions as well as directions for future research are given in sec-
tion 7.

2. The improved C-L model

We assume that the betweenness centrality [13] of network node i 
at time t represents its load ( )iL t  which can be calculated using the al-
gorithm presented in [30]. Node capacity signifies the maximum load 
that a node could handle without congestion. Crucitti, et al. [5] as-
sumed that because of the limited cost in practice, capacity iC  of node 
i is linearly proportional to its initial load (0)iL  in real-life networks, 
as shown in the following widely-used linear C-L model (1):

 (0), 1,2... , 1i iC L i Nα α= × = ≥  (1)

where α is the tolerance parameter, and N is the total number of net-
work nodes.

As mentioned above, nevertheless, different real-world infrastruc-
ture networks possess a rather similar nonlinear capacity-load relation-
ship supported by empirical data, which could be simply described as 
the formula: ~C L Lα− , where C represents capacity and L represents 
load [18]. Accordingly, we propose an improved nonlinear C-L model 
through curve fitting, intending to match the real data curves. Under 
our improved C-L model, the description of relationship between net-
work node’s capacity and load matches better the actual situations 
in infrastructure networks which are shown in [18]: heavily loaded 
network nodes have smaller unoccupied portions of capacity, whereas 
lightly loaded nodes present larger unoccupied portions of capacity. 
Our improved C-L model is illustrated in Eq.(2).

 C L L i Ni i i= × + = ≥ < <−( )α α µµ( ) ( ) , , ... , ,0 0 1 2 1 0 11  (2)

The item α µ× −Li( )0 1  in the improved C-L model (2) is set to de-
scribe the nonlinear characteristic of node capacity and load. α is the 
tolerance parameter of networks, indicating that the network node 
capacity is within a realistic cost constraint. Besides, it could also 
reflect the robustness level of different networks. μ is the nonlinear 
coefficient, the range of which is set with the consideration of specific 
situations in real-life networks. By adjusting its value, the correspond-
ing nonlinear relationship between network node’s capacity and load 
could be flexibly adjusted in simulation. In practice, it is more reason-
able for us to reference to the data collected from real-world network 
systems to set these parameters.

Fig. 1 shows an example of the capacity (C)-load (L) relation of 
network nodes under normal condition in a log-binned scale. The re-
sults presented are obtained by applying C-L model (1) and C-L model 
(2), respectively, in which α = 1.1, μ = 0.8. The dashed line, assuming 
C = L of each network node, is shown in the figure for comparison.

As shown in Fig. 1, the blue curve with symbol ’+’ (represents 
the results under the improved C-L model (2)) illuminates the non-
linear capacity-load relationship where the proportion of unoccupied 
node capacity is larger for nodes with smaller capacity. The smaller 
a node’s capacity, the higher unoccupied proportion of that node’s 
capacity. This nonlinear characteristic is closer to real-world situa-
tions in infrastructure networks [20], in contrast with the simulation 
results under the linear C-L model (1) (represented by the red curve 
in Fig. 1). In brevity, the improved nonlinear C-L model (2) could 
better describe the practical flow behavior of real-life infrastructure 
networks, upon which further analysis of network reliability could be 
carried out.
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3. The proposed resource reallocation strategy

When an infrastructure network system broke down and its per-
formance dropped, depending on the available budget and cost, peo-
ple usually reallocate some new network resource to a part of impor-
tant network nodes to maintain the performance of this network (i.e., 
upgrade those nodes, such as enlarging the capacity of substations in 
power grids and routers in the Internet). By this way, people intend to 
restore network performance to some extent to meet the requirements 
about certain network services. For some real-life infrastructure net-
works, e.g., power grids, network components upgrade as discussed 
here is more declined to be taken as a strategic action to maintain net-
work systems, which could work in the long run. While for some other 
network applications, e.g., the Internet, this action could be adopted as 
a response to address emergencies as we do in this paper.

In this section, based on the proposed nonlinear C-L model (2), 
we propose a new capacity resource reallocation strategy (Cnlinr) 
for efficiently reallocating the subsequently-added network capacity 
against cascading failures. The core part of this new reallocation strat-
egy is described in Eq.(3), which decides the amount of new capacity 
that every node in the network is reallocated:

 (0) ( ) ( )i i
i i i

i i

L L TC L T CC C

η γ

θ∆
   
      
   

= × × × −  (3)

where 0 1, 1, 0 1θ η γ< ≤ ≥ < ≤ , iC∆ is the subsequent capacity added to 

arbitrary node i, iC  is the initial capacity of node i. (0)iL  is the initial 
load of node i, and ( )iL T  is its final load at time T when network G 
stays stable again after cascades occurred. θ is the scale parameter, 
and η, γ are nonlinear coefficients. These three arguments, giving a 
certain degree of flexibility, are used to modify the reallocation pro-
portion of subsequent capacities adding to each network node. By 
comparing simulation results, we could find a proper combination of 
the three parameters θ, η and γ for a better capacity reallocation effect 
in improving performance of damaged networks. The total capacities 

iallC  of network node i after capacity resource reallocation are: 

iall i iC C C∆= + .

Specifically, the scale parameter θ in Eq.(3) is used to control the 
total amount of newly added capacities. The role played by this pa-
rameter is mainly for coordinating with the other two model parame-
ters η and γ. Meanwhile, its size could be tuned based on the available 
capacity resource, signifying the limitation of cost in practice. The 

second item in Eq.(3), (0)i iL C , is the initial load to capacity ratio 
of node i, denoting the nonlinear C-L relationship when the network 
is under a normal condition, which has a profound influence on the 
spread of cascades. Consequently, the ratio is highly referred for real-
locating new network capacities and the particular scope of parameter 
η emphasizes the importance of this ratio. The third item ( )i iL T C  
actually reflects the following steady state of node i after cascading 
failures occur from its load viewpoint. Thus, the ratio should also be 
taken into account in determining the new capacity reallocation pro-
portion. The range of designed parameter γ is set to control the impact 

of this ratio, ( )i iL T C . The last item, ( )i iL T C− , in Eq.(3) is the dif-

ference between steady load ( )iL T  after cascades and corresponding 
initial capacity iC  of node i. This item presents the changes of node 
load after the dynamic redistribution of network flows resulted from 
cascades.

According to [18], in many real-world infrastructure networks, 
the larger a node’s load is, the higher proportion of occupied node’s 
capacity is. As a result, the network nodes with larger loads are prone 
to be overloaded (malfunctioned). Moreover, load-based intentional 
attacks as well as other attacks, aiming at heavily loaded nodes, would 
bring a severely adverse influence on network performance if those 
important nodes break down. Consequently, by taking the redistribu-
tion of node loads and its relationship with corresponding node ca-
pacities before and after failure propagation into account, we tend to 
nonlinearly reallocate more subsequent capacity resource to the nodes 
with larger loads, as illustrated in Eq.(3) above.

Constrained by some real-world factors, e.g., available invest-
ment cost, subsequently-added network resource that can be used for 
reallocation are limited. Hence, different resource reallocation strate-
gies’ effects on improving network performance might be very dif-
ferent. In section ‘Verification of proposed resource reallocation’, we 
compare our new proposed resource reallocation strategy with other 
three existing reallocation strategies by simulating cascading failures 
in scale-free networks, random networks as well as small-world net-
works. These three types of complex networks are widely-recognized 
topologies of typical networks nowadays, including the World-Wide-
Web, the Internet, social network, the electrical power-grid network, 
highway network, air transportation network, etc [2, 9, 26, 34]. Simu-
lation results illuminate that the new capacity resource reallocation 
strategy proposed in this paper could efficiently defend against cas-
cades triggered by intentional attacks on network nodes.

According to related research works [1, 27, 36], some properties 
of real-life infrastructure networks are independent of sizes of net-
work systems, for example, the relative size of the largest clusters in 
networks. Thus, for shortening simulation time, network sizes in the 
simulations presented in this paper are selected but still representa-
tive.

4. Cascading process

In this paper, we model a complex network as an undirected, 
weighted, self loop-free as well as single edge graph G with N nodes 
and E edges. Single edge graph means that there is only one edge pos-
sibly existing between two connected network nodes. For instance, G 
can represent a power grid with N stations and E transmission lines. 

Mathematically, it is depicted by an adjacency matrix { }ij N N
w

×
 with 

0,1ijw   ∈  representing the weight (communication efficiency) as-

sociated with the edge between node i and node j. 0ijw =  implies that 

there is no edge between node i and node j; ijw =1 implies that the 

edge between node i and node j works in a perfect condition. We as-

Fig. 1. A comparison between two C-L models’ simulation results
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sume that the smaller the entry ijw  is, the less efficient communica-
tion along the edge between node i and node j is.

At the initial time of simulation t = 0, we set ijw =1 for all existing 
edges in the network, assuming that those transmission edges all work 
perfectly. Also, we assume that all network loads are only transmitted 
along the most efficient paths between a pair of nodes. We use ije  to 
depict the efficiency of the most efficient path [19] between node i 
and node j in the network, which is defined as follows:

 
11

ij
k

e w
−

 
  
 

= ∑  (4)

where kw  represents the communication efficiency of edge, as intro-
duced above, involved in the most efficient path between node i and 
node j.
Furthermore, network efficiency E(G) defined in Eq.(5) is used to 
measure the performance of network G [19]:

 1( ) ( 1) ij
i j G

E G eN N ≠ ∈
= ∑−  (5)

The simulation process of cascading failures in this work is struc-
tured as follows: First set up network G, according to the assumptions 
above, initial node load will not exceed node capacity, and network 
load distribution along with the most efficient paths will not change. 
Based on Eq.(5), network efficiency E(G) will remain stable at this 
stage, i.e., its value will not change, which means that network G is in 
a steady state. Then the removal (breakdown) of one network node 
gives rise to the dynamic redistribution of network loads, triggering 
more overloaded (congestion) nodes. In the next seciton two strate-
gies are explained for choosing the node to be removed. One node 
removal will lead to alterations of some edges’ transmitting efficien-
cies, i.e., the corresponding entries in { }ij N N

w
×

 decrease. As a conse-

quence, the composition and efficiency e of some of the most effi-
cient paths in the network would change, which in turn causes the 
redistribution of network loads. The above process repeats until all the 
loads of remaining nodes are below their capacity. At this time, net-
work G stays steady on a lower performance level, which means that 
network efficiency E(G) eventually converges to a relatively stable 
value in the cascading simulation. We calculate each edge’s weight 
(transmitting efficiency w ) by applying the following iterative rule 
(6) at every time step t in the simulation [5]:

 
(0) , ( )( )( 1)
(0) , ( )

i
ij i i

iij

ij i i

Cw L t CL tw t
w L t C







× >
+ =

≤
 (6)

where j represents the first neighbor nodes of network node i. As seen 

in the Eq.(6), the matrix { }ij N N
w

×
 is recalculated based on the real-

time relationship between node’s capacity and load in each simulation 
step. Through cascading simulations, we can get the overall changing 
trends of network efficiency E(G), upon which we could observe and 
further analyze the whole cascading process in the network.

The above cascading failure model based on the complex network 
theory is relatively comprenhensive and abstract, which has the advan-
tage of using graph theory techniques to model cascading dynamics in 
real-world infrastructure systems and providing a good understanding 
of dynamics of cascades. Therefore, it has been recognized to offer a 
universal perspective and a useful way to research on cascading proc-
ess on power grids [4, 6, 10].

5. Verification of improved C-L model

In this section, we execute cascading simulations on BA scale-
free networks [9] and ER random networks [34]. BA network model 
is a widely-adopted one to describe scale-free networks, which pos-
sesse a power-law distribution of node degree. Note that P(k) repre-
sents the distribution probability of network nodes with degree k, 
( )~ , 3.P k k γ γ− ≈  Similarly, ER network model, proposed by Erdos 

and Renyi, is a typical model for constructing random networks, 
whose load distribution and degree distribution all follow the Poisson 
distribution. Two representative triggering strategies are used here: 
load-based intentional attack where a network node with the largest 
load is removed; and random failure where one node chosen at ran-
dom will be removed from the network. By analyzing the cascading 
process and the difference generated by adopting the existing linear 
C-L model (1) and the improved C-L model (2), the performance and 
feasibility of our improved nonlinear C-L model (2) is validated.

5.1. Simulation on BA scale-free network

The simulation process of an intentional attack on a BA network 
is as follows: At first, initial network capacities are allocated to net-
work nodes according to the nonlinear C-L model (2). Then the node 
with the largest load is removed, causing the dynamic redistribution 
of network loads which is accompanied with a cascade of overload 
failures. Meanwhile, the weight of each edge and network average 
efficiency E(G) at every simulation time step are calculated until net-
work G reaches a steady state again. The same process is repeated 
for the linear C-L model (1). Moreover, the similar cascading simula-
tions are performed for both of the considered C-L models under a 
random failure where the node initially removed is chosen at random. 
To minimize random errors, simulation results under random failures 
correspond to the average of results over four failure triggers.

Fig. 2 and Fig. 3 illustrate the evolution of network efficiency 
E(G) after intentional attack on the node with the heaviest load in a 
BA network (N = 100, E = 500) under C-L models (2) and (1), respec-
tively. Parameters used are μ = 0.3 and α = 1.01, 1.05. Apparently, the 
changing trends of network efficiency E(G) under two C-L models 
are quite different. The collapse factor Cp shown in the figures means 
the rate of decline in network efficiency caused by cascading failures. 
Cp is the ratio of the difference between initial efficiency E(0) and 
steady efficiency E(T) after cascades spread to initial network effi-
ciency E(0), as the following equation (7) shows. This factor could 
clearly illuminate the degradation of network efficiency caused by 
cascading failures:

 ( (0) ( )) / (0)pC E E T E= −  (7)

We define that a range of ± 2 % on the steady value of network 
efficiency E(G) is the error band of network efficiency in this paper. 
Transition time rT  is the time when network efficiency remains stable 
again within the error band after cascades take place, which manifests 
that the network reaches the stationary state. Values of rT  obtained in 
the cascading simulations on BA networks subject to intentional at-
tacks are shown in Table 1. The unit of rT  is the simulation time step.

Table 2 shows experimental results of rT  and decrease extent of 
collapse in network efficiency (ΔEd) in the simulations on the BA net-
work (N = 100, E = 500) which is subjected to random failures. ΔEd 
is calculated according to the following equation (8):

 1 2 1( ) /Ed E E E∆ ∆ ∆∆ = −  (8)
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where 1E∆  is the decline rate of network efficiency caused by cascad-

ing failures when α = 1.01, and 2E∆  is the drop of network efficiency 
when α = 1.05.

5.2. Simulation on ER random network

Using the similar procedures, we perform cascading simulations 
on ER random networks [34] which are subjected to intentional at-
tacks as well as random failures, respectively. Simulation results of 
decrease extent of drops in network efficiency (ΔEd) and transition 
time rT  in the cascading process on ER networks under different C-L 
models are listed in Table 3 (under intentional attacks) and Table 4 
(under random failures).

5.3. Results analysis

According to the above cascading simulations on different 
kinds of networks, the following observations can be made:

As the tolerance parameter (1) α increases (1.01 to 1.05), the net-
work efficiency E(G) is reduced by 13.43% for the BA scale 
free network using the linear C-L model (1) (Fig. 3). Under the 
same condition, as shown in Fig. 2, the collapse rate of network 
efficiency is declined by 7.36% (for μ = 0.3) and 5.33% (for μ = 
0.5) when adopting the nonlinear C-L model (2). This implies 
that increasing the capacity of each network node in the same 
proportion may not greatly enhance the network performance. 
It is consistent with the existing findings [23, 25], which veri-
fies the feasibility of the proposed nonlinear C-L model (2). 
Simulation results on other BA networks with different scales 
and ER networks present the similar characteristics. 

As illustrated in tables 1-4, transition time (2) rT  under the im-
proved nonlinear C-L model (2) is shorter than that under the 
linear C-L model (1). It demonstrates that cascading failures 
triggered by intentional attacks or random failures spread rap-
idly on the two kinds of experimented networks. After cas-
cades occur, network efficiency E(G) will finally stay stable 
at a lower level. It is in compliance with the current findings 
[28, 40], which further verifies the feasibility of the proposed 
nonlinear C-L model (2).

Fig. 2. Changing curves of BA network efficiency under C-L model (2)

Fig. 3. Changing curves of BA network efficiency under C-L model (1)

Table 1. Transition time rT  of BA networks under two C-L models

α μ
Transition time rT

 Network 1 Network 2

Linear C-L model (1) 1.01 (1.05) * 9 (5) 5 (7)

Nonlinear C-L model (2)
1.01 (1.05) 0.3 4 (5) 5 (5)

1.01 (1.05) 0.5 4 (4) 4 (5)
Network 1: N = 100, E = 500. Network 2: N = 200, E = 1000.

Table 2. Decrease extent Ed∆  and rT  under two C-L models

α μ rT ΔEd

Linear C-L model (1) 1.01 (1.05) * 6 (6) 33.76%

Nonlinear C-L model (2)
1.01 (1.05) 0.5 5 (6) 5.33%

1.01 (1.05) 0.8 5 (5) 12.22%

Table 3. Decrease extent Ed∆  and rT  on ER networks

α μ
Network 1 Network 2

rT ΔEd rT ΔEd

Linear C-L model (1) 1.01 (1.05) * 5 (6) 27.9% 7 (6) 14.54%

Nonlinear C-L 
model (2) 1.01 (1.05) 0.8 4 (5) 6.64% 5 (6) 10.17%

Table 4. Decrease extent Ed∆  and rT  on ER networks

α μ
Network 1 Network 2

rT ΔEd rT ΔEd

Linear C-L model 
(1)

1.01 
(1.05) * 7 (2) 63.25% 7 (2) 68.76%

Nonlinear C-L 
model (2)

1.01 
(1.05) 0.5 6 (3) 35.23% 5 (2) 21.79%

Network 1: N = 100, p = 0.101, Network 2: N = 200, p = 0.0503. p is the probability 
that each edge is included.
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6. Verification of proposed resource reallocation 
strategy

When a network which is subjected to intentional attacks reaches 
a new stationary state, i.e., network efficiency stays at a lower level 
within error band after cascades occurred, we reallocate subsequent 
network capacities of the same amount to network nodes using our 
proposed resource reallocation strategy and other three existing real-
location strategies. By analyzing the upward trends of network effi-
ciency as well as eventual steady-state values, we compare effective-
ness of these four resource reallocation strategies in restoring network 
performance against cascading failures, and accordingly verify the 
performance of our proposed one.

6.1. Simulation method

The three existing resource reallocation strategies [11] for com-
parison are summarized as follows: (i) the newly added capacity of 
each node is linearly proportional to the node’s degree (CDlinr); (ii) 
the newly added capacity of each node is linearly proportional to its 
initial load (CLlinr); (iii) each node’s newly added capacity is equal 
(Ceql). The corresponding equations are as below: 

 , 1,2...i iC b D i N∆ = × =  (9)

 (0), 1,2...i iC b L i N∆ = × =  (10)

 , 1,2...iC c i N∆ = =  (11)

where iC∆  is the new capacity reallocated to node i, b is the scaling co-

efficient, iD  in Eq. (9) denotes the degree of node i, and c in Eq. (11) 
is a constant, signifying the new capacity added to each node.

Fig. 4 shows the averaged relationship between the newly add-
ed capacity (C’) and initial load (L(0)) of each node in the network, 
which is subjected to an intentional attack, in a logarithmic scale af-
ter reallocating equal capacity resource to network nodes based on 
the four reallocation strategies. The dotted black line (assuming C’ = 
L(0)) is the reference line.

As shown in Fig. 4 (the green curve with circles), the proposed 
new reallocation strategy (Cnlinr) reallocates more subsequent capac-
ities to the nodes with larger loads than the ones with smaller loads 
nonlinearly. It is based on the dynamics of network load redistribution 
and the corresponding relations with node capacity.

Fig. 5 shows the main steps of subsequent capacity resource real-
location simulation on different networks undergoing cascades which 
are caused by intentional attacks.

Specifically we first use the method introduced in section ‘Cas-
cading process’ to simulate the cascading process triggered by an in-
tentional attack on network G, adopting the improved nonlinear C-L 
model (2). When network G reaches a new stationary state after cas-
cades spread, we reallocate subsequent capacity resource of the same 
amount to network nodes according to the four resource reallocation 
strategies, respectively. Then we simulate the dynamic redistribution 
of network loads ensued as mentioned before, and calculate the short-
est paths in the network and network efficiency E(G) at every time 
step, until E(G) ascends to a higher level and remains relatively sta-
ble again. It means that network G relaxes to a steady state. By this 
way, the overall changing trends of network efficiency of scale-free 
networks, random networks and small-world networks which were 
subjected to intentional attacks, after reallocating subsequent capacity 
resource, can be obtained.

The application of our proposed capacity resource reallocation 
strategy is briefly presented as follows: as we get real-time infor-
mation of each network node’s load and capacity (e.g., voltage and 
capacity of substations in power grids) in real-life infrastructure net-
works, a proper combination of model parameters in Eq.(3) can be 
determined through the above described simulations. For this reason, 
we can obtain a theoretical reallocation proportion of newly-added 
capacities for each network node, which can provide guidance in de-
signing robust infrastructure networks, along with mitigating cascad-
ing failures in reality.

6.2. Simulation results and analysis

Fig. 6 illuminates the evolution trends of network efficiency E(G) 
after reallocating new resource to nodes based on the four strategies 
for a BA network (N = 100, E = 500) subject to cascading failures 
triggered by intentional attacks. The first three values of each trend 
curve are stable values of network efficiency when networks reach 
steady states after cascading failures occur. The corresponding rela-
tive increments of network efficiency (ΔR) are listed in Table 5. ΔR is 
calculated based on equation (12), where E(T) is the steady value of 
network efficiency after cascades spread, Ef is the final stable value of 
network efficiency after reallocating new capacities. Parameter values 
used are μ = 0.5, γ = 0.3, θ = 0.8, η = 2, and α = 1.01, 1.05. ΔC is the 
ratio between the overall newly added capacities and initial capacities 
in all.

Fig. 4. The relation between added capacity and initial load of each node

Fig. 5. The simulation steps of reallocating new capacities
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 ( ( )) / ( )fR E E T E T∆ = −  (12)

It can be seen from Fig. 6 that the changing curve (with green 
crosses) of network efficiency under the proposed resource realloca-
tion strategy is obviously different from others. Initially, it fluctuates 
severely, and then does cost a longer time to reach a stable level with 
higher final value (see details in Table 5). We also performed simula-
tions on BA networks with different scales and got the similar conclu-
sion that the proposed resource reallocation strategy (Cnlinr) can en-
able the network efficiency of BA networks to be upgraded the most.

Fig. 7 illustrates the comparative results for an ER network (N = 
100, p = 0.101) subject to an intentional attack on the node with the 
highest loads. Similar to Fig. 6, the first three values of those curves 
are final network efficiency when networks stay stable again after 
cascading failures occurred. In the cascading simulations, α = 1.05, 
μ = 0.5, γ = 0.3, θ = 0.6, η = 2.3, and ΔC = 20.35% is the overall in-
crements of new capacities in each of the four resource reallocation 
strategies. The values of the factor ‘rise’ presented in the figure are 
equal to ΔR.

As shown in Fig. 7, aside from the longer time is taken for network 
efficiency to stay stable, the proposed resource reallocation strategy 
(the green curve with crosses) could make the ER network suffering 
intentional attacks get the largest improvement in the network effi-
ciency, by comparison to results under other three reallocation strat-
egies. Additionally, similar conclusions are obtained in simulations 
on other ER networks with different scales, which further testify the 
suitability of the proposed resource reallocation strategy.

We continue to validate the proposed resource reallocation strat-
egy by conducting similar network capacity reallocation simulations 
on another type of networks called small-world networks. It is a type 
of network between regular network and random network with short 
average path length and high clustering coefficient. We choose WS 
small-world model [1] to generate small-world networks, which is 
a widely-accepted model with a probability parameter P. In the test 
network, N = 100, P = 0.5 which is the probability that each initial 
edge is reconnected. After reallocating subsequent resource based on 
four strategies separately, the dynamic redistribution of network loads 
follows. The corresponding four rising trends of network efficiency 
are obtained, as shown in Fig. 8. Similarly, the first three values of 
each curve in the figure are the final steady-state network efficiency 
after cascades spread triggered by attacks intentionally. The values of 
parameters used in the simulations are: α = 1.04, μ = 0.3, γ = 0.33, θ 
= 0.66, η = 1.9, ΔC = 24.97%. The values of factor ‘rise’ listed in Fig. 
8 present the values of ΔR as mentioned above. Other WS networks 
with different scales are also tested and similar findings are obtained.

It can be seen from Fig. 8 that except for the initial fluctuation, the 
green curve with crosses obtained by adopting our proposed strategy 
has the largest final value of network efficiency among all curves with 
the same initial efficiency values. It strongly verifies the performance 
of our proposed resource reallocation strategy again. 

In summary, as compared with the other three existing realloca-
tion strategies, the changing curves of network efficiency for different 
networks subject to intentional attacks under the proposed new reallo-
cation strategy may fluctuate more drastically, and reach steady states 
slower in the cases studied. Nevertheless, the corresponding steady-
state values of network efficiency under our proposed reallocation 
strategy are the highest, indicating that network performance can be 
restored the best after being damaged by cascading failures.

As illuminated in Eq.(3), under the proposed new reallocation 
strategy, the new subsequent capacity resources are reallocated to 
network nodes based on not only initial node’s capacity but also real-
time features of networks, i.e., the distribution of node’s load before 
and after failure propagation, as well as the nonlinear Capacity-Load 

Table 5. Relative increment ΔR of network efficiency under four strategies

Ceql CLlinr CDlinr Cnlinr ΔC α

ΔR
18.19% 20.55% 20.68% 24.87% 43.99% 1.01

17.13% 18.28% 18.41% 23.1% 37.07% 1.05

Fig. 6. Rising trends of BA network efficiency after resource reallocation

Fig. 8. Rising trends of WS network efficiency after resource reallocation

Fig. 7. Rising trends of ER network efficiency after resource reallocation
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relationship. In comparison, the other three strategies reallocate new 
capacities of the same amount just according to some fixed network 
properties without combining certain real-time key information of 
networks. The simulation results demonstrate the effectiveness of the 
proposed new resource reallocation strategy (Cnlinr) in improving the 
network efficiency against cascading failures triggered by intentional 
attacks.

7. Conclusion

In this paper, we first propose an improved C-L model based on 
the realistic, nonlinear relationship between capacity and load of net-
work nodes in many real-life infrastructure networks. We demonstrate 
its feasibility by simulating cascading failures on two typical types 
of networks, namely, scale-free networks and random networks, con-
sidering both intentional attacks and random failures. The proposed 
C-L model presents the practical flow behavior of network systems 
under normal condition, which could be used as a basis for analyzing 
network failures and their impacts on network performance. Accord-
ing to this improved nonlinear C-L model and some important dy-
namic characteristics of infrastructure networks, we further propose a 
network capacity resource reallocation strategy for network systems 
suffering intentional attacks for the purpose of maintenance. Experi-
mental results are obtained by simulating the proposed resource re-
allocation strategy on three widely-recognized types of networks, in 
comparison to other three existing resource reallocation strategies. 
These comparative results show that our proposed strategy could re-
allocate subsequently-added capacity more efficiently by identifying 

important network nodes as well as subsequently reallocating more 
new capacity to them. As a result, the proposed reallocation strategy 
could bring about a more marked improvement of network perform-
ance after it drops due to cascades. Further, our proposed capacity 
resource reallocation strategy could effectively reduce damages on 
infrastructure networks caused by cascading failures, which is of 
great importance to maintain real-world infrastructure networks with 
the consideration of limited investment cost. Findings from this re-
search have theoretical importance and could be practically useful 
for improving the reliability-based design of real-life infrastructure 
networks, along with defense of cascading failures in them from eco-
nomic perspective.

Some hypotheses have been made in the cascading simulations, 
e.g., we assume only one network node is initially removed from the 
network after it is attacked or breaks down, and the amount of new 
subsequent capacities is not particularly regulated in resource real-
location simulations. However, they are not necessarily the case for 
many infrastructure networks in practice. Therefore, one direction of 
our future work is to relax these assumptions. Besides, we mainly 
verify the performance of the proposed capacity resource reallocation 
strategy subject to intentional attacks. The study of its performance 
for random failures will be another direction of further research.
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