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instance, it is estimated that an amount of US$ 24.83 billion will be 
annually spent in the medical equipment maintenance market by 2022 
[20]. However, maintenance outsourcing for medical equipment is yet 
to be fully explored by current research (Cruz & Rincon [5]).

Warranty policies define responsibilities for both parties: the OEM 
and hospital managers. Indeed, the OEM is responsible for repair-
ing the devices’ eventual failures related to problems of equipment 
design, manufacturing and/or quality. The customers in turn should 
make proper use of equipment, i.e., they must comply to the specifica-
tions defined by the OEM (Rahman & Chattopadhyay [32]).

Given that, a new trend has been intensified by manufacturers, 
selling an additional, optional coverage, which begins after the expi-
ration of the base warranty, called Extended Warranty (EW) (Murthy 

1. Introduction

Medical equipment plays an important role in modern healthcare 
institutions because they present the following purposes: diagnosis, 
disease prevention, monitoring and patient treatment. During the 
last decades, as technology has advanced, the maintenance of such 
equipment has become too complex to be done in-house. Therefore, 
this activity has been commonly assigned to the Original Equipment 
Manufacturer (OEM).

In this context, the importance of studying more deeply the war-
ranty issue is reinforced by the role maintenance management plays in 
guaranteeing the quality of healthcare services. In diverse situations, 
human lives depend on the correct operation of medical devices. For 
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Due to its advanced technology, maintenance services of healthcare equipment have been commonly executed by the original 
equipment manufacturer (OEM), which can be characterized as a monopolist. In this context, hospitals require high availability of 
their equipment at a reasonable servicing cost, whereas OEM aims to maximize its profit by selling extended warranty (EW) serv-
ices for multiple consumers. The issue of drawing a maintenance contract between OEM and hospitals has already been treated 
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Ze względu na zaawansowanie technologiczne sprzętu medycznego, jego obsługą serwisową  zazwyczaj zajmuje się producent 
sprzętu oryginalnego (OEM), co czyni go monopolistą w tym zakresie. Podczas gdy szpitalom zależy na wysokiej gotowości sprzę-
tu przy rozsądnych kosztach obsługi,  OEM dąży do maksymalizacji zysku poprzez sprzedaż rozszerzonej gwarancji na usługi ser-
wisowe wielu klientom. Istnieją już badania, w których kwestię zawierania umowy o świadczenie usług serwisowych między OEM 
a szpitalami analizowano z zastosowaniem modelu Stackelberga. Jednak zwykle badania te zakładają, że stan po naprawie może 
być albo "jak fabrycznie nowy" albo"jak przed uszkodzeniem", co rzadko spotyka się w praktyce, zwłaszcza w przypadku placówek 
służby zdrowia i ich zaawansowanego technologicznie sprzętu. W związku z tym, w przedstawionej pracy, przyjęto uogólniony 
proces odnowy (GRP) do modelowania niepełnych napraw  oraz opracowano metodę symulacji zdarzeń dyskretnych w celu 
znalezienia najlepszych strategii dla każdego gracza: OEM ustala ceny rozszerzonej gwarancji oraz konserwacji na żądanie, tak 
by zoptymalizować swój zysk; szpital natomiast ustala, którą opcję powinien wybrać. W pracy przedstawiono również przykład 
zastosowania omawianego podejścia z wykorzystaniem rzeczywistych danych zebranych z angiografu, który służy do obrazowania 
naczyń krwionośnych i diagnozowania chorób serca.
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& Djamaludin [26]). Thus, the customer decides whether to pay an 
extra value at the purchase epoch (Murthy & Jack [27]), whereas the 
OEM will correctively maintain equipment for a given period even 
after the ordinary warranty expires.

It is important to emphasize that EW ends up creating a conflict of 
interests between the owner of the equipment and the OEM. Specifi-
cally, the customer needs a high availability of its equipment at a rea-
sonable servicing cost, whereas the manufacturer aims to maximize 
their profit with the addition of post-selling services. Consequently, 
EW affects both buyers’ and manufacturer’s outcomes (Ye & Murthy 
[41]), once the actions of one interferes in the results of the other. Due 
to this situation, Game Theory provides an appropriate approach to 
solve this problem (Forgó et al. [10]).

Among different games that can be used to model the interaction 
between agents, the leader-follower Stackelberg Game (SG) is a good 
option for drawing maintenance service contracts of medical equip-
ment. In this context, the OEM is commonly the only party able to 
perform maintenance, since it has the technical knowledge, expertise, 
technology and spare parts for the repair execution (Rinsaka & San-
doh [33]). The hospital in turn needs its medical device available in 
suitable condition to provide a good service. From these two perspec-
tives, an uneven power relationship is noted, which can be modeled 
via SG. The leader role is assigned to the OEM, which determines 
the terms of the EW, while the health institution acts as the follower, 
responding to actions taken by the OEM.

Quantitative studies about warranty, maintenance outsourcing and 
maintenance contracts are present by Kim et al. [18], Bouguerra et al. 
[3], Husniah et al. [14], Huang et al. [13], Moura et al. [23] and Darg-
houth et al. [6]. However, such studies have simplifying assumptions 
with respect to the state of the system after a corrective maintenance 
(CM) intervention. In fact, those papers considered that the system 
returns to either an “as good as new” condition (perfect repair) or 
an “as bad as old” condition (minimal repair); these two situations 
are modeled respectively according to a Renewal Process (RP) and a 
Non-Homogeneous Poisson Process (NHPP); Ross [34] describes RP 
and NHPP in details. The use of these assumptions may yield inad-
equate managerial decisions, which can result in significant losses in 
company profits because of incorrect definition of warranty policies. 

In practical terms, maintenance actions typically return the equip-
ment to an intermediate condition between the perfect and minimal 
repairs, which is called imperfect repair (Kijima & Sumita [17]; Wang 
& Pham [37]). Kijima & Sumita [17] proposed two methods to tackle 
imperfect repairs: Kijima type I and Kijima type II, which gave rise 
to the Generalized Renewal Process (GRP) and introduced the con-
cept of “virtual age”. Furthermore, these situations generalize RP and 
NHPP; other approaches may be seen in Pham & Wang [31]. 

In this paper, we aim to join SG and GRP to model imperfect 
repairs – a more realistic and general assumption. This approach con-
siders the interaction between OEM and multiple customers. The pro-
posed model will be characterized as follows. First, we considered the 
OEM offers to the hospital managers two maintenance options for the 
period after the ordinary warranty expires: (i) an extended warranty 
or (ii) on-call service. EW states that for a fixed price P , the OEM 
should repair all failures without any additional cost over the period 
of the contract; if a failed unit does not get repaired before a set time 
τ , a penalty, which increases over time, will be incurred. For the on-
call service, failures will be repaired at a fixed cost sC  each, with no 
penalty incurred in case of delays. Given a number of hospitals that 
buy the equipment, this model estimates *P  and *

sC , which are the 
maximal prices hospitals accept to pay for each maintenance option. 
Finally, we find the optimal number of customers, i.e., number of hos-
pitals that maximize OEM’s profit. 

To that end, we develop a Discrete Event Simulation (DES) based 
method to reproduce the GRP-queue system and obtain the perfor-

mance indicators of interest. Simulation models allow for analysis 
of systems with complex behavior, require fewer assumptions when 
compared with analytical models and are used as tools to perform 
experimentations with systems (Marsaro & Cavalcante [21]). Due 
to present model’s complexity, an analytical solution is unfeasible. 
In this sense, simulation is useful for describing equipment behavior 
(Ding & Kamaruddin [7]). Thus, a simulation approach is employed 
for obtaining a solution for the present model.

The remainder of this paper unfolds as follows. In Section 2, the 
theoretical background is provided, containing the adaption of the SG 
for the context of maintenance contracts, as well as the characteristics 
of GRP, emphasizing the method proposed by Yañez et al. [39]. Sec-
tion 3 presents the proposed model, the players’ optimal strategies 
and the equilibrium of the game. In Section 4, a numerical example is 
presented, using real data from an angiograph, which is a device used 
for blood vessels mapping and diagnosis of organ diseases. Finally, 
Section 5 concludes remarks.

2. Theoretical background

2.1.	 Generalized renewal process

RP and NHPP may be adopted to model perfect and minimal re-
pairs respectively. According to (Lins & Droguett [19]), such methods 
have simplifying assumptions that may be unreal in many practical 
situations such as the healthcare technology intensive environment. 
To overcome the limitations of RP and NHPP, Kijima & Sumita [17] 
developed a probabilistic virtual age based model, known as the Gen-
eralized Renewal Process (GRP) that deals with all classes of mainte-
nance actions. According to this model, q  (rejuvenation parameter) 
may generally assume values between 0 and 1:

  0q =•	  represents a perfect repair (as good as new);
 1  q =•	 corresponds to a minimal repair (as bad as old);

0   1 q< <•	  indicates imperfect repair (better than old, worse 
than new).

Cases, where   0q <  and  1 q > , are also possible corresponding 
to better than new and worse than old conditions respectively. Gen-
erally, GRP may be classified into two types (Kijima Type I and II), 
according to the method used to calculate the virtual age. These types 
can be seen in details in Moura et al. [22] and other virtual age-based 
representations could be found in Guo et al. [12], Tanwar et al. [35], 
Ferreira et al. [9], Oliveira et al. [29] and Wang & Yang [38].

This paper uses Kijima type I so that equipment virtual age fol-
lows Eq. (1), according to which maintenance actions only act on the 
degradation incurred during ix , which is the time between ( )th1i −  
repair and the  thi  failure:

	 1
1

    
i
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The Cumulative Distribution Function (CDF) for the time be-
tween the ( )1 thi −  and thi  failures can be determined from the CDF 
of the time until a failure conditioned on the virtual age 1iv −  as seen 
in Eq. (2):

	 ( ) ( ) ( ) ( )
( )

1 1
1 1

1
| |  

1
i i i

i i i i
i

F v x F v
F x v P X x X v

F v
− −

− −
−

+ −
= ≤ > =

−
     (2)

For our analysis, we consider the time to failure follows a condi-
tioned Weibull distribution because of its flexibility to fit various deg-
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radation stages. Then, Eq. (2) can be rewritten as Eq. (3). Note that, 
for  1 i = , we have the Weibull distribution itself because 0   0v =  . When there are reasonably sufficient failure data available, Maximum 
Likelihood Estimators (MLE) can be used to estimate GRP param-
eters α, β, and q. To that end, the procedure described in Yañez et al. 
[39] can be followed.

	 F x v exp v v x
i i
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In the proposed model, we consider a case with multiple clients 
and m  service channels, where maintenance teams may serve a total 
of M clients. If the number of failed units is greater than the service 
capability, a queue is formed. The waiting time in queue is decisive to 
the interests of both hospitals and OEM, since the former aims high 
availability of equipment and the latter wants to serve a higher num-
ber of customers. Therefore, a queuing formulation is employed to 
incorporate system behavior due to the interaction between service 
level and number of clients to be served.

Then, GRP governs the equipment failure process and the queue 
discipline follows a FCFS (first come first served) logic. We also con-
sider times to repair follow an exponential distribution. Thus, using 
the conventional notation, the queue can be described as GRP/Mark-
ovian/ m / iW∞ /M/FCFS. For this situation, analytical solutions are not 
available. Therefore, we proposed a DES-based algorithm is adopted 
to obtain the GRP-queue system measures; the DES formulation is 
described in Section 3.8.

2.2.	 Stackelberg game

SG is a non-cooperative sequential game developed by Hein-
rich von Stackelberg. It was originally proposed to evaluate the 
equilibrium of a duopoly, where competing companies decide the 
optimal quantity to be produced (Gibbons [11]) in a leader-follower 
interaction.

At the best of authors’ knowledge, Murthy & Yeung [28] were the 
first authors to introduce SG as a tool to model maintenance service 
contracts. Murthy & Asgharizadeh [25] expanded the problem by cre-
ating a game between a customer and a manufacturer by assuming 
perfect repairs. Ashgarizadeh & Murthy [2] and Murthy & Asghariza-
deh [24] incorporated multiple customers and service channels. Es-
maeili et al. [8] considered a three-level service contract between a 
manufacturer, a customer and an independent third agent. Moura et al. 
[23] used priority queues to analyze the interaction among OEM and 
two priority classes of hospitals. All aforementioned models intend 
to maximize the clients’ expected utility, considering parameters like 
risk aversion, revenue generated by the system, maintenance costs 
and times to repair. In such papers, the leader (OEM) provides the 
maintenance options for the follower (hospitals) and obtains the high-
est payoff, since it charges the prices that maximize profits.

Generally, in the context of complex medical equipment, the 
OEM has a well-trained staff, spare parts and dominates the equip-
ment technology. Thus, OEM behaves as a leader, acts first (by defin-
ing services and respective prices) and is the only maintenance service 
provider. Hospitals need to guarantee minimum levels of availability 
for their equipment. However, they do not have expertise in the main-
tenance of complex equipment. Therefore, hospitals can be consid-
ered as followers, since they react to the OEM’s action when choosing 
a service type to hire.

The SG’s solution is obtained through backwards induction (Os-
borne and Rubinstein [30]) corresponds to a sub-game perfect Nash 
equilibrium of a two-stage game, with perfect information and players 
with different profiles (Amir [1]). Finally, it is noteworthy to say that 
the papers cited earlier in this Section, which adapted SG to the field 

of maintenance outsourcing, make simplifying assumptions about the 
repair structure employed. At the best of authors’ knowledge, none 
of them adopted the imperfect repair assumption, a more realistic 
hypothesis, especially for complex systems. Thus, this paper aims to 
incorporate the GRP to model this situation and attempts to make the 
model more suitable to the medical environment.

3. Model description

3.1.	 Game formulation

This paper aims to determine the optimal strategies for the prob-
lem of EW for the medical context. Thus, we employ a SG formula-
tion to model the interaction between the OEM and each customer, 
and the game’s equilibrium will be reached by finding the reservation 
prices, i.e., maximum prices that customers accept to pay. 

This decision problem extends the model developed by Ash-
garizadeh & Murthy [2] by considering imperfect repairs. Addition-
ally, the problem is stochastic due to the uncertainty inherent to the 
presence of random variables in the model. Finally, decision makers 
(healthcare institutions and OEM) have their own objective function 
that will define the respective payoffs. Both OEM and healthcare 
institutions are aware about their alternatives, acting rationally, and 
choosing strategies that maximize their respective payoffs (Osborne 
& Rubinstein [30]).

3.2.	 Notation list

kA :	 Decision variable of the hospital;

bC :	 Purchase price of the equipment;

rC :	 OEM’s mean cost to repair a failed unit;

sC :	 Price charged by the OEM per repair;
max
sC :	 Hospital’s reservation price for the on-call service;

M :	 Number of customers;
*M :	 Optimal number of customers;

repn :	 Number of Monte Carlo replications;

,1jN , ,2jN :	 Number of failures occurred over the intervals 1W  and 

2W , respectively, for the thj  device ( thj  device is held by 

the thj  customer (hospital));

jN :	 Total number of failures during W  for the thj  device; 

,1 ,2j j jN N N= + ;  
P :	 Price of the extended warranty;

maxP :	 Hospital’s reservation price for the extended warranty;
:R 	 Revenue per hour;

0 :T 	 Time of the purchase of the equipment;

:aT 	 Time of next failure among available customers;

dT :	 Time of next completion of a maintenance intervention;
dt
jT  β =:	 Total downtime for thj  system.

,1
op
jT , ,2

op
jT :  Period that the thj  system is on operational state during 

1W  and 2W  respectively;
op
jT :	 Total period that the thj  system is on operational state;

,1
ov
jT , ,2

ov
jT : Overtime for the thj  device during 1W  and 2W  respec-
tively; 

ov
jT :	 Total overtime for the thj  system;
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U :	 Expected utility of the customer;

1W :	 Base (ordinary) warranty period;

2W :	 Extended warranty period;

( )1 2  W W W= + : Model analysis period;

ijY :	 Time between failure and completion of repairing the thj  
equipment after the thi  failure.

τ1 , τ2 :	Maximum time that the manufacturer has to return a failed 

device to an operational state without incurring penalty, when 
the failure occurs during coverage period 1W  and 2W , re-
spectively;

θ1 : Penalty per hour for the base warranty period;

θ2 : Penalty per hour for the EW period;

 Π�OEM : OEM’s expected profit;

 δ: Hospital’s risk-aversion parameter;

 ΠÐH : Hospital’s expected profit.

3.3.	 Problem description

OEM sells a technology-intensive medical device to multiple cus-
tomers (hospitals) for a cost of bC  per unit. Each device, when in 
operational state, generates a revenue of R  monetary units per time. 
Along with the purchase of the device, OEM provides a base warran-
ty, during which OEM is responsible for all repairs required with no 
charge for the client. If a failed equipment is not returned to opera-
tional state within a period τ1  after a failure occurs, OEM is charged 
with a penalty proportional to the overtime in repairing the equip-
ment, which is the period from τ1  to the time when the equipment 
returns to operation. Therefore, the penalty is θ τ1 1Yij −( )  when 

1ijY τ> , and zero, otherwise; θ1  is the penalty per time during over-

time; ijY  is the time between the occurrence of the thi  failure of 
equipment j  and the completion of its respective repair. This penalty 
exists because medical equipment is vital for patients’ treatment and 
for the hospitals’ profit, and then unavailability affects their payoff 
and reputation. 

After the expiration of the base warranty, each hospital may 
choose a type of repair service: i) EW or ii) on-call services. These 
options are described as follows:

1Ai)	 : EW – begins after the base warranty expires and has duration 
2W . The customer pays a fixed price P  and the OEM repairs all 

failed units over 2W  at no additional cost. If a failed device is not 
returned to operational state within a period τ2� after a failure 
occurs, the OEM is charged a penalty. Analogously to the base 
warranty, the penalty is θ τ2 2Yij −( ) , when 2 ijY τ> τ2�;

2Aii)	 : on-call services – the OEM executes each repair at a cost of 

sC  per intervention; no penalty is here incurred.

We also assume that option 0A  means the hospital chooses not to 
buy the equipment.

3.4.	 Hospital’s decision problem

Considering the options presented by the OEM, the hospital man-
ager decides whether to opt for either EW (A1), or on-call services 
(A2) or not to purchase the equipment (A0), where the latter occurs 
if its expected utility is negative over the period W. Each strategy 
has consequences to the payoffs. Indeed, each customer’s return, Π , 

depends on the option Ak, and thus the hospitals profit can be seen in 
Eqs. (4), (5) and (6):

	 ΠH A( )0
0= 	 (4)

	 ΠH A j
op

j
ov

j
ov

bRT T T C P( ) , ,1 1 1 2 2= + + − −θ θ 	 (5)

	 ΠH A j
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ov

b j sRT T C N C( ) , ,2 1 1 2= + − −θ 	 (6)

where:

T X Xj
op

i

N

ij j

j
= +

=
∑

1



T Yj
op

i

N

ij

j

,

,
,1

1
1

1
0= −( ){ }











=

∑max τ

T Yj
op

i

N

ij

j

,

,
, ( )2

1
2

2
0= −{ }











=

∑ max τ

For hospital (equipment) j, (1 j M≤ ≤ ), jN  is the total number 
of failures over the mission time W ; ijX  ( 0    ji N≤ ≤ ) is the time be-
tween the thi  repair and the ( )1 thi +  failure; jX  is the time between 
the last failure and W ; ,1jN  and ,2jN  are the number of failures 
occurred over 1W  and 2W  respectively; ijY  ( 0    ji N≤ ≤ ) is the total 
time to finish repairing the thj  equipment since the occurrence of 
the thi  failure, i.e., ijY  includes the waiting time in queue and repair 
time; op

jT  is the total operational time during W ; ,1
op
jT  and ,2

op
jT  are 

the respective operational times during 1W  and 2W ; ov
jT  is the total 

overtime during W ; ,1
ov
jT  and ,2

ov
jT  are the total overtimes during 1W  

and 2W  respectively.
We consider the hospital’s risk is modeled according to a util-

ity function U , which indicates how the customer chooses among 
distinct options; thus, the preferred options are represented by higher 
utilities. The utility function considered in this model has been used 
in Murthy & Asgharizadeh [25] and is shown in Eq. (7), where Π 
represents the associated wealth:

	 U e
Π

Π
( ) = −









−1 δ

δ
 	 (7)

Thus, the choice kA  is strongly affected by equipment availabil-
ity, pricing structure and the hospital’s degree of risk aversion (δ). We 
assume all customers are homogeneous with respect to their risk aver-
sion and all equipment units are identical regarding their reliability. 

3.5.	 OEM’s decision problem

The OEM is considered risk neutral and its expected profit is 
related to the customer’s optimal choice. Consequently, the OEM’s 
payoff can be denoted as Π ( ) Ð , , ,OEM s kP C M A , where ( ), , sP C M  
are OEM’s decision variables and 0,1,2k = . In this way, the manu-
facturer’s profits for each of the customer’s possible actions kA  are 
shown respectively in Eqs. (8), (9) and (10). Then, OEM may choose 
the combination P , sC , M  that maximizes its expected profit, tak-
ing into account the customer’s optimal strategy *A :

	 Π ( ) 0Ð , , ,  0OEM sP C M A = 	 (8)
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	 ΠOEM s
j

M
r j j

ov
j
ovP C M A P C N T T, ,, , ,1

1
1 1 2 2( ) = − − −

=
∑ θ θ 	 (9)

	 ΠOEM s
j

M
j s r j r j

ovP C M A N C C N C T, , , , , ,2
1

2 1 1 1( ) = −( ) − −
=
∑ θ    (10)

3.6.	 Assumptions

In order to make the model manageable, we consider some as-
sumptions:

Equipment is repairable and subject to imperfect repair. The I	
probabilistic failure modelling is handled by GRP;

The times between failures are random variables. The time to II	
first failure follows a Weibull distribution, as seen in Yañez et 
al. [39];

The times to repair are exponentially distributed with param-III	
eter μ;

The OEM has IV	 m  parallel service channels, i.e., in total 
they are capable of processing m  units simultaneously 
(one unit per service channel);

The equipment’s failures are critical. Moreover, the OEM V	
carries out just corrective maintenance interventions;

The manufacturer and the customer have complete infor-VI	
mation about the model’s parameters, which implies that 
the leader is aware about the customer’s risk parameter and 
the hospital knows the equipment reliability;

If there are more failed units than the number of servers, VII	
a queue following a FCFS is generated. This formulation 
describes a queuing system with finite population M .

3.7.	 Players’ strategies 

In order to find the optimal solution for the players and the 
game equilibrium, we determine how the hospital’s and OEM’s 
optimal strategies are defined, as well as understand their relation, 
and the degree of influence between them. Then, these strategies are 
shown as follows.

3.7.1.	 Hospital’s optimal strategy

The customer’s expected utility U  is derived from two random 
variables ( ijX , ijY ), the customer’s decision kA , and the pricing 
structure ( maxP ; max

sC ) imposed by the OEM. Given the assump-
tions of Section 3.6, the expected utilities for each decision are given 
in Eqs. (11), (12) and (13) obtained by using Eqs. (4), (5) and (6). 
For a pair ( P , sC ) determined by the manufacturer, the customers 
analyze their expected utilities and choose the option that returns the 
highest payoff.

	 E U A P M Cs0 0, , ,( )  = 	 (11)
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j
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1 1 1
1 1, , , exp exp ,( )  = − +( )  − + +
δ

δ δ θ θ22 2T j
ov
,( )( )



{ }

(12)

E U A P M C C E RT T N Cs b j
op

j
ov

j s2 1 1 2
1 1, , , exp exp , ,( )  = − [ ] − + −(δ

δ δ θ ))( )



{ }

(13)

The reservation prices depend on equipment expected number 
of failures jE N   , and the number of units sold M . Then, they 
are fairly influenced by the repair assumption. For instance, by con-
sidering imperfect repair ( 0 1q≤ ≤ ), it is expected that devices with 
the same shape β 1β >  and scale α 0α >  fail less frequently than in the 
context presented by Moura et al. [23], who considered minimal re-
pairs. Thus, the change in repair hypothesis can modify the expected 
payoffs, and consequently a change of strategies. The mathematical 
approach used to reproduce the imperfect repair is the GRP, a which 
makes use of DES and allows for modeling imperfect, perfect and 
minimal repair assumptions, adapting to a broader range of scenari-
os. Another point to emphasize corresponds to the reservation prices  
( maxP , max

sC ), which are defined by Varian [36] as the highest prices 
a consumer is willing to pay. These prices affect the decision for what 
strategy kA  is chosen. Thus, determine the hospital’s reservation 
prices is essential to find the OEM’s expected profit, once the pricing 
structure has strong influence on the healthcare’s institutions decision. 
Indeed, given the hospital’s reservation prices and the pricing struc-
ture imposed by the OEM, the EW model can be seen on its extensive 
form, as a sequential game tree in Figure 1a, which shows all possible 
decisions for the players. 

In the case the prices charged by the OEM are higher than the 
reservation prices (   maxP P> ;  max

s sC C> ), then the equipment is not 
purchased ( 0A ). Otherwise, if the EW price is superior than maxP , 
while max

sC  is not reached (   maxP P> ; max
s sC C≤ ), the hospital man-

ager should choose 2A . Analogously, when maxP P≤ ;  max
s sC C> , 

1A  should be chosen. Figure 1b presents the sP C−  plan, and shows 
that the customer’s optimal choice is characterized by three regions 
Ω0, Ω1 and Ω2. In Ω0, *

0kA A= ; in Ω1, *
1kA A= ; and in Ω2, *

2kA A= . 
The curve Γ is obtained by equalizing the expected utilities for options 

1A  and 2A , and represents indifference between the maintenance op-
tions since the same payoff is returned to the hospital.

3.7.2.	 OEM’s optimal strategy

Since the OEM is considered to be risk neutral, its optimal strat-
egy corresponds to the pricing structure that maximizes its expected 
profit ( maxP , max

sC ). To choose its optimal strategy, OEM compares 
the expected profit for each type of service provided, varying the 
number of customers M , and then the optimal number of customers 
is determined.

Considering assumption VI in Section 3.6 (complete informa-
tion), we conclude the OEM knows the hospital’s reservation prices. 
Thus, OEM builds a structure that captures all the consumer surplus, 
which implies in the maximization of the producer profit. 

Fig. 1.	 a) The game tree – maxP  and max
sC  represent the customer’s maximum will-

ingness to pay for the EW and on-call maintenance interventions respectively;  
b) Customer’s optimal options adapted from Murthy & Asgharizadeh [25]
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Given that, we use Eqs. (12) and (13) to obtain the reservation 
prices. Indeed, we equalize Eq. (12) to zero, and then isolate P  in 

order to determine maxPmaxP . Thus, the reservation price of the EW 
can be given in (14):

	 P C E RT T Tmax
b j

op
j
ov

j
ov= − − − + +( )( )





1
1 1 2 2δ

δ θ θln exp , ,      (14)

Now, we calculate max
sC  by using Eq. (13). However, since it’s 

impossible to isolate sC , we use a numerical method to find its ex-
pected value. Eq. (15) shows max

sC  equilibrium equation:

	 δ δ θC E RT T N Cb j
op

j
ov

j s
max+ − + −( )( )




=ln exp , ,1 1 2 0	 (15)

Notice that in Eqs. (14) and (15), maxP  and max
sC  can be ob-

tained provided the values of op
jT , ,1

ov
jT , ,2

ov
jT  and ,2jN , which are 

random variables. Therefore, we developed a DES-based algorithm, 
which is explained in more detail in the following Section, to obtain 
these values.

3.8.	 GRP-queue model simulation

As seen in Section 2.1, the presented formulation describes a 
queuing system with finite population ( M ), where times until fail-
ures follow a GRP. According to assumption III in Section 3.6, times 
to repair are exponentially distributed. If the number of failed units is 

greater than the number of servers ( m ), a queue is formed, and fol-
lows a FCFS rule.

In order to find the optimal reservation prices maxP  and max
sC , 

it is necessary to simulate the alternating failure-repair process con-
sidering a GRP/Markovian/ m / i W∞ /M//FCFS queuing system. We ad-
opted a DES-based approach to represent the behavior of the system 
of interest, allowing us for modeling and solving problems that would 
otherwise be considered intractable or too complex (Zio [42]). 

The DES algorithm we developed for queue simulation is shown 
in Figure 2. This proposed algorithm is similar to what was presented 
by Moura et al. [23], with two main changes: (i) our simulation model 
covers both base and extended periods, while the aforementioned pa-
per only simulates the extended period; (ii) our model is formulated 
for a single customer class, while the aforementioned work allows for 
two priority classes, which are not implemented here. Our formula-
tion is explained as follows.

At 0t = , all M  devices are considered new, the time to first fail-
ure for each equipment follows a Weibull distribution, queue is empty, 
and the first failure immediately begins its respective repair. Next, 
we track if the future events are failures or repairs based on the min  
( at  , dt ), where at  is the next time of arrival (occurrence of a failure) 
and dt  is the time of departure (next repair completion). Note that 

dt  is initially set to infinity in step 1.2, since there is no equipment 
being repaired; as a consequence, it will never be smaller than at . If 
a failure occurs when all service crews are busy, i.e., there are at least 
m  failed units, the just failed device waits in queue. If there is at least 
one available service crew when a failure occurs, this failed device 

will immediately begin its repair. 
This procedure will continue over the total period (W ). We 

also consider that if a failure occurs during 1W , but its respective 
repair is completed during 2W  with overtime, the penalty charged 
is θ1. During simulation, all events of interest (times of failures and 
repairs, number of failures for each device, downtime and overtime 
of each device) are logged so that they can be used to obtain infor-
mation about system availability, number of failures ( jN ), down-
time of equipment ( dt

jT ) and overtime ( ov
jT ). These are the main 

outputs of the simulation (step 3), used later to obtain the prices of 
EWs and on-call services.

After the queue is simulated, customer’s optimal strategy is 
defined. To that end, we estimate the reservation prices for each 
option offered by the OEM, which are given by Eqs. (14) and (15), 
using data from many replications ( repn ) of the simulation. The 
complete process used to find the optimal number of customers and 
their respective reservation prices is given in Figure 3, and is more 
detailed in Figure 4. Note that the prices that the customers are will-
ing to pay for each option depends on their risk aversion δ.

Initially, the population size (number of devices) is 1M = , and 
then the DES is repeated for the defined number of replications, 
resulting in estimates for maxP  and max

sC . Since the OEM has 
limited service capability (the number of service crews), M  can-
not be increased indefinitely because high values of M  result in 
longer waiting times in queue, thus reducing operational time and 
increasing the occurrence of penalties. Therefore, M  is increased 
and this process is repeated until the OEM’s profits decrease for 
both repair service strategies (so that optimal number of hospitals 
served is guaranteed to be found); this is possible since, increasing 
M  beyond its optimal value results in considerable increases in 
queue waiting times and OEM penalties (Ashgarizadeh & Murthy 
[2]). Finally, the optimal number of hospitals and the respective 
service prices are found by choosing the number of devices that 
result in the highest values for OEM’s profit.

Fig. 2. DES algorithm used to simulate the queue system
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4. Application example

4.1.	 Model’s parameters estimation

An application example is here presented by using a failure 
database of an angiography device, which is technology-intensive, 
and supports the treatment and diagnosis of cardiovascular dis-
eases. The angiogram, used for visualization of arteries based on 
x-rays, begins with introduction of an iodine contrast material injec-
tion into blood vessels though a catheter. X-ray angiogram provides 
anatomical information about blood vessels (Çimen et al. [4]). By 
watching the flow of the contrast fluid, the doctor can identify ob-
structions and narrowing, proceeding with treatment.

Angiography failures can result in incorrect diagnosis and in-
appropriate patient treatment, having negative consequences in 
the patient’s health and hospital’s reputation. Thus, angiographies 
are fundamental for hospitals profitability, and their unavailability 

represents a great loss of revenue, resulting in a 
negative economic impact.

Table 1 shows 38 times between critical fail-
ures and their respective times to repair. Consid-
ering this device is subject to imperfect repairs, 
we need to use the simulation-based solution 
proposed in the previous Section to reproduce 
the GRP-queue system. To that end, we first ob-
tain the MLEs for the GRP parameters by using 
the procedure described in Yañez et al. [39]. 

We also obtained the MLE’s for param-
eters α and β when the assumptions of perfect 
( )0q =  and minimal ( )1q =  repairs are ad-

opted. By restricting q  to fixed values, it is expected that MLE’s 
result in inferior likelihood, or at most as good as that of obtained 
by imperfect repair assumption, since parameter search space is 
restricted. The MLE’s for a , β and q  for each repair hypothesis 
are given in Table 2, which also shows the mean squared error 
(MSE) for simulation data with each repair assumption in relation 
to observed data. Note that the lowest MSE is obtained when we 
considered imperfect repairs, which attests that imperfect repair is 
the most suitable assumption for this case.

Next, we estimate the expected number of failures jE N    by 
using the procedure described by Yañez et al. [39], and we compared 
the results against the observed failure data in Table 1. Figure   5 
shows this comparison under assumptions of imperfect repairs.

For the application example, 
we will use the parameters shown 
in Table 3. The inputs given above 
were used to feed the simula-
tion algorithm described in Fig-
ure 2. In order to find the results, 
the procedures given in Figure 3 
and Figure 4 are executed using 

1,000,000repn =  replications and 
varying the number of equipment (
M ), and then maxP  and max

sC  are 
estimated for each M .

By using those parameters and 
GRP MLE’s, the optimal number of 
equipment, and hospital’s reserva-
tion prices obtained were respec-
tively: * 47M = , maxP =   $  183,991 
and max

sC  = $ 8,550. As it can be 

Fig. 3. Diagram of the optimization process

Fig. 4. Monte Carlo based algorithm for the optimization process

Fig. 5.	 Comparison between real and simulated times to failure under different re-
pair assumptions

Table 1.	  Failure dataset of an Angiography device

i th failure Xi (hours) Yi (hours) i th failure Xi (hours) Yi (hours) i th failure Xi (hours) Yi (hours)

1 576 4.25 14 24 1.5 27 192 1.45

2 552 2.25 15 1,320 1.5 28 1,152 1.25

3 1,368 4.75 16 864 1.5 29 72 4.75

4 1,104 6 17 1,152 1 30 120 2

5 1,872 3.25 18 216 2.5 31 720 4

6 1,152 2.25 19 120 4 32 192 1.25

7 384 2.25 20 888 4 33 408 2.5

8 504 1.5 21 48 1 34 2,424 5

9 144 2.25 22 432 7.25 35 456 0.25

10 312 3.5 23 432 2 36 96 0.5

11 2,688 4.75 24 648 2.25 37 264 3.5

12 744 3.5 25 432 1 38 480 2.5

13 1,320 1.25 26 264 1.5 – – –
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seen, the price of hiring an EW is near the range between 5% and 
12% of the purchase price bC , which is consistent to what hap-
pens in the clinical environment (Murthy & Djamaludin [26]). The 
OEM’s expected profit for the options ( 1A , 2A ) are respectively  

( )1OEME AΠ     = $ 2,979,171 and ( )2OEME AΠ    = $ 2,155,601. 
Then, the Nash Equilibrium occurs when the OEM sets P  = maxP  
and sC  > max

sC , returning an expected profit of $ 2,979,171. Finally, 
the optimal choice for the client is 1A  and the expected utility for the 
customer is zero, as the OEM extracts all the 
consumer’s surplus.

4.2.	 Sensitivity analysis

For better understanding on how sensitive 
the model is regarding parameters and repair 
assumptions, we present a sensitivity analysis. 
Note that in the tables presented throughout this 
analysis, base results are highlighted in grey.

4.2.1.	 Effect of q variation

First, in order to identify possible output 
changes, we disregard the MLE value found 

for q  in the previous Section, and vary the rejuvenation 
parameter q  as shown in Table 4. As seen in Section 2.1, 
the rejuvenation parameter measures the quality of repair. 
When q  approaches zero, the quality of repair increases, 
returning the failed unit almost to “as good as new”. Thus, 
the wear of equipment is reduced, and it is reasonable to ex-
pect a lower failure rate. As q  increases in turn the quality 
of repair decreases, and equipment suffers higher wear over 
time. Queue length, overtime ( dt

j iT W ) and amount of pen-
alty incurred rise under option A1, making the OEM serves 
fewer clients, which reduces their profit. For 𝑞 ≥ 0.16, the 
increased number of failures and amount of penalties are so 
high so that result in a change of strategy.

4.2.2.   Variation on the model parameters

Generally, consumers with high risk-aversion are less 
willing to pay for the services, reducing OEM’s profit. In 
this situation, the OEM tends to sell equipment to fewer 
customers. Table 5 shows how the players’ optimal strate-
gies change for different risk-aversion parameter values. 
For δδ ≤  0.08, strategy A2 is chosen since customers become 
more tolerant to risk, thus not choosing EW anymore. For 
this case, OEM can perform maintenance for a greater num-
ber of hospitals, thus increasing waiting time in queue and 
downtime. However, profit is still increased, since custom-
ers are not as risk-averse as in the other tested cases, ac-
cepting to pay more for services. For δ 0.08δ > , the hospital’s 
optimal strategy is to hire the EW (A1).

The variations on results due to changes in the device character-
istic life α are given in Table 6. Higher values of α result in longer 
times to failures, which in turn decreases the expected number of 
failures jE N   . Consequently, devices have increased availability 
and generated revenue, also increasing the OEM’s profits. Yet, the 
number of sold units M  increases along with α, and due to the oc-
currence of fewer failures, customers pay considerably more for on-

call repairs, since the total value they are willing to 
pay for repair services is now spread across fewer 
payments. â maxP = also increases with α increment, 
however at a lowest rate, because while devices fail 
less frequently, the OEM serves more devices as α 
increases, which causes more time spent in queues. 
For α α ≤  1,140, strategy 2A  is selected, due to in-
creased failure frequency and, consequently, higher 
amount of penalties to the OEM.

Changes in optimal strategies due to varia-
tions in the shape parameter β can be seen in 
Table 7. For higher values of β, equipment wears 

Table 2.	 Parameter estimates

Repair hypothesis α̂ β̂ q̂ MSE

Minimal Repair 1,622.55 1.309 1 1.62

Imperfect Repair 1,351.83 1.658 0.097 1.54

Perfect Repair 717.83 1.120 0 9.18

Table 3.	 Parameters for the application example

Angiograph sale price ( bC ) $ 1,476.49 (103)

Revenue per time ( R ) $ 0.094 (10³) h⁻1

Cost of the repair ( rC ) $ 2.5 (103)

Mean repair rate (μ) 0.2 h-1

Penalty per time (base warranty) (θ1) $1 (103) h⁻1

Penalty per time (under extended warranty) (θ2) $3 (10³) h⁻1

Hospital’s risk aversion (δ) 0.1

Period of the game (W ) 2 years = 17,520 h

Base warranty period ( 1W ) 1st year = 8,760 h

Extended warranty period ( 2W ) 2nd year = 8,760 h

Maximal time to repair the equipment under EW (τ τ τ1 2= = ) 12 h

Table 4.	 Optimal solution changes due to q variations

q M
maxP
$

max
sC
$

*A E π[ ]   $ jE N  
dt
jE T 

 
ov
jE T 

 

0.0 108 185,591 15,785 A1 9,281,009 14.09 124.11 31.64

0.1 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

0.15 34 183,407 7,222 A1 1,816,625 25.08 168.29 28.19

0.16 57 203,265 6,887 A2 1,679,855 25.60 232.35 62.65

0.2 49 203,694 6,233 A2 1,219,007 28.11 245.85 63.04

0.3 29 194,319 5,189 A2 500,567 34.12 246.42 46.99

Table 5.	 Optimal solution changes due to  δ  variations

δ M
maxP
$

max
sC
$

*A E π[ ]  $ jE N  
dt
jE T 

 
ov
jE T 

 

05 90 247,750 10,143 A2 4,655,854 21.34 254.98 94.56

0.08 82 215,350 8,969 A2 3,349,710 21.39 226.87 73.95

0.09 48 185,928 8,796 A1 3,047,552 21.51 154.68 29.21

0.10 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

0.15 45 178,207 7,543 A1 2,746,489 21.51 150.48 27.09

0.20 44 174,883 7,003 A1 2,612,681 21.51 149.12 26.42
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out faster, resulting in higher number of failures jE N   , which in 
turn causes greater unavailability. Thus, the probability of penalty 
being incurred also increases, and the OEM chooses to serve fewer 
customers. In fact, as β ≥ β ≥1.75, EW is no longer advantageous, 
and A2 becomes the optimal strategy; notice that the significant in-
crease in M  for β ≥1.75 occurs because the OEM pays no penalty 
at all for strategy A2, which allows it for serving more customers. 
The increase in maxP  when β ≥1.75 is due to the number of custom-
ers being served, which increases the likelihood of overtime, and 
the customers’ willingness to pay for services. Notice in Eq. (14) 
that maxP  increases along with the expected overtime in repairing 
the device E ov

jT 
  , which is higher as more customers are served, 

resulting in longer waiting times in queue.
Table 8 presents how optimal strategies change due to variation 

in the service rate μ. With higher values of μ, the service crew can 
repair a greater number of failed devices per time unit, decreasing the 
queue size. Therefore, the OEM can deal with a greater number of 

customers, increasing its own profit. On the other hand, when μ de-
creases, the service crew can repair fewer items per time unit. Notice 
that for μ ≤ 0.175, the service crew is too slow to repair the equipment 
by τ, resulting in a large amount of penalty under the option A1. Then, 
the OEM’s optimal strategy changes to set  maxP P>  and max

s sC C= , 
which induces the customer to choose A2, i.e., on-call services.

Table 9 shows how the optimal solution changes due to the maxi-
mum times to repair τ, which influences how long equipment waits 
(in queue or being repaired) without penalizing the OEM. The higher 
the value of τ, less penalty is incurred, because the frequency of those 
delays in returning the equipment to operational state will be lower. 
In other words, the OEM’s payoff increases as τ increases. When the 
acceptable tolerance τ is smaller, overtime and penalty increase under 
EW option. Then, for values of τ 10τ ≤ , it is best for the manufacturer 
to sell on-call repairs. 

Table 10 presents the behavior of optimal solution due to rev-
enue R  variations. Notice that with the increase of monetary incomes 
to the hospital, they are willing to pay considerably more for each  

Table 6.	 Optimal solution changes due to α variations

α (h) M
maxP
$

max
sC

$
*A E π[ ]  $ jE N  

dt
jE T 

 
ov
jE T 

 

1,100 49 201,301 6,648 A2 1,244,617 28.29 241.34 59.40

1,140 53 201,513 6,951 A2 1,485,647 26.95 235.11 59.75

1,150 31 183,076 7,101 A1 1,531,656 26.75 176.50 28.61

1,200 35 183,493 7,463 A1 1,857,136 25.25 170.36 28.77

1,300 43 183,963 8,168 A1 2,574,340 22.66 158.96 28.75

1,351.83 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

1,400 51 184,093 8,854 A1 3,373,132 20.53 148.59 28.37

1,500 60 184,386 9,545 A1 4,244,186 18.73 140.40 28.40

Table 7.	 Optimal solution changes due to β variations

β M
maxP
$

max
sC
$

*A E π[ ]  $ jE N  
dt
jE T 

 
ov
jE T 

 

1.5 58 184,520 9,247 A1 3,945,706 19.60 146.41 29.37

1.6 51 184,329 8,791 A1 3,296,711 20.82 151.21 29.01

1.658 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

1.7 45 184,073 8,369 A1 2,770,587 22.00 155.66 28.60

1.74 43 184,033 8,188 A1 2,588,444 22.46 157.59 28.54

1.75 72 204,856 8,019 A2 2,569,419 22.46 221.40 66.84

1.8 69 205,154 7,808 A2 2,454,541 23.03 224.62 66.48

Table 8.	 Optimal solution changes due to μ variations

μ (h⁻1) M
maxP
$

max
sC

$
*A E π[ ]  $ jE N  

dt
jE T 

 
ov
jE T 

 

0.15 46 209,088 8,484 A2 1,350,270 21.38 232.33 77.10

0.175 60 204,565 8,450 A2 2,024,136 21.40 217.29 66.91

0.19 42 185.088 8.536 A1 2540.077 21.50 157.04 30.39

0.2 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

0.225 60 181,767 8,508 A1 4,149,651 21.52 145.25 24.65

0.25 73 179,841 8,525 A1 5,408,147 21.53 138.11 21.44
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option. Since hospitals generate more revenue with operation of their 
devices, they become willing to pay significantly more for mainte-
nance services. Notice, however, that hospital’s decision did not 
change with variations in R .

Finally, Table 11 and Table 12 show the changes in optimal solu-
tion due to variations on penalty parameters θ1 and θ2 respectively. 
Even though θ and τ both influence the total amount of penalties, their 
effects are distinct. High values for θ1 increases the importance of 
repairing the equipment by τ, since delays will be severely penalized. 

For smaller values of θ1, the OEM is able to serve a greater number of 
hospitals due to the decrease in penalties. However, when the number 
of hospitals increases, the penalty during 2W  also increases (since 
the reduction in penalty rate is only for 1W , in this case), which may 
cause strategy 2A  to be selected. This happens for θ1 ≤ 0.7. In the case 
of θ2, when it rises too much, strategy 2A  is chosen, since penalties 
during 2W  increase considerably. This occurs for θ2 ≥ 3.3.

Table 9.	 Optimal solution changes due to τ variations

τ (h) M
maxP
$

max
sC

$
*A E π[ ]  $ jE N  

dt
jE T 

 
ov
jE T 

 

8 66 218,036 8,729 A2 2,252,960 21.45 185.89 74.04

10 74 211,672 8,553 A2 2,535,263 21.42 204.35 72.04

11 45 187,130 8,590 A1 2,721,277 21.51 150.48 31.25

12 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

14 51 178,860 8,461 A1 3,461,705 21.50 159.11 24.06

16 55 174,856 8,369 A1 3,900,469 21.49 165.46 20.81

Table 10.	Optimal solution changes due to R variations

R ($ 103 /h) M
maxP
$

max
sC

$
*A E π[ ]  $ jE N  

dt
jE T 

 
ov
jE T 

 

0.093 43 164,882 7,846 A1 2,191,878 21.52 147.80 25.77

0.0935 45 174,420 8,197 A1 2,576,855 21.51 150.48 27.09

0.094 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

0.0945 49 193,620 8,885 A1 3,397,473 21.50 156.13 29.95

0.095 51 203,276 9,206 A1 3,830,324 21.50 159.11 31.51

Table 11.	Optimal solution changes due to θ1 variations

θ1($ 103 / h) M
maxP
$

max
sC

$
*A E π[ ]  $ jE N  

dt
jE T 

 
ov
jE T 

 

0.5 87 208,257 8,130 A2 3,354,136 21.36 243.67 86.11

0.7 85 208,439 8,227 A2 3,079,027 21.37 236.67 80.98

0.75 48 183,288 8,471 A1 3,034,574 21.51 154.68 29.21

1 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

1.25 46 184,484 8,553 A1 2,914,144 21.51 151.84 27.77

1.5 46 185,253 8,593 A1 2,844,846 21.51 151.85 27.77

Table 12.	Optimal solution changes due to θ2 variations

θ2 ($ 103 / h) M
maxP
$

max
sC

$
*A E π[ ]  $ jE N  

dt
jE T 

 
ov
jE T 

 

1 74 187,862 8,434 A1 5,604,879 21.42 204.35 58.55

2 58 186,192 8,464 A1 3,972,368 21.48 170.56 37.78

3 47 183,991 8,550 A1 2,979,171 21.51 153.24 28.47

3.2 46 183,978 8,516 A1 2,823,874 21.51 151.84 27.77

3.3 74 201,541 8,444 A2 2,766,223 21.42 204.36 58.40

4 74 203,169 8,436 A2 2,758,993 21.42 204.36 58.56

5 74 204,831 8,436 A2 2,758,993 21.42 204.36 58.56
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5. Concluding remarks

In this paper, a decision model for an Extended Warranty involv-
ing hospitals and OEM was proposed. For modelling this situation 
and determining the players’ optimal strategies, a SG formulation was 
employed, with the OEM being the leader and the hospital the fol-
lower. This situation is commonly found in the market of technology-
intensive equipment, which is characterized by a greater bargaining 
power for the manufacturer, which is the only part capable of per-
forming maintenance interventions adequately. 

In order to approximate the problem to a more realistic context, 
we considered the equipment is subject to imperfect repairs, and to 
model this issue, two approaches were joined: GRP and queueing 
theory. Additionally, an application example was presented with real 
failure data of an angiograph to determine the optimal strategies for 
each player and demonstrate applicability of the model. Furthermore, 
we perform a series of sensitivity analyses by showing how model 
results and players’ strategies behave under different scenarios.

Some limitations of the presented approach may also be pointed 
out. In real-world situations, customers do not present homogeneous 

risk behavior, consequently, different customers often choose differ-
ent strategies. Also, different agents commonly have access to differ-
ent levels of information (asymmetric information), so that it is diffi-
cult to predict the actions of other players. Based on these limitations, 
and also intending to extend the present model, the following features 
could be implemented:

Consideration of information asymmetry by employing a princi-•	
pal-agent formulation (Jiang et al. [15], Jin et al. [16]).
Analysis of consumer usage rate, along with the definition of a •	
two-dimensional warranty policy (Yang et al. [40]).
A dynamic SG with a greater time horizon to analyze the pos-•	
sibilities for renewal of the extended warranty, analyzing the 
behavior of the players during longer periods.
Incorporation of a heterogeneous market, with different profiles •	
of customers, represented by different risk-aversion parameters.
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