
Paper Traffic Engineering

in Software Defined Networks:

A Survey

Mohammad R. Abbasi1, Ajay Guleria2, and Mandalika S. Devi1

1 Department of Computer Science and Application, Panjab University, Chandigarh, India
2 Computer Center, Panjab University, Chandigarh, India

Abstract—An important technique to optimize a network and

improve network robustness is traffic engineering. As traf-

fic demand increases, traffic engineering can reduce service

degradation and failure in the network. To allow a network

to adapt to changes in the traffic pattern, the research com-

munity proposed several traffic engineering techniques for the

traditional networking architecture. However, the traditional

network architecture is difficult to manage. Software Defined

Networking (SDN) is a new networking model, which decou-

ples the control plane and data plane of the networking de-

vices. It promises to simplify network management, intro-

duces network programmability, and provides a global view

of network state. To exploit the potential of SDN, new traf-

fic engineering methods are required. This paper surveys the

state of the art in traffic engineering techniques with an em-

phasis on traffic engineering for SDN. It focuses on some of

the traffic engineering methods for the traditional network ar-

chitecture and the lessons that can be learned from them for

better traffic engineering methods for SDN-based networks.

This paper also explores the research challenges and future

directions for SDN traffic engineering solutions.

Keywords—application awareness, Software Defined Network-

ing, traffic engineering.

1. Introduction

A major problem with underlying communication network

is the dynamic nature of the network applications and their

environment. This means that the performance require-

ments of the transferred data flows, like Quality of Ser-

vice (QoS), can vary over time. The applications operate

in a wide range of environments, i.e. wired and wireless

with a variety of networking devices. For the applications

to perform effectively, the underlying network should be

flexible enough to dynamically change in response to any

changes in the application requirements and their environ-

ment. The current approaches are either based on static

or overprovisioned overlay networks, or require the appli-

cations to change in accordance with the network perfor-

mance.

An important way to address this problem is through traffic

engineering (TE). It is the process of analyzing the net-

work state, predicting and balancing the transmitted data

load over the network resources. It is a technique used to

adapt the traffic routing to the changes in the network con-

dition. The aim of traffic engineering is to improve network

performance, QoS and user experience, by efficient use of

resources, which can reduce operation cost too. The QoS

techniques assign the available resources to the prioritized

traffic to avoid congestion for this traffic. However, these

techniques do not provide additional resources to the traffic

that requires QoS. The traditional routing techniques do not

provide any mechanism to allocate network resources in an

optimal way.

To address this problem the research community started

working on traffic engineering and proposed new ways to

improve network robustness in response to the growth of

traffic demands. Traffic engineering reduces the service

degradation due to congestion and failure, e.g. link failure.

Fault tolerance is an important property of any network. It

is to ensure that if a failure exists in the network, still the

requested data can be delivered to the destination.

Computer networks consist of numerous networking de-

vices, such as switches, middle boxes (e.g. firewalls) and

routers. Traditional network architecture is distributed, as

shown in Fig. 1, where each networking device has both

the control plane and the data plane. The control plane is

the intelligent part of networking devices. It makes decision

about forwarding and routing of data-flow. The data plane

is the part of a networking device that carries user traffic.

It executes the control plane’s commands and forwards the

data.

Network operators have to manually configure these multi-

vendor devices to respond to a variety of applications and

event in the network. Often they have to use limited

tools such as command line interface (CLI) and some-

times scripting tools to convert these high-level configura-

tion policies into low-level policies. This makes the man-

agement and optimization of a network difficult, which can

introduce errors in the network. Other problems with this

architecture can cause oscillations in the network, since

control planes of the devices are distributed, innovation is

difficult because the vendors prohibit modification of the

underlying software in the devices.

To overcome these problems, the idea of network pro-

grammability was introduced, particularly with the intro-

duction of Software Defined Networking (SDN) [1]. SDN

allows a network to be programmed so that its behavior can

3



Mohammad R. Abbasi, Ajay Guleria, and Mandalika S. Devi

Fig. 1. Traditional network architecture.

Fig. 2. An example of SDN architecture.

be changed actively on demand and in a fine-grained man-

ner. It is a new networking model, where the control plane

and the data plane are separated. The idea behind SDN

is to simplify network management and enable innovation,

i.e. to develop and deploy new network applications and

services with ease, also to manage and optimize network

performance through high-level policy enforcement.

To optimize these heterogeneous networks, both classic net-

works and SDN-based networks, a number of TE tech-

niques have been introduced. Most are based on tweaking

wide area TE and routing mechanism, such as Equal Cost

Multi-Path routing (ECMP), Intermediate System to Inter-

mediate System (IS-IS), and Multi protocol Label Switch-

ing (MPLS) [2], [3].

From traffic engineering point of view, even though these

techniques perform well, they suffer from several limita-

tions such as, they take routing decision locally, and it is

difficult to change the link weights dynamically. In addi-

tion, while sending traffic these techniques consider few

criteria, such as link capacity.

SDN separates the control plane and data plane of net-

working devices and introduces a well-defined interface,

the OpenFlow protocol [4], between the two planes. The

SDN architecture (Fig. 2) and the OpenFlow takes the

intelligence, control functions, out of networking devices

and place them in a centralized servers called controller,

and provides centralized control over a network. The

SDN/OpenFlow controller acts as an operating system for

the network. It executes the control applications and ser-

vices, such as routing protocols and L2 forwarding. This

configuration abstracts the underlying network infrastruc-

ture. Therefore, it enables the applications and network

services to treat the network as a logical entity.

One of the most widely used SDN enabler is the Open-

Flow v.1.3 protocol. It allows the controller to manage the

OpenFlow switches. The OpenFlow switches contain one

or more flow tables, a group table, and a secure OpenFlow

channel (Fig. 3). The flow tables and the group table are

used for packet lookup and then to forward the packets.

The OpenFlow channel is an abstraction layer. It estab-

lishes a secure link between each of the switches and the

controller via the OpenFlow protocol. This channel ab-

stracts the underlying switch hardware. As of OpenFlow

version 1.5, a switch can have one or more OpenFlow chan-

nels that are connected to multiple controllers.

SDN is, generally, a flow-based control strategy. Through

the OpenFlow a controller can define how the switches

should treat the flows. In a SDN when a source node sends

4



Traffic Engineering in Software Defined Networks: A Survey

Fig. 3. Main OpenFlow switch components.

data to the destination, the switch sends the first packet to

the controller, since it doesn’t know how to treat this packet.

The controller calculates the path for this packet and installs

the appropriate rules in the switches on the packet’s path.

The new networking paradigm, SDN, has introduced new

characteristics such as:

• separation of the control plane functionality, and the

data plane functionality;

• centralized architecture allows the controller to have

a central view of the deployed network. The con-

troller has the global view of the network devices,

servers, and virtual machines;

• network programmability, SDN provides an open

standard, which allows external applications to pro-

gram the network;

• facilitates innovation, new protocols and control ap-

plications can be introduced because OpenFlow pro-

vides the required abstractions, so we do not need to

know the switch internals and configuration;

• flow management, through the OpenFlow a controller

can define flows in different granularity, and how the

switches should treat the flows.

The rest of the paper surveys some of the TE techniques,

and it is organized as follows: Section 2 provides some of

the TE mechanisms available for the classic network archi-

tecture and the assimilation from them. Section 3 describes

an overview of SDN TE solutions. In Section 4, research

challenges and future directions are discussed. Sections 5

and 6 conclude the paper.

2. Review of Classic Traffic Engineering

Techniques

Classic traffic engineering techniques are based on tweak-

ing wide area TE and routing mechanism such as ECMP or

existing routing protocols such as IS-IS or MPLS [2], [3],

[5], [6]. The Open Shortest Path First (OSPF) and IS-IS

routing protocols do not adapt to the changes in the net-

work condition because the link weights are static and

these protocols lack any performance objectives while se-

lecting the paths. The traffic engineering extensions to

IS-IS and OSPF standard, extends these protocols by in-

corporating the traffic load while selecting a path. In these

approaches during link state advertisements, routers adver-

tise the traffic load along with link costs. After routers ex-

change link costs and traffic loads, then they calculate the

shortest path for each destination. These standards require

the routers to be modified to collect and exchange traffic

statistics [5], [6].

Fortz et al. [7] propose a traffic engineering mechanism that

monitors network wide view of the traffic pattern and net-

work topology, then changes the link weights accordingly.

This mechanism is based on the interior gateway proto-

cols, like IS-IS. The authors says that classic inter-domain

gateway protocols are effective traffic engineering tools in

a network, and ensure robustness in terms of scalability

and failure recovery. The introduced mechanism keeps the

router and routing protocols unchanged. The mechanism is

a centralized approach where it monitors the network topol-

ogy and traffic, then optimizes the link costs to provide the

best path possible to address the network goals. Routing

protocols, like OSPF, select the path with minimum cost.

If multiple paths with the same minimum cost are avail-

able then the traffic can be equally distributed among these

paths. This is the concept behind ECMP. As depicted in

Fig. 4, ECMP is a routing technique which balances the

load over multiple paths by routing the packets to multiple-

paths with equal cost. Various routing protocols such as

OSPF and IS-IS explicitly support ECMP routing [8].

Fig. 4. An example of ECMP – there are two paths with equal

cost to the destication node C, i.e. (A, F, C) and (A, F, E, D, C).

Multi-protocol Label Switching, MPLS, provides a tunnel-

ing mechanism. It creates end-to-end connections between

the nodes. MPLS can integrate short path labels with IP

routing mechanism, where the ingress routers assign short

fixed labels to the packets, instead of long network ad-

dresses. The networking devices use this label to forward

the packets to the destination through label-switched path

(LSP). This reduces the routing table lookup overhead.

The MPLS based traffic engineering, MPLS-TE, first re-

serve the resources for end-to-end path and then transfer

the data. It establishes a labeled switched path over links

5



Mohammad R. Abbasi, Ajay Guleria, and Mandalika S. Devi

with sufficient bandwidth. This technique assures that

enough resources are available for a flow. Since MPLS-

TE works on available bandwidth in one aggregated class,

it does not support QoS [9]. To provide QoS capabil-

ity DiffServe-aware MPLS-TE techniques have been in-

troduced, which combine both the Differentiated Services

(DiffServ) and MPLS traffic engineering techniques to pro-

vide QoS [10]. Dongli et al. [9] analyze the QoS perfor-

mance of DiffServe-aware MPLS traffic engineering tech-

niques. The experimental results show that DiffServ-aware

MPLS-TE can provide good QoS for traffics such as VoIP

and other data, but due to the variable bit-rate property of

the video data, these techniques cannot guarantee QoS for

video data. As compared with conventional routing proto-

col MPLS is more flexible in selecting paths, since it sets

up virtual circuit paths to send the traffic. The disadvan-

tage of MPLS is that network operators need to manage the

resource allocation to each path, and change the network

configuration to adjust the path to the traffic condition. Be-

cause MPLS-TE transfers the aggregated traffics along allo-

cated LSPs, it suffers from scalability and robustness [11].

In MPLS-TE it is necessary to use backup links so that if

any link fails the traffic can be transferred through different

paths.

An important way to balance the traffic over network re-

sources is to disseminate the traffic over multiple paths.

Gojmerac et al. [12] introduce an adaptive multi-path rout-

ing, which allows dynamic traffic engineering. Unlike other

solutions, using global network information, the proposed

technique focuses on local information in each node. This

means the routers exchange information about links only

to their immediate neighbors. So the nodes only have the

information regarding their neighbors. During multi-path

routing any neighboring node which is closer to the des-

tination has a smaller cost than the current node. This

neighboring node is considered as a viable candidate for

the next hop. The advantage of taking routing decision

based on local information is that it can reduce the signal-

ing and memory overhead. The downside to the approach

is, since the nodes do not have the global knowledge of

the network state, it may not result in optimum routing of

the traffic. Also due to the inherent limitation of the tra-

ditional network architecture it cannot adapt to the rapid

changes in the traffic pattern and it can cause oscillation in

the network.

Frank et al. in a [13] propose a content-aware traffic en-

gineering technique for content distribution/delivery net-

works. The content providers duplicate the contents over

distributed server infrastructures to provide better services

to the users in different locations. The authors argue that

it is essential for the content providers to know network

topology and measure network state before mapping user

request to the servers, which can introduce new challenges

such as assigning users to the servers and performing traf-

fic engineering. ISPs have the knowledge of the individ-

ual links status and network topology. This information

can separate the server selection task from content delivery

task, and help the content providers to focus on mapping

the user to a server that provides better user experience.

The introduced traffic engineering uses the information pro-

vided by ISPs along with the user’s location to dynamically

adapt to the traffic demand for the contents on the servers.

This framework focuses on the traffic demand rather than

routing, and uses the knowledge of the content providers

(e.g. server status), and ISPs’ knowledge (e.g. the network

state and the user’s location). For this reason this frame-

work can complement the existing routing protocols and

traffic engineering because it emphasizes on traffic demand

rather than on traffic routing. Routing protocol such as

OSPF and IS-IS are used to produce a routing matrix. With

this matrix it tries to adjust a set of flow demands to re-

duce the maximum link utilization. The results of the ex-

periments show that this framework has improved the user

experience while reducing maximum link utilization and

traffic delay.

Several energy-aware traffic engineering solutions have

been proposed in [14]–[16]. These solutions incorporate

traffic engineering to reduce the energy cost while trying

to keep the network performance unaffected.

Vasic et al. [16] introduce an online traffic engineering tech-

nique. It spreads the load among multiple paths to reduce

the energy consumption without affecting traffic rate. It pre-

sumes that energy-aware hardware is used in the network.

These devices are capable to adjust its operating rate to its

utilization, also they can sleep whenever it is possible to

save energy. To enhance energy saving and keep the trans-

fer rate steady, it transfers the data over multiple paths. The

authors propose a number of techniques where they shift

data to the links with low energy consumption, or they try

to remove the traffic from as many possible links to allow

the links and routers to sleep.

Most of the discussed approaches agree on the point that to

engineer traffic in an efficient way a network-wide approach

is required. When short-term changes happen in traffic vol-

ume the traffic engineering solution should quickly decide

on how to route the traffic to different paths to balance link

utilization. Under such circumstances where traffic pattern

changes frequently, it is important for the traffic engineering

solution to be stable. Otherwise, it can cause oscillation.

Traffic oscillation can have a number of undesirable effects

on the network, for example, switch-buffer overflow, out-

of-order packets, poor allocation of network resources to

the users, traffic delay and service degradation [17]. The

solutions that have the above characteristics are difficult

to implement in the traditional network architecture since

we need to have access to global information in real-time,

which is a tedious work in this paradigm. To find an opti-

mal solution, most of the proposed solutions are based on

local measurements, i.e. require the networking devices to

decide independently on how to send the packets. In the

traditional networks, generally, the link costs are kept static

for a long period. Since the link cost is fixed, the traffic is

transferred through the same path for a long period, until

the link costs are changed.

6



Traffic Engineering in Software Defined Networks: A Survey

For a traffic engineering technique to have an optimum

effect on the network, it should have the following charac-

teristics:

• it should utilize multi-path diversity in the network,

• it should make routing decisions based on the global

view of the network,

• it should consider the flow values.

3. Review of Traffic Engineering

Techniques in SDN

In SDN-based networks the controller can dynamically

change the network state, for example, in traditional net-

works the link cost for routing protocols such as IS-IS are

kept static for a long period. If congestion happens in the

network it may lead to poor delivery of data till the link

costs are changed or the problem is resolved. However,

in SDN these values can be changed more dynamically to

adapt to the changes. More innovative routing mechanism

can be implemented, or the existing routing protocols can

be modified, so that they can change dynamically as per

network state to enhance resource utilization, avoid failure

and congestion, and improve QoS. With the advances in

SDN several traffic engineering techniques have been in-

troduced by the research community. Table 1 summarizes

some of the TE techniques in SDN.

To connect their Data Centers across the world and meet

their performance requirements, Google introduced a Soft-

ware Defined WAN architecture called B4 [18]. B4 is

designed to resolve the problems in Wide Area Network

(WAN) such as reliability, failures, and performance. It

assigns bandwidth to the competing services, dynamically

shifts traffic pattern, and overcomes network failure. B4

is designed to allow rapid deployment of new or standard

protocols and control functions. One of such introduced

functionalities is a traffic engineering mechanism, which

allows applications to dynamically adapt in response to

changes in the network behavior or failure. This architec-

ture employs the routing and traffic engineering as separate

services. The TE is layered on top of the routing proto-

cols. This enables the network with a fallback strategy.

If the TE service faced with a serious problem, it would

be stopped so that the packets are forwarded using short

path forwarding mechanism. This architecture consists of

3 logical layers:

• global layer, allows centralized control of the entire

WAN through logically centralized applications such

as the Central Traffic Engineering server (CTE) and

SDN gateway (it allows centralized control of the

network);

• site controller layer which includes the OpenFlow

controller and network control applications such as

routing services;

• switch hardware layer includes the switches, and per-

forms traffic forwarding.

CTE is responsible for tasks such as measuring the unoc-

cupied network bandwidth for multi-path forwarding, as-

signing and adjusting resource demands among the ser-

vices, and actively relocating traffic from failed links and

switches. SDN gateway provides the network topology

graph for CTE. CTE uses this graph to compute the ag-

gregated traffic at site to site edges. Then, an abstract of

the computed result is fed to TE optimization algorithm to

fairly allocate resources among the competing application

groups/services. To achieve fairness it allocates resources

using Min-Max fairness technique. Based on the applica-

tions’ priority it allocates bandwidth to the applications. It

uses hashed-based ECMP to balance the load among mul-

tiple links.

Hedera [19] is introduced to make an effective use of the

bandwidth in a data center. Hedera detects the elephant-

flows at the edge switches. The Hedera implementation

uses periodic pulling, where it collects statistics every five

seconds to detect large flows. At first switches send a new

flow using its default flow matching rules on one of its

equal-cost paths, until the flow size grows and meet the

threshold. Then, the flow is marked as elephant-flow. The

default threshold is 10% of network interface controller

(NIC). At this point Hedera’s central scheduler uses its

global view of the network and calculates a better path

for the flow and route the traffic. To effectively use the

bandwidth the scheduler calculates the path in a way that it

is non-conflicting, and it can accommodate the flow. This

method can improve the bandwidth utilization, but because

it uses periodic pulling, it can cause high resource utiliza-

tion and overhead.

The main design goal of DevoFlow [20] is to improve

network scalability and performance by keeping the flows

in the data plane as much as possible without losing the

centralized view of the network. This reduces the interac-

tion between control plane and data plane. DevoFlow uses

aggressive use of wildcards to reduce the controller and

switches interactions. Therefore, switches take routing de-

cision locally, while controller manages the overall control

of the network and routes the significant flows, i.e. elephant-

flows. It uses techniques such as packets sampling to col-

lect switch statistic and detect the elephant-flows. The flows

that have transferred a certain number of bytes is marked

as large flow. The suggested threshold is 1–10 MB. In the

beginning DevoFlow forwards the traffic using DevoFlow’s

multi-path wildcard rules. When an elephant flow is de-

tected the controller will calculate the path that is least

congested, and re-route the traffic to this path.

The flow detection mechanisms used in Hedera and De-

voflow have high resource overhead. To overcome this

problem Mahout [21] modifies the end-hosts to detect

elephant-flows. It uses a shim layer in the operating sys-

tem to mark the significant flows. The shim layer moni-

tors the TCP socket buffer and marks the flows when in

a given period the buffer exceeds the rate threshold. It

7



Mohammad R. Abbasi, Ajay Guleria, and Mandalika S. Devi

Table 1

Overview of traffic engineering techniques in SDN

Technique Description Routing Comments

B4 [18] • it uses a centralized TE, layered on

top of the routing protocols,

• to achieve fairness it allocates re-

sources using Min-Max fairness

technique.

• it uses hashed-based ECMP to

balance the load among multiple

links.

• if TE service can be stopped so that

the packets are forwarded using

short path forwarding mechanism.

Hedera [19] • detects the elephant-flows at the

edge switches,

• if threshold is met, i.e. 10% of

NIC bandwidth, the flow is

marked as elephant flow,

• uses periodic pulling, every 5 s.

• uses the global view of network

and calculate the better paths,

which are non-conflicting, for the

elephant flows.

• it achieves 15.4 b/s throughput,

• achieves better optimal bisection

of bandwidth of network, in com-

parison to ECMP,

• periodic pulling can cause high

resource utilization in switches.

DevoFlow [20] • detects the elephant-flows at the

edge switches,

• if threshold is met, i.e. 1–10 MB,

it marks the flow as elephant-

flow.

• it uses aggressive use of wild

carded OpenFlow rules, and a

static multi-path routing algorithm

to forward the traffic.

• it can improve throughput up to

32% in CLOS network.

Mahout [21] • detects the elephant-flows at end-

host using a shim layer, the default

threshold is 100 k, and then the

flow is marked as elephant-flow,

• it uses in-band signaling to inform

the controller about the elephant-

flows.

• it computes the best path for

elephant-flow; otherwise it for-

wards other flows using ECMP,

• it calculates the path that is least

congested by pulling the

elephant-flow statistics and link

utilization from switches.

• it can detect elephant flow, if

threshold is 100 k, in 1.53 ms,

• it has 16% better bisection than

ECMP.

MicroTE [22] • detect the elephant flows at end-

host,

• it calculates the mean of traffic

matrix between ToR-ToR, if the

mean and traffic is between δ of

each other, default is 20%, then

it is predictable.

• uses short term predictability to

route the traffic on multiple paths,

• the remaining flows are routed by

the EMCP scheme with heuristic

threshold.

• if traffic is predictable it perform

close to optimal performance other-

wise it performs like ECMP.

MiceTrap [23] • it addresses the mice-flows,

• uses end-host elephant-flow detec-

tion to distinguish between mice-

flows, and elephant-flows.

• it aggregates the mice-flows to

improve scalability,

• it route the mice-flows using a

weighted multi.

• N/A.

Rethinking Flow • it is a tag-based classification, • the tag is also an identifier for • it is 3 ms faster than the OpenFlow

Classification • source-edge switch tags the packets matching & forwarding the field matching,

in SDN [26] based on the application classes. packets • it requires introduction of new

API’s to the data plane.

Atlas [25] • it classifies each application

uniquely.

• it uses C5.0 machine learning tool

to classify the applications,

• it requires user to install agents on

their mobile devices to collect infor-

mation to train ML trainer.

• it routes the flow based on applica-

tions, and network requirements.

• it has about 94% accuracy,

• requires extension to OpenFlow.

MSDN-TE [32] • it gathers network state informa-

tion and considers the actual path’s

load to forward the flows on mul-

tiple paths.

• it dynamically selects the best

shortest path among the available

paths.

• it has better performance over other

forwarding mechanisms such as

Shortest Path First,

• it reduced download time by 48%.

uses an in-band signaling mechanism to mark the flows as

elephant-flows and inform the controller about the signif-

icant flows. Mahout uses ECMP to route normal traffic.

When an elephant-flow is detected the controller calculates

the best path for this flow. To calculate the best paths the

controller pulls the elephant-flow statistics and link utiliza-

tion from the switches to select the least congested path.

This method can detect the elephant-flows faster, with lower

8



Traffic Engineering in Software Defined Networks: A Survey

processing overhead than other method. But, it requires

modification of the end-hosts.

In [22] Benson et al. present a traffic engineering mecha-

nism for data center network called MicroTE, which uses

an end-host elephant flow detection to detect the elephant

flows. It exploits short-term prediction, and quickly adapts

to the changes in traffic pattern. To efficiently handle the

network load, it takes advantage of multiple paths in the

network and coordinates traffic scheduling by using global

view of traffic across the available network paths. The au-

thors argue that the traffic nature of data center networks

is bursty, and during long-run time the traffic is unpre-

dictable, above 150 s, but it is predictable in short-time

scale of 1–5 s. The TE methods for ISPs do not perform

well in data center environments because they work on the

granularity of hours, but TE for Data Centers should work

on granularity of seconds.

Unlike MicroTE, MiceTrap [23] incorporates the end-host

flow detection to handle mice-flows and uses OpenFlow

group table (multi-path group type) to aggregate the in-

coming mice-flows for each destination. The authors be-

lieve that TE mechanism, which handles elephant-flows,

can cause congestion to mice-flows, i.e. short-lived flows.

Also the resources should be distributed according to flow

values. Managing mice-flows using ECMP and giving pref-

erence to elephant flows can degrade QoS. MiceTrap archi-

tecture consists of end-host elephant flow detection module,

multi-path aggregates implemented in OpenFlow switch,

and a controller. It uses the kernel-level shim layer ap-

proach to mark the elephant flow detection. The shim

layer method monitors the TCP socket buffer and marks

the flows when in a given period the buffer exceeds the

specified threshold. Multi-path Mice-flow Aggregator, ag-

gregates the incoming mice-flows for each destination. This

reduces the rules for traffic management because if each

mice-flow is managed by an exact flow rule, it will cause

a bottleneck and limit the scalability. The advantage of us-

ing group table is that it saves bandwidth since one single

group message can update a set of flows when the traffic

distribution is changed. It uses a weighted routing algo-

rithm which forwards aggregated traffic into multiple paths

by considering the current network load while calculating

the paths.

These are effective solutions for data center networks, but

they share the network resources based on the flow size

and do not consider the flow-value. An important way

to consider the flow-values is to classify the applications.

Two promising techniques for application classification are

Deep Packet Inspection (DPI) and Machine Learning (ML)

classification method. In comparison to techniques such

as port-based classification, these techniques have a high

classification accuracy. DPI methods inspect the payload of

packets and search for known patterns, keywords or regular

expressions that are characteristic of a given application.

These methods are more accurate, but with higher overhead

(in terms of memory and processing). ML methods exploit

several flow-level features to classify the traffic. To classify

the flows these methods look for known flow behavior such

as packet counts, data bytes, TCP flags, etc. [24].

In the work [25] Qazi et al. try to investigate how to in-

tegrate application awareness in SDN-based networks and

how to classify traffics with high accuracy. A framework

called Atlas is introduced, which is capable of classify-

ing the traffic in the network and enforcing higher layer

policies. The presented framework uses a ML tool called

C5.0 to classify the flows based on the application types.

It shows 94% accuracy. The Atlas framework can classify

each specific application. It can classify each VoIP appli-

cation uniquely rather than classifying them as a common

VoIP flows. Such framework should be scalable so the

application detection and enforcing application-aware pol-

icy is done in a smooth and uninterrupted manner. They

have deployed the framework in the HP Lab wireless net-

work. It requires the users to install software agents on their

mobile devices. These agents collect information such as

active network sockets, Netstat logs for each application.

The agents send this information to the controller, where

the controller runs machine learning trainer. The OpenFlow

switch statistics are extended to store first n packet size

of each flow and announce it to the controller. The con-

troller collects such flow features along with the information

sent by the agents to train the ML tool by using the ML

trainer.

Hamid et al. in [26] introduce a tag-based classification

architecture, where the source-edge switches tag the pack-

ets based on the application classes. This way the network

operator can apply different policies for each of the appli-

cation classes. The tag is also used as an identifier for

matching the packets which reduce the matching overhead.

After a tagged packet is delivered to the destination edge

switch, the switch removes the tag and performs the re-

quired actions, if there is any action, and sends the packet

to the destination host. The experimental result shows this

tag-based approach is 3 ms faster than the hash-based field

matching methods like OpenFlow field matching, and re-

duces processing overhead. To solve the backward compati-

bility, unlike MPLS, the tag is added to the end of packet

instead of its middle. This way, if the variable length packet

is supported, there is no need for whole packet parsing.

Otherwise, the whole packet should be parsed. The down-

side of this approach is that it requires changes in the

switch internal by introducing a new API to the switch

data plane. This API is an application layer processor in the

data plane.

A promising way to address challenges and problems in

distributed environments, such as a computer network, is

with the help of intelligent agents, i.e. Multi-Agent System

(MAS) and mobile agents. Bieszczad et al. [27] describes

how intelligent agents can be used to facilitate network

management. It explains the potential of Intelligent Agents

to tackle various difficulties in different network manage-

ment areas such as fault management, security, performance

management, accounting, etc. SDN provides a good plat-

form for the agents to tackle such difficulties.

9



Mohammad R. Abbasi, Ajay Guleria, and Mandalika S. Devi

In [28] Skobelev et al. propose a task-scheduling system for

SDN-based networks. This system incorporates MAS to

overcome task-scheduling problems in the distributed sys-

tems, i.e. where the servers and computational resources

are distributed. The MAS task scheduler associates the ba-

sic system entities with an agent. It consists of three main

agents:

• task agent represents the task that should be pro-

cessed with minimum cost by a server in the network,

• resource agent provides the system with a server to

process tasks,

• commutator agent is responsible for providing infor-

mation about network state and task allocation to the

nodes.

This system is developed in C#, .NET framework, as a Win-

dows application.

The research [29]–[31] show that by providing application-

awareness and feedback from clients’ machines to the net-

work, the user Quality of Experience (QoE), and resource

utilization can be improved. These works use agents on

user side to collect information (like audio/video quality,

waiting time, etc.) and send this information to the con-

troller to adjust the network state accordingly to improve

users’ QoE.

To address traffic forwarding and traffic engineering in

SDN, Dinh et al. [32] introduced a multipath-based for-

warding traffic engineering mechanism called MSDN-TE.

The goal of this mechanism is to forward the traffic in such

a way that it avoids congestion on any link in the network.

MSDN-TE dynamically selects the best available shortest

paths and forwards the incoming traffic. This TE mecha-

nism gathers network state information and considers the

actual path’s load to forward the flows on multiple paths.

The MSDN-TE is a module which extends OpenDayLight

controller. It consists of three components:

• a monitoring function which is used for gathering in-

formation about network states and flows in the net-

work; for example, flow’s static, link utilization, net-

work topology, etc. The path matrices are refreshed

every 10–15 s;

• the TE algorithm calculates n number of paths, which

have the lowest traffic load, between the source and

destination node. To select the shortest paths Epp-

stein [33] algorithm is used;

• the actuating function supports TE algorithm mod-

ule. It takes certain actions and dynamically al-

lots flows to the selected paths. Compared with the

Shortest Path First and spanning tree, MSDN-TE

shows better performance in regard to download time,

delay and packet drops. For example, it reduced

packet drops by 72.9% in AGIS [34] simulated topol-

ogy and more than 90% in Abilene [34] simulated

topology.

4. Traffic Engineering Research

Challenges

As SDN becomes widely used, the research community

and industry introduce new protocols and control applica-

tions like TE mechanisms. However, like any new tech-

nology the potential of SDN to simplify and improve net-

work management comes with new challenges that need

to be addressed. In this section, some of the challenges

and future directions for traffic engineering in SDN are

discussed, namely, fault-tolerance, energy-awareness, flow-

update scheduling and consistency, and data-flow schedul-

ing and dissemination.

4.1. High-availability

Fault tolerance is an important feature of any computer

network. It means if an unexpected error or problem hap-

pens, like the failure of a link or a switch, the services in

the network will continue to be accessible. The faults in

a network can cause congestion and packet loss. These con-

ditions can last for seconds due to the time it takes for TE

mechanism to respond to the faults and update the network,

i.e. update the topology and switches. In a SDN-based net-

work two types of failure are control plane failure and data

plane failure, like failure of links and switches. Besides

physical/logical failure of control plane, control plane fail-

ure can also refer to a situation when the controller fails

to update switches in the right time, so the switches con-

tinue to forward the traffic with the old rules. This can

lead to congestion because the link capacity is not con-

sidered. There are two approaches to address the faults

in the network: proactive where the paths are calculated

and reserved beforehand, and reactive where the resources

are not reserved until failure happens. The paths are cal-

culated dynamically or decided in advance. Proactive ap-

proach has faster fault recovery since the paths are already

calculated. When a fault occurs there is minimum interac-

tion between the controller and the switch. This approach

is about 5 times faster than reactive approach [35], [36].

But, reactive approach has a lower cost because the link

capacity is not reserved, so it requires less memory in the

control plane.

In [37] Liu et al. have introduced a proactive fault man-

agement TE mechanism, known as forward fault correc-

tion (FFC), which handles both data plane and control

plane faults. In this approach if the number of faults is

smaller than a configurable bound f , it can ensure protec-

tion against failure and congestion in the network. Depend-

ing on the value of f , and the traffic distribution flowing in

the network, FFC provisions a certain amount of link capac-

ity to avoid failure in the network. However, since the link

capacity is pre-provisioned it can have lower throughput.

Kim et al. in [38] introduced a fault-tolerance framework

called CORONET, which uses a centralized controller to

forward packets and can work with any network topology.

CORONET recovers from switch or link failures in a short

period. It uses multi-path routing methods. Its architecture

10



Traffic Engineering in Software Defined Networks: A Survey

consists of modules to discover network topology, route

planning, shortest-route path calculation, and traffic assign-

ment. To simplify packet forwarding, and minimize the

number of flow-rules CORONET uses VLANs mechanism

in the switches. Therefore, it is also scalable.

A traffic engineering framework should detect faults in the

network and re-route the sensitive applications’ traffic by

avoiding the failed areas to allow these applications to work

seamlessly and avoid service degradation. SDN charac-

teristics such as failover mechanism introduced in Open-

Flow protocol, global view of network, and its capability

to dynamically change network state facilitate failure re-

covery. However, it is still challenging since the controller

needs to calculate the new paths and install the flow-rules in

the switches. The TE should achieve low communication

overhead with a trade-off between the latency and memory

usage.

4.2. Energy-awareness

To guarantee QoS in a network, high-end networking de-

vices that have a high power consumption are used. To re-

duce delay and increase reliability, these resources are usu-

ally over-provisioned to increase network capacity. How-

ever, this leads to concerns about greenhouse gas emis-

sion and power wastage. A number of researches show

that non-negligible percentage of world power consump-

tion and CO2 emission is due to information and commu-

nication technologies [39]. This motivated the researchers

to propose new algorithms and devices to address these

difficulties [14]–[16]. These techniques adapt the network

elements’ active time according to the traffic load.

The techniques proposed for classical network architecture

are not as effective as they can be. There are few studies

on energy-aware techniques for SDN-based networks. In

[40] Giroire et al. have introduced an energy-aware rout-

ing technique for SDN that gathers traffic matrix, calculate

the routing paths to guarantee QoS, and put the idle links

and nodes into sleeping mode. This technique considers

both memory limitation of routers and link capacity. SDN

features such as centralized view of network and network

programmability can help to introduce new efficient cen-

tralized energy-aware TE techniques that allow a network

to dynamically adapt to the traffic load and network condi-

tion with the goal of achieving good performance and use

network resources effectively to reduce power consump-

tion. The centralized TE mechanism can shut down a set

of switches and links, when the traffic demand is low to

reduce power utilization while satisfying user experience.

4.3. Data-flow Scheduling

After the rules are installed in the switches, a switch will

match and send the incoming packets to the destination. An

important way to ensure QoS in a network is flow schedul-

ing, where the packets that require better QoS are scheduled

and transferred first. Flow priority is the main scheduling

method [41], [42]. In this method, the flows with higher

priorities are sent first. SDN provides a good platform

to introduce new software-controlled flow schedulers that

are capable of flow-oriented multi-policy scheduling. This

abstraction can help to introduce advanced network config-

urability.

Bo-Yu et al. [43] have introduced an Iterative Parallel

Grouping Scheduling Algorithm, IPGA-scheduling. It is

designed to address the prioritized flow scheduling prob-

lem, which is required for QoS differentiation among differ-

ent prioritized flows, and also energy saving in data center

networks. This system is a Compute Unified Device Archi-

tecture (CUDA) system within SDN controller. CUDA is

a parallel computing architecture developed by Nvidia for

graphics processing.

In [42] Rifai et al. proposes coarse-grained scheduling. The

authors argue that the data center networks and the Inter-

net traffic nature mostly consist of short flows and most

of the flows are carried by TCP. Therefore, the emphasis

of this scheduling system is on flow-size scheduling. This

system uses switch’s OpenFlow flow statistics to identify

the flow-size along with multiple queues per port to imple-

ment 802.1p QoS. The 802.1p standard delegates 8 queues

per port. Two size-based schedulers are introduced. Both

of these schedulers have two queues per port, and it is as-

sumed that they are managed by strict priority scheduler.

Using a scheduler can improve the network performance.

The majority of the schedulers are developed around the

idea of “one size fits all”, or consider only the flow size,

and the flow value. The type of the application is ignored.

These approaches examine, mostly, packet’s priority and

port workload while assigning the flows to a port. For

example, in a VoIP network, the VoIP applications need

to have the highest priority to ensure QoS. Even though

priority-based solutions can address these requirements,

they require precise configuration of the network which is

time-consuming and error-prone.

4.4. Flow-update

In an operating network, the controller may change the

configuration of the switches several times through flow-

updates. Flow-update refers to updating the current switch

configurations, forwarding rules, with new configurations.

Flow-updates are important for various tasks such as fault

management, adapting to changes in traffic pattern, etc.

Flow-update is a challenging task since improper update of

multiple flows can cause problems such as congestion, ser-

vice degradation, and inconsistency in the network. Hence,

flow-update scheduling is an important issue to be ad-

dressed. If a new rule is assigned for each flow it can

increase the resource cost (e.g. processing and memory)

in both the data plane and control plane. Also, the time

that it takes for a flow to be added in a switch adds to the

latency. There should be a tradeoff between load-balancing

and latency.

The most common approaches for flow-update schedul-

ing problem is the two-phase update mechanism, where

controller first installs the new forwarding-rules into the

11



Mohammad R. Abbasi, Ajay Guleria, and Mandalika S. Devi

switches, if all packets that require the old rules are trans-

ferred, then the new installed rules will be used and the old

forwarding-rules are removed from the switches. Compared

to the one-phase approach, the advantage of this approach

is that the chance of the controller to fail in updating the

switches is lower. However, Li et al. [44] argue that the

two-phase update mechanism is not effective, since it does

not consider the switch’s flow-table size. Thus, to address

the multi-flow update problem, a step-by-step approach is

introduced. This problem is formulated as an optimization

problem to minimize the maximum link utilization, which

is an important network performance metric. In this ap-

proach the controller schedules the flow updates and then

updates each flow step by step, i.e. the path of a flow is

changed to the new one in a step, so if there are n flow up-

dates then the process is completed in n steps. This method

considers both the link capacity and the flow-table size.

In [45] Mahajan believe that flow-update, to ensure consis-

tency, has a number of properties such as loop free, packet

drop free, switch memory limitation, load balancing, etc.

Depending on the type of a network, different consistency,

or combination of the consistency properties are needed,

for example load-balancing or loop free network.

5. Conclusion

In this paper we have reviewed literature in the field of

traffic engineering for both traditional network architecture

and SDN, and examined some of the TE challenges and fu-

ture directions. SDN is a new networking paradigm which

simplifies the network management and enables innova-

tion. It tries to address many problems in the traditional

network architecture by simplifying network management

through centralized management of a network, introducing

network programmability, and providing a global view of

a network and its state. New traffic engineering techniques

are required to exploit these features for better control and

management of traffic. Different TE mechanism should be

included in SDN to control congestion and manage traffic

for different applications in various QoS-sensitive scenarios

such as video or business data, and to provide required QoS

while balancing the load among the available resources in

a network. To improve the network load handling, a traffic

engineering mechanism should enable a network to react in

real-time and classify a variety of traffic types from differ-

ent applications. Routing optimization is one of the main

techniques in TE. It should take advantage of multiple paths

in the network and coordinate traffic scheduling by using

global view of traffic across the available network paths.

Beside load-balancing and optimization of resources, other

components of TE are QoS and resilience form failure.

SDN is currently capable of enforcing policy for lower lay-

ers, i.e. Layer 2-4, but not many studies have explored the

higher layer policy enforcement. By identifying the pack-

ets sent by the applications to the network, it is possible

to enforce higher layer, application layer, policies. Higher

layer policy enforcement can help to engineer resilient and

flexible network. Such networks can be optimized for each

application to provide a good QoS and improve user experi-

ence. The authors described how an end-host flow detection

mechanism and Multi-Agent System can improve network

performance and scalability while reducing complexity.

6. Future Work

In terms of future work, authors plan to propose an efficient

traffic engineer framework, which makes the SDN-based

networks more application-aware. In this work a multi-

agent based software framework consisting of a number of

algorithms for application classification, and data schedul-

ing and dissemination will be developed. The agents are

responsible for application classification of user’s traffic.

Then, the data scheduling and dissemination algorithms

will calculate the best path and order to process and forward

the flow to the destination. All these modules will work

together to ensure high-availability, load-balancing and op-

timizing resource utilization, and also to ensure high-QoS

rating for QoS sensitive applications. This framework can

help to automate the network configuration to achieve high

QoS for the desired applications. By combining techniques

such as scheduling, application classification, and MAS,

a network can deliver better services.

References

[1] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and

T. Turletti, “A survey of software-defined networking: Past, present,

and future of programmable networks”, IEEE Commun. Surv. &

Tutor., vol. 16, no. 3, pp. 1617–1634, 2014.

[2] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing

OSPF weights”, in Proc. 19th IEEE Ann. Joint Conf. of the IEEE

Comp. & Commun. Soc. INFOCOM 2000, Tel Aviv, Israel, 2000,

vol. 2, pp. 519–528.

[3] X. Xiao, A. Hannan, B. Bailey, and L. M. Ni, “Traffic engineering

with MPLS in the Internet”, Network, vol. 14, no. 2, pp. 28–33,

2000.

[4] O. N. Foundation, “OpenFlow – open networking foundation” [On-

line]. Available: https://www.opennetworking.org/sdn-resources/

openflow (accessed Aug. 23, 2016).

[5] K. Ishiguro, A. Lindem, A. Davey, and V. Manral, “Traffic engineer-

ing extensions to OSPF Version 3”, RFC 5329, IETF Trust, 2008

[Online]. Available: https://tools.ietf.org/html/rfc5329

[6] T. Li and H. Smit, “IS-IS extensions for Traffic Engineering”, RFC

5305, IETF Trust, 2008 [Online]. Available: https://tools.ietf.org/

html/rfc5305

[7] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with

traditional IP routing protocols”, Commun. Mag., vol. 40, no. 10,

pp. 118–124, 2002.

[8] D. Thale and C. Hopps, “Multipath issues in unicast and multicast

next-hop selection”, RFC 2991, IETF Trust, 2000 [Online]. Avail-

able: https://tools.ietf.org/html/rfc2991

[9] D. Zhang and D. Ionescu, “QoS performance analysis in deployment

of DiffServ-aware MPLS Traffic Engineering”, in Proc. 8th ACIS Int.

Conf. on Software Engin., Artif. Intell., Netw., & Parallel/Distrib.

Comput. SNPD 2007, Qingdao, China, 2007, vol. 3, pp. 963–967.

[10] F. Le Faucheur et al., “Multi-Protocol Label Switching (MPLS) Sup-

port of Differentiated Services”, RFC 3270, IEFT Trust, 2002 [On-

line]. Available: https://tools.ietf.org/rfc/rfc3270.txt

[11] I. F. Akyildiz et al., “A new traffic engineering manager for Diff-

Serv/MPLS networks: design and implementation on an IP QoS

Testbed”, Computer Commun., vol. 26, no. 4, pp. 388–403, 2003.

12



Traffic Engineering in Software Defined Networks: A Survey

[12] I. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl, “Adaptive mul-

tipath routing for dynamic traffic engineering”, in Proc. Global

Telecommun. Conf. GLOBECOM’03, San Francisco, CA, USA,

2003, vol. 6, pp. 3058–3062.

[13] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann,

and B. Maggs, “Enabling content-aware traffic engineering”, ACM

SIGCOMM Comp. Commun. Rev., vol. 42, no. 5, pp. 21–28, 2012.

[14] M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: Power-aware

traffic engineering”, in Proc. 18th IEEE Int. Conf. on Netw. Protocols

ICNP 2010, Kyoto, Japan, 2010, pp. 21–30.

[15] E. Amaldi, A. Capone, L. G. Gianoli, and L. Mascetti, “A MILP-

based heuristic for energy-aware traffic engineering with shortest

path routing”, in Network Optimization, J. Pahl, T. Reiners, and

S. Voß , Eds. LNCS, vol. 6701, pp. 464–477. Springer, 2011.

[16] N. Vasić and Dejan Kostić, “Energy-aware traffic engineering”,

in Proc. of the 1st Int. Conf. on Energy-Effic. Comput. & Netw.

e-Energy’10, Passau, Germany, 2010, pp. 169–178.

[17] L. Zhang and D. Clark, “Oscillating behavior of network traffic:

A case study simulation”, Internetworking: Res. and Exper., vol. 1,

no. 2, pp. 101–112, 1990.

[18] S. Jain et al., “B4: Experience with a globally-deployed software

defined WAN”, ACM SIGCOMM Comp. Commun. Rev., vol. 43,

no. 4, pp. 3–14, 2013.

[19] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat, “Hedera: Dynamic Flow Scheduling for Data Center

Networks”, in Proc. 7th USENIX Symp. on Netw. Syst. Design &

Implemen. NSDI’10, San Jose, CA, USA, 2010, vol. 10, pp. 19–19.

[20] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, “DevoFlow: scaling flow management for high-

performance networks”, ACM SIGCOMM Comp. Commun. Rev.,

vol. 41, no. 4, pp. 254–265, 2011.

[21] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead

datacenter traffic management using end-host-based elephant detec-

tion”, in Proc. 30th IEEE Int. Conf. Comp. Commun. IEEE INFO-

COM 2011, Shanghai, China, 2011, pp. 1629–163.

[22] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine

grained traffic engineering for data centers”, in Proc. 7th Conf. on

Emerg. Networking Experim. & Technol. Co-NEXT’11, Tokyo, Japan,

2011, p. 8.

[23] R. Trestian, G.-M. Muntean, and K. Katrinis, “MiceTrap: Scalable

traffic engineering of datacenter mice flows using OpenFlow”, in

IFIP/IEEE Int. Symp. on Integr. Netw. Managem. IM 2013, Ghent,

Belgium, 2013, pp. 904–907.

[24] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and

M. Mellia, “Reviewing traffic classification”, in Data Traffic Moni-

toring and Analysis, E. Biersack, C. Callegari, and M. Matijasevic,

Eds. LNCS, vol. 7754, pp. 123–147. Springer, 2013.

[25] Z. A. Qazi et al., “Application-awareness in SDN”, ACM SIGCOMM

Comp. Commun. Rev., vol. 43, no. 4, pp. 487–488, 2013.

[26] H. Farhadi and A. Nakao, “Rethinking flow classification in SDN”,

in Proc. IEEE Int. Conf. on Cloud Engin. IC2E 2014, Boston, MA,

USA, 2014, pp. 598–603.

[27] A. Bieszczad, B. Pagurek, and T. White, “Mobile agents for network

management”, Commun. Surveys, vol. 1, no. 1, pp. 2–9, 1998.

[28] P. O. Skobelev, O. N. Granichin, D. S. Budaev, V. B. Laryukhin,

and I. V. Mayorov, “Multi-agent tasks scheduling system in software

defined networks”, J. of Physics: Conf. Series, vol. 510, no. 1, p.

012006, 2014 (doi: 10.1088/1742-6596/510/1/012006).

[29] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-

based application-aware networking on the example of YouTube

video streaming”, in Proc. 2nd Eur. Worksh. on Softw. Defined Netw.

EWSDN 2013, Berlin, Germany, 2013, pp. 87–92.

[30] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,

“Towards network-wide QoE fairness using openflow-assisted adap-

tive video streaming”, in Proc. ACM SIGCOMM Worksh. on Fu-

ture Human-Centric Multim. Netw. FhMN 2013, Hong Kong, China,

2013, pp. 15–20.

[31] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, “Towards QoE-

aware video streaming using SDN”, in Proc. Global Commun. Conf.

GLOBECOM 2014, Austin, TX, USA, 2014, pp. 1317–1322.

[32] K. T. Dinh, S. Kukliński, W. Kujawa, and M. Ulaski, “MSDN-

TE: Multipath Based Traffic Engineering for SDN”, in Intelligent

Information and Database Systems. Asian Conference on Intelligent

Information and Database Systems, N. T. Nguyen, B. Trawiński, and

R. Kosala, Eds. Springer, 2016, pp. 630–639.

[33] D. Eppstein, “Finding the k-shortest paths”, SIAM J. Comput.,

vol. 28, pp. 652–673. 1999.

[34] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The Internet topology zoo”, IEEE J. on Selec. Areas in Commun.,

vol. 29, no. 9, pp. 1765–1775, 2011.

[35] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,

“Enabling fast failure recovery in OpenFlow networks”, in Proc. 8th

Int. Worksh. on the Des. of Reliable Commun. Netw. DRCN 2011,

Kraków, Poland, 2011, pp. 164–171.

[36] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. De-

meester, “Software defined networking: Meeting carrier grade re-

quirements”, in Proc. 18th IEEE Worksh. on Local & Metropoli-

tan Area Networks LANMAN 2011, Chapel Hill, NC, USA, 2011,

pp. 1–6.

[37] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,

“Traffic engineering with forward fault correction”, ACM SIGCOMM

Comp. Commun. Rev., vol. 44, no. 4, pp. 527–538, 2014.

[38] H. Kim, J. R. Santos, Y. Turner, M. Schlansker, J. Tourrilhes, and

N. Feamster, “Coronet: Fault tolerance for software defined net-

works”, in Proc. 20th IEEE Int. Conf. on Network Prot. ICNP 2012,

Austin, TX, USA, 2012, pp. 1–2.

[39] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency

in the future Internet: A survey of existing approaches and trends

in energy-aware fixed network infrastructures”, Commun. Surveys &

Tutor., vol. 13, no. 2, pp. 223–244, 2011.

[40] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing rule placement

in software-defined networks for energy-aware routing”, in Proc.

Global Commun. Conf. GLOBECOM 2014, IEEE, Austin, TX, USA,

2014, pp. 2523–2529.

[41] F. Pop, C. Dobre, D. Comaneci, and J. Kołodziej, “Adaptive schedul-

ing algorithm for media-optimized traffic management in software

defined networks”, Computing, vol. 98, no. 1-2, pp. 147–168, 2016

(doi: 10.1007/s00607-014-0406-9).

[42] M. Rifai, D. Lopez-Pacheco, and G. Urvoy-Keller, “Coarse-grained

scheduling with software-defined networking switches”, in Proc.

2015 ACM Conf. on Spec. Interest Group on Data Commun. SIG-

COMM’15, London, UK, 2015, pp. 95–96. 2015.

[43] B. Y. Ke, P.-. Tien, and Y.-L. Hsiao, “Parallel prioritized flow

scheduling for software defined data center network”, in Proc. 14th

Int. Conf. on High Perform. Switch. & Rout. IEEE HPSR 2013,

Taipei, Taiwan, 2013, pp. 217–218.

[44] Y. Liu, Y. Li, Y. Wang, and J. Yuan, “Optimal scheduling for

multi-flow update in Software-Defined Networks”, J. of Network

& Computer Applications, vol. 54, no. C, pp. 11–19, 215 (doi:

10.1016/j.jnca.2015.04.009).

[45] R. Mahajan and R. Wattenhofer, “On consistent updates in software

defined networks”, in Proc. 12th ACM Worksh. on Hot Topics in

Netw. HotNets-XII, College Park, MD, USA, 2013, p. 20.

Mohammad Reza Abbasi re-

ceived his MCA degree in

Computer Science and Appli-

cations from Panjab University,

Chandigarh, India, in 2013. He

is currently pursuing his Ph.D.

in Panjab University. His re-

search interests include soft-

ware defined networking, net-

work management, and network

virtualization.

13



Mohammad R. Abbasi, Ajay Guleria, and Mandalika S. Devi

E-mail: mabbasi@pu.ac.in

Department of Computer Science & Application

Panjab University

160014 Chandigarh, India

Ajay Guleria received his

Ph.D. degree in Computer Sci-

ence and Engineering from Na-

tional Institute of Technology

Hamirpur. Presently he is work-

ing as Senior System Manager

in Panjab University Chandi-

garh. His current research areas

of interest include software de-

fined networking, information

centric networking, network se-

curity and vehicular ad hoc networks. He is a member of

IEEE, ISTE.

E-mail: ag@pu.ac.in

Computer Center

Panjab University

160014 Chandigarh, India

Mandalika S. Devi is a Profes-

sor in the Department of Com-

puter Science and Applications,

Panjab University, Chandigarh.

She received her Ph.D. degree

in Computer Science and Sys-

tems Engineering from Andhra

University, Visakhapatnam and

M.E. in Computer Science and

Engineering, from NIT, Al-

lahabad. She has completed

M.Sc. in Applied Mathematics from Andhra University,

Visakhapatnam. Before joining Panjab University, she

served Indian Space Research Organization, Sriharikota,

and National Institute of Technical Teachers’ Training and

Research, Chandigarh. Her areas of expertise include algo-

rithms, image processing, distributed artificial intelligence

and educational computing.

E-mail: syamala@pu.ac.in

Department of Computer Science & Application

Panjab University

160014 Chandigarh, India

14


