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ABSTRACT  Position estimation in integrated navigation systems 
often calls for operations on nonlinear system models. Dynamics 
nonlinearity of an object, which position we want to estimate requires 
using special filters. The Extended Kalman Filter based on linearization 
of nonlinear functions is generally accepted solution. The paper presents 
the Unscented Kalman Filter based on Unscented Transform. Filter 
performance with comparison to extended Kalman filter is discussed on 
the theoretical base and simulation results showing accuracy increase are 
presented. 

INTRODUCTION 

The integrated navigation systems use data from different navigation sensors. 
The most common method of data integration is to combine the Dead Reckoning 
(DR) and external navigation system (e.g. GNSS). DR sensors are simply designed 
but they are more immune to active and passive disturbance. The main fault of DR 
systems is poor long-term accuracy – errors increase as time is going. This problem 
is not present in navigation systems – especially in satellite ones. Their accuracy  
is better than DR systems but they are more unreliable however less immune to 
disturbance. Major disadvantage of navigation systems is possibility to lose 
information as a result of disturbance or signal fading. 

There are two basic methods of navigation data integration: compensation 
and filtering. The compensation method distinguishes one navigation sensor  
at which output data are compensated by data from another sensor. In the filtering 
method data from several sensors are filtered in order to get rid of disturbance and 
noise and than are used to estimate position or another navigation elements.  
The integration process is based on a variety of Kalman Filter working as an error 
estimators or navigation algorithms. These filters operate in a discrete time.  
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Kalman Filter allows to estimate error or state of an object in k- th step on the basis 
of measurements in k-1th step. Kalman Filters use information about dynamics  
of the object (system). Knowledge about system dynamics and its correct modeling 
is the main issue in Kalman Filter implementation. Depending on system dynamics 
few kinds of Kalman Filter are used. For systems with linear dynamics it is 
legitimate to apply standard Kalman Filter. In systems with nonlinear dynamics 
linearization of the dynamics model is necessary and in such case Extended Kalman 
Filter (EKF) is used [3, 8]. Linearization is carried out by means of partial 
derivatives of nonlinear state functions or their Taylor series expansion.  
An alternative for EKF is the UKF (Unscented Kalman Filter). UKF is a recursive 
estimating filter and its properties meet well requirements of strongly nonlinear 
systems. UKF does not linearize the model but manipulate on statistical parameters 
of nonlinear transformed state and measurement vector. UKF is based on Unscented 
Transform (UT) [6]. UT converts the state vector into a set of weighted Sigma 
Points. These points are than used in algorithms of UKF. The UKF algorithm is a set 
of equations which are necessary to do prediction, innovation and correction steps. 

UNSCENTED TRANSFORM 

Unscented Transform is designed for calculating statistics of n-dimensional 
random variable exposed to nonlinear transform with assumption that it is easier to 
estimate a distribution than a nonlinear function [2]. To compute mean and variance 
of n-dimensional random variable what is a result of its nonlinear transform we have 
to determine a set of 2n+1 weighted Sigma Points iS = . Assume that 

random variable  has Gaussian distribution nℜ∈x ( )xN Px,  and its components 

undergo a nonlinear function . The aim is to have as accurate 
approximation of distribution of variable y  as possible. Approximation of mean  
and covariance of this variable is as follows: 

{ }iiW X ,

( )xy f=

( )xy f≈

TGGPx

,  (1) 

Pyy ≈ ,  (2) 

where G is the Jacobian of the transformation through the f function under 
assumption  x=x

( )G =
df .  (3) xxx
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Sigma Points are computed according to following formulas: 
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Weights of these points are given by: 
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The λ parameter is defined as follows: 

n= αλ 2 .  (11) 

Constants α, β, κ are parameters of this transform fulfilling following assumptions: 

1≤≤ α , 0≥κ , .  (12) 0≥β

The κ parameter decides about distances between Sigma Points and the mean . Its 
optimum value in majority of applications is zero [1, 2, 7]. The α  parameter is 
responsible for influence from high order nonlinearities of function f. The β  
parameter controls weight of zero Sigma Point and often is set up to 2. Expression 
( n +  is the ith column of the matrix square root of ( )Pxn . 

x
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Sigma Points undergo the nonlinear transformation of function f. 

( ) if ii      n2, ... ,0== XY   (13) 
The mean and covariance of variable y  are determined from following expressions: 
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This method allows to calculate distribution parameters of output random variable 

.  
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UKF ALGORITHM 

The transform shown above is the basis of Unscented Kalman Filter. UKF 
operates on the same state model as EKF [4]: 

( ) ( )1  ,0 −kQ111 ~     ,   , −−−= kkkk Nw  wxfx ;   

( ) ~              ,   , kkkk Nvvxhy =   (16) ( ).   ,0 kR

( )kk tx=

[ ]T, ... , nx

ky

In this filter state vector is incremented by disturbance vectors w and v with their 
corresponding covariance Q and R. In UKF algorithm are used following 
denotations: 
•  is the system state (n-dimensional vector) at step tx k. System state is 

the smallest set of quantities completely characterizing results of influences on 

this system , 21, xx=x

•  is p-dimensional measurement vector. The measurement may be given from 
system sensors (position, velocity etc.), 

• F is n×n state matrix describing system dynamic. It describes how system state 
changes between steps tk-1 and tk, 

• Q describes increase of uncertainty in discrete dynamic model from stem tk-1 to 
tk. i.e. it is the n×n process noise covariance matrix, 

• H is p×n measurement matrix, 
• R is p×p measurement errors covariance matrix, 
• Pk is state vector covariance matrix. 

UKF algorithm includes following steps: 
• initialization – calculating the mean and priori covariance of the state vector: 
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• Sigma Points – they are calculated according to the method described in 
Unscented Transform: 

[ ( ) (a
ki

a
k

a
kk nn x xPxxX λλ +−++= −−−− 1111    ,  ,  (19) ) ]

ixP

 

100 Annual of Navigation 



POSITION ESTIMATIONUSING UNSCENTED KALMAN FILTER  

• prediction – estimating the state vector distribution on the basis of Sigma Points: 
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• correction – estimating the mean and covariance of the state vector and Kalman 
gain: 
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UKF requires computing matrix square root. This may be done with the aid of 

Cholesky factorization to n3/6 order [5], but covariance matrixes may be recursive 
formulated and then square root may be computed with factors n2 order. This is the 
most overall form of the Unscented Kalman Filter. 

UKF ALGORITHM WITH ZERO MEAN ADDITIVE NOISE 

For special (but often existing) case in which process and measurement noise 
are simply additive calculations may be significantly reduced. In this case system 
state does not have to be augmented according to increase of the number of noises 
taken into consideration. This reduces Sigma Points dimension and number of them. 
Covariances of these noises are then included with the aid of simply additive 
procedure [6-7].  
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Equations of the UKF with additive noise have following form: 
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• Sigma Points: 
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• Renewed calculating Sigma Points: 
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• Correction – estimating the mean and covariance of state vector and Kalman 
Gain: 
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RESEARCH OF EKF AND UKF 
The purpose of these research is to compare the performance and accuracy of 

position estimation by the use of UKF and EKF. This comparison is done on the 
base of nonlinear system in which the state matrix causes nonlinearity. Position 
estimation of an object moving around a radio beacon working in a short range 
navigation system is applied as a model of nonlinear system. The radio beacon takes 
distance measurements to the object and its azimuth. These measurements are 
applied to the filter input. Its task is to estimate the object position in Cartesian co-
ordinate system. Figure 1 shows the model in graphical form. 
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Fig. 1. Graphical form of nonlinear system 

 
Nonlinearity of the state matrix is caused by necessity of transform polar 

coordinates (distance and azimuth) into rectangular (x, y) one. The system and filters 
were designed in MATLAB and based on time-discrete model. Block diagram of the 
system for simulation is shown in the Fig. 2. 
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Signals of distance and azimuth are exposed to additive noise. Information on 
dynamics model and measurements without noise (to obtain ideal position and route) 
reach both filters. Measurements are the basis of object position estimation and 
traveled route drawing. 
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Fig. 2. Block diagram of the system for simulation 

State vector in this system has the following form 

 ,[ o Dx=x   (44) 

where: xo, yo - rectangular coordinates of the object, 
 D - distance to the radio beacon, 
 ϕ - azimuth. 

Measurement matrix 





=

00
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H   (45) 

In the object analyzed above there is nonlinear relationship between polar 
coordinate system in which measurements are done and rectangular system in which 
object position is estimated. This relationship is described with the help of state 
vector. 
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Nonlinearity of state matrix comes from this relationship. State matrix has 

another form for UKF and EKF. In UKF this is typical state matrix and in EKF the 
state matrix essential to EKF algorithm is determined by partial derivatives from this 
nonlinear function with respect to elements of state vector. 

Nonlinear function in EKF is in the same form as in equation 46 but distance 
and azimuth are with measurement noise which is function of elements of 
measurement noise variance matrix R: 
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Nonlinear function of state vector in EKF has the following form: 










=)(
D

xf ,  (50) 

where: RD - distance measurement variance, 
 Rϕ - azimuth measurement variance, 
 D’ - distance with measurement noise, 
 ϕ’ - azimuth with measurement noise. 
 

Matrix FEKF in EKF results from geometric analysis of object movement, 
determining derivatives of individual rows of matrix in equation 50 with respect to 
elements of state vector and has following form: 
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The state matrix FUKF in UKF is described as follows: 
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To ensure equal conditions for examination process, noise matrix Q and vector state 
covariance matrix P in considered system have the same form: 
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Similarly to matrixes P and Q initial values of state vector for both filers are the 
same and include only zero-worth elements: 

0  ,0[=x .  (55) 

To simulate object maneuvers around the radio beacon the following signals were 
generated: 
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where: D - constant basic distance, 
 C, Z - route shape factor, 
 ϕΤ - azimuth varying with constant step T = 2º from 0º to 360º. 
 

EKF and UKF algorithms were realized in MATLAB. Parameters of 
Unscented Transform were assumed as optimal: α = 0,5, β = 2, κ = 0 [2, 4] and 
following values of route shape factors: C = 1, Z = 6, basic distance D = 8 km, 
azimuth step T = 2º.  

Initial state vector covariance matrix has following form: 
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Figure 3 shows a fragment of route traveled by the object formed on the basis 

of positions estimated by filters, an ideal route and the route as a result of 
measurements. 
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Fig. 3. Fragment of route traveled by the object 

Figures 4 and 5 present values of position errors in rectangular coordinates. These 
errors show difference between the ideal position and the position estimated by 
individual filters. 
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Fig. 4. Position error (X coordinate) in rectangular coordinates 
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Fig. 5. Position error (Y coordinate) in rectangular coordinates 

Measurements in this system are done in polar coordinates and they are 
estimated too. Errors of these coordinates are shown in figures 6 and 7. 
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Fig. 6. Distance error in polar coordinates 
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CONCLUSIONS 

The integrated navigation systems use variety of Kalman Filter working as an 
error estimators or navigation algorithms. These filters work in time-discrete mode. 
Kalman Filters utilize information about dynamics of the object (system). 
Knowledge about dynamics and its correct modeling is the main issue in 
implementation of the Kalman Filters. The systems with linear dynamics use basic 
Kalman Filter. Systems with nonlinear dynamics require linearization of the system 
model and use of Extended Kalman Filter (EKF) [3]. 

Unscented Kalman Filter (UKF) is an alternative for EKF [6]. UKF  
is a recursive estimating filter, which properties meet all requirements of strongly 
nonlinear systems. UKF does not make linearization of the model but manipulate on 
statistical parameters of nonlinear transformed state and measurement vector. UKF 
is based on Unscented Transform (UT) [6]. UT converts the state vector into a set of 
weighted Sigma Points. These points are than used in algorithms of UKF. The UKF 
algorithm is a set of equations which are necessary to do prediction, innovation and 
correction steps. 

Simulation results of position estimation using EKF and UKF have shown 
that UKF used as data processing algorithm gives better accuracy of estimation  
in system with nonlinear dynamics than EKF. Nonlinearity in system used  
in simulation is caused by transformation of systems coordinates. Such situation 
takes place very often in navigation. This shows that UKF is more suitable to 
systems with strong nonlinearities than EKF. Better accuracy of position estimation 
using UKF calls for large number of computations (especially evaluation of matrix 
square root), what makes it more demanding for computation units of integrated 
navigation systems. UKF may also be used to estimate errors in integrated 
navigation system based on the compensation mode. 
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