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This invited contribution is intended for an audience familiar with general underwater 
acoustics but which wishes to gain more understanding of underwater communication using 
acoustic waves as a carrier.  We will review some basic concepts applicable to any 
communication system as well as some of the diverse concepts and experimental and 
commercial systems used for communicating underwater. 

Topics considered include: acoustic transducers and arrays, some applications of 
underwater acoustic communications, analogue modulations, multipath, noncoherent and 
coherent digital transmission schemes including phase modulation, channel equalization, and 
state of the art.  Extensive literature on the subject is provided. 

 

INTRODUCTION 
 

The demand for underwater communications (including telemetry and control) is driven 
by a number of needs, such as: 

• Free swimming diver-to-diver or diver-to-ship voice communications; 
• Submarine-to-submarine or submarine-to-surface platform communications; 
• Control and monitoring of offshore oil/gas drilling/production platforms or other 

bottom installations; 
• Control and monitoring of Autonomous Underwater Vehicles (AUV); 
• Monitoring of marine wildlife; 
• Monitoring of fishing nets; 



• Transmission of data accumulated by moving or stationary underwater platforms, 
including still photography, video, sonar and other broadband signals; 

• Surveillance of certain water bodies for security and environmental monitoring. 

 The prime reason for using an acoustic carrier for short range (up to several kilometers), 
high rate communications (up to several kbytes/s) is the low absorption of acoustic energy by 
sea water in comparison to that of electromagnetic energy.  For instance, energy absorption at 
f = 10 kHz is 3000 dB/km for electromagnetic waves and only 1 dB/km for sonic waves.  
Thus, using an acoustic carrier is considerably more energy-efficient than the use of 
electromagnetic radiation. 

The main obstacle to a high data transmission rate in an acoustic channel is the presence 
of a strong multipath originating from multiple reflections between bottom and surface 
boundaries.  Table 1 provides a comparison between an electromagnetic communication 
system and an underwater acoustic system.  The duration of an acoustic multipath, measured 
in terms of transmitted symbols, is remarkably longer than that of a typical land mobile 
electromagnetic communication system.  We also note very few carrier cycles within a 
symbol duration for an acoustic system compared to an electromagnetic system. 

 
Tab. 1. Comparisons between land mobile and underwater communication systems 

 
Parameters Land Mobile Underwater 

   
Carrier frequency 1 GHz 10 kHz 
Wavelength 3 cm 15 cm 
Channel Bandwidth 30 kHz 2 kHz 
   
Signaling rate 24 ksymbols/s 2 ksymbols/s 
Symbol duration 42 µs 500 µs 
Carrier cycles/symbol 4.2 x 104 5 
   
Platform speed 100 km/h (car) 18 km/h (submersible) 
Carrier Doppler shift 9.3 x 10-4 % 3.33 x 10-3 % 
   
Multipath time spread 10 ms 50-100 ms 
Symbols in that time 0.24 100-2000 

 
 

1. ACOUSTIC TRANSDUCERS AND ARRAYS 

An acoustic transducer is a device for converting electrical energy into acoustic energy.  
A typical transducer can be represented as a resonant circuit (band-pass filter, BPF) with the 
following parameters: 

 a central frequency, f; 
 a bandwidth, B; 
 a resultant Q factor, f/B; 
 a wavelength = sound velocity/f; and 
 physical dimensions, n, measured in terms of n = wavelength/dimension. 



As an illustration, consider a narrowband channel centered at a carrier frequency of f = 
50 kHz and bandwidth of B = 10 kHz.  We can represent such a channel by a 5th-order 
Butterworth BPF with Q = 5.  The impulse response of such a filter is shown in Figure 1.  We 
note that the product of the response duration Tp and the filter bandwidth B is equal to 
approximately 1.2 
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Fig. 1. Impulse response of an acoustic transducer 
 

The radiation pattern of an acoustic transducer (or transducer array) depends on its 
geometry and size.  Radiation patterns for a linear traducer and piston transducer are shown in 
Figure 2 and Figure 3, respectively. 
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Fig. 2. Radiation pattern of a line transducer 



-10

0

x

10

-10
-5

0

y 5
10

0

5

10

15

20z

25

30

35

-10

0

x

10

-10
-5

0

y 5
10

0

5

10

15

20z

25

30

35

n=5.25

Fig. 3. Radiation pattern of a piston transducer 
 

In both patterns we observe the existence of sidelobes that are generally an undesirable 
property for a variety of reasons. 
 

2. APPLICATION - TSUNAMI WARNING SYSTEM 

 

Fig. 4. Tsunami Warning System 



 
An example of an application of an underwater acoustical system is the open ocean 

tsuna

3. THE ACOUSTIC CHANNEL 

The near vertical acous ch as that used for tsunami 
detec

mi warning system shown in Figure 4.  The slight increase of hydrostatic pressure 
caused by a tsunami surface wave is detected by a bottom pressure sensor; this information is 
transmitted over an acoustic link to a surface buoy.  From there the warning is transmitted in 
almost real time by a satellite to the Tsunami Warning Center. 
 

tic link from fixed platforms su
tion is of relatively good quality.  In other cases, however, particularly in shallow water 

and a near horizontal link, the acoustic channel is severely limited by multipath with time and 
frequency spread.  The duration and intensity of multipath can be assessed by transmitting a 
very narrow high frequency pulse and observing the envelope of the signal received at a 
certain location.  A sample of such a response is presented in Figure 5. 

 
 

Fig. 5. Envelope of the response to a narrow pulse transmission 
 

This particular sample was taken from a fixed location in the North Sea by researchers 
from 

 
4. MULTIPATH MODELING 

A very simple modeling he system shown in Figure 6 
togeth

schemes. 

the University of Newcastle.  Here, the time delays of the significant multipath 
reflections are relatively stable but their magnitudes vary significantly.  This can be explained 
in case of similar overlapping in time multipaths where even a minute difference in 
propagation time can lead to significant constructive or destructive interference patterns. 

 
 

 of multipath can be done by t
er with the impulse response of the system.  The multipath is generated by a feedback 

loop with alternation sign to represent surface and bottom reflections.  The bandpass filter 
represents transducer characteristics as in Figure 1.  Although this model does not represent 
the actual multipath channel, it can be useful for testing the robustness of various modulation 



Fig. 6. Multipath modeling 
 

5. ANALOGUE MODULATION SCHEMES 

The possible modes of analog modulation of a high frequency carrier include: 

 Pulse Position Modu
 Amplitude Modulation (AM); 

ffer from multipath.  For instance, applying an AM signal 
hannel model from Figure 5 results in a distorted received 

7). 

 
 

For example, the Model 540 act, high-power underwater 
lephone for single sideband (SSB) voice operation.  The underwater telephone's primary 

applic

 Transceiver, 5-45 kHz 
 Selectable USB/LSB modulation 
 rrogator /Pinger /Echo Sounder Mode. 

lation (PPM); 

 SSB Modulation (form of AM); 
 Frequency Modulation (FM); 
 Phase Modulation (PM). 

However, all these schemes su
(left graph in Figure 7) to the c
signal (right graph in Figure 

Fig. 7. AM signal in multipath channel 

In spite of its drawbacks, analog modulation is typically used for voice transmission. 
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6. FIGHTING THE MULTI-PATH 

 used to direct a transmitted 
eam i rriving from other directions.  

This can be accomplished by acoustic arrays with variable delays in each element of the array.  
An example of such linear ar
 

 

Such an arr  9, depending on 
the delays introduced. 

 

 

7. DIGITAL TRANSMISSIONS – NON-COHERENT MODULATION 

Digital acoustic transmission underwater is currently an active research area aimed to 
achieve reliable, high rate transmissions.  Digital techniques allow adaptive equalization to 
mitigate m

 to 

Narrow-beam acoustic arrays or steerable arrays can be
b n a desired direction and therefore to reduce multipath a

ray is shown in Figure 8. 

Fig. 8. Steerable array 
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Fig. 9. Steerable beams 

Steerable linear point array  
 N=9 elements, separation: λ/2

ultipath effects.  The purpose of equalization is twofold: 

produce the desired time domain or frequency domain response of the channel; 
 to track changes of the channel in time so that the desired responses are maintained. 

 



The digital modulation used is similar to analog but with only finite levels of 
such a 

odulation.  Demodulation does not require the recovery of the phase of the carrier.  For this 
reaso

4 MFSK & Hadamard MFSK 
h 1 of 4 MFSK 

 AT421 Directional 

oat Anodized Aluminum 
, 15-20kHz (MF), 25-30kHz (HF) 

mni, Line array, Directional available 

ication Systems 

Principal 
Investigator 

Data Rate 
(bps) 

Bandwidth 
(Hz) 

Bandwidth 
Efficiency 

Range 
(km) 

Prob. of 
Errors 

Comments 
on Channel 

information transmitted.  M-ary Frequency Shift Keying (MFSK) is an example of 
m

n, such a modulation is called non-coherent.  An example of a system using MFSK is the 
Benthos ATM875/871 Acoustic Telemetry System with the following specifications provided 
by the manufacturer: 

ATM871 Surface Controller 
Frequency Band 9-14 kHz (LF), 15-20kHz (MF), 25-30kHz (HF) 
Data Modulation 1 of 
Baud rate 100-2400 bits/s wit
100-1200 bits/s with Hadamard MFSK 
Data Frame Period 25ms 
Transducers AT408 Omni, AT409 Line array,
Dimensions 28 x 36 x 17 cm 
Weight 5kg. 
ATM875 Underwater Modem 
Housing Construction Hard C
Operating Frequency 9-14kHz (LF)
Transducer radiation Pattern O
Dimensions 9 cm diameter x 78 cm. 
Other non-coherent systems are summarized in Table 2. 
 

Tab. 2. Selected Incoherent Commun

(bps/Hz) 
Morge 5 0. n Sra(1980) 0.5 0 01 N/a /a imulation 
Garro n n/ <d (1981) 40 /a a 4 10-2 Shallow 
Catipovic(1984) 1200 5000 0.24 3 ~10-2 Shallow 
Jarvis(1984) < 2.3 6000 <3.8 x 10-4 2 n/a Deep 
Coates (1988) 75 1500 0.05 5 ~10  -3 Deep 
Hill (1988) 360 5500 0.07 6 n/a Deep 
Freitag (1990) 2500 20000 0.13 3.7 ~10-4 Deep 
Freitag (1991) 600 5000 0.12 2.9 10-3 Deep 
Mackelburg (1991)   1250 10000 0.13 2 n/a Deep 
Scussel (1997) 2500 5120 0.47 10 n/a Simulation 
 

8. DIGI TRAN SIONS EN ODU TION 

M-ary Phase Shift Keying (M-PSK) modulation is a coherent modulation requiring 
carrier recove  the cost of a 
more comple transmission 
schem

TAL SMIS  – COHER T M LA

ry at the receiving end.  It allows for better bandwidth utilization at
x receiver.  Until recently, it was believed that an efficient coherent 

e such as phase modulation was not possible in acoustic underwater channels.  The 
possibility of such transmission was, however, demonstrated using Differential Phase Shift 
Keying (DPSK) with an adaptive equalizer or, in some cases, even without it.  We will 
present this efficient technique in some detail.  The block diagram of a 4-PSK system is 
shown in Figure 10. 

 



Phase 

Fig. 10. Block diagram of a 4-PSK system 
 

bol generator generates randomly four levels, each representing two bits of 
ation, at the rate of 10 ksymbols/s.  This translates to an information rate of 20 kbits/s. 
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The phase of the 50 kHz carrier is modulated by these four levels to four phase values, 
namely: 0o, 90o, 180o and 2 ment, there are five cycles 
of the carrier.  The phase modulated signal is band-pass filtered by a channel filter at a central 
frequ

In Figure 11

Trace 1 - Fo

70o.  For duration of each signaling ele

ency of 50 kHz and a bandwidth 10 kHz as described earlier.  The relevant waveforms 
are shown in Figure 11. 
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Fig. 11. Modulating and modulated signals 
 

 the traces from the top are: 

ur level phase modulating signal, randomly generated; 

0 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5
-6

-5.6

-5.2

-4.8

-4.4

-4

-3.6

-3.2

-2.8

-2.4

-2

-1.6

-1.2

-0.8

Time (ms)

��������������������
��������������������

�������������
������������� VCO Sq����� � ���

nchronization P



Trace 2 - Phase modulated 
Trace 3 - Unmodulated carrier; 
Trac PF. 

drature (Q) components of 
Figure 10.  The demodulator uses perfectly synchronized 

n synch with the oscillator at the modulator.  Two identical 
filters (LPF) have a bandwidth of 8 kHz 

each.

carrier; 

e 4 - Modulated carrier band-limited by B

The received signal is demodulated by in-phase (I) and in-qua
the I-Q Demodulator as shown in 
local SIN and COS oscillators i
post-detection low-pass, 5-th order, Butterworth 

  The I(t) and Q(t) components represent a time-varying envelope E(t) > 0 and phase 
ϕ(t ) of the transmitted BP signal.  Using complex number notation this can be conveniently 
written as a complex baseband time-varying signal: 

s(t) = I(t) + jQ(t) = E(t) exp(-jϕ(t)) 

that describes the trajectory of the point P[I(t),Q(t)] in time and also shows both the 
instantaneous phase and the envelope of the transmitted signal.  This can be used to determine 
transmitted phases at suitable sampling instances.  This timing information is derived in the 
block diagram of Figure 10 u he synchronization pulse for sing a 10 kHz symbol generator.  T
the sampler must be suitably delayed (by 65 µs in this case) to account for the delays 
introduced by both LPF filters.  The waveforms I(t) and Q(t) together with the synch pulse are 
shown in Figure 12. 
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Fig. 12. In-Phase and In-Quadrature components 

We can see that with the proper sampling instances, the phase detector can correctly 
struct the transmitted phases.  The phase trajectory can be obtained by plotting 
etrically I(t) and entify the four distinct 

ions of the phase and therefore we have a possibility of the successful demodulation of 
Q(t), as shown in Figure 13a.  We can id

a signal.  Introduction of the multipath channel destroys those distinct positions, as 
n in Figure 13b, and makes it impossible to demodulate the signal. 
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specifications: 

Data Rate:    9600-19200bits/s
Frequency Band:   8-15kHz. 
Transducer options:  Omni-directiona
    Adaptive beam-f
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Bit Error Rate:   Typically <10-5 
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Power Consumption:   Transmitting: 50
 
Other coherent systems (D-PSK) are given in T

Tab. 3.  Selected DPSK 

Principal 
Investigator 

Data Rate 
(bps) 

Bandwidth/ 
Carrier (kHz) 

Mackelburg (1981) 4800 8/14 
Olsens (1985) 2000 2/10 
Mackelburg (1991) 4800 6/11 
Howe (1992) 1600 10/50 
Fisher (1992) 625 10/na 
Suzuli (1992) 16000 8/20 
Jones (1997) 20000 10/50 

System performance has greatly improved ove
limits in 1990 compared to those of 1980. 
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Communication Systems 

Bandwidth 
Efficiency 
(bps/Hz) 

Range 
(km) 

Prob. of 
Errors 

Comments 
on Channel 

0.6 4.8   10-6 Deep 
1.0 6.0 < 10-3 Deep 
0.80 10.0    na Simulated 
0.16 0.1 < 10-3 Shallow 
0.06 na    na na 
2.0 6.5    10-4 Deep 
2.0 1.0    10-2 Deep 

r the years.  Table 4 shows the performance 



Tab. 4. Performance limits 

 1980 1990 
Range x Transmission rate 

(km x kbit) 
0.5 40     shallow 

1000  deep 
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