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 Abstract: Key protocols of the preparation of conjugated nitroalkenes were 
reviewed and critically discussed. It was established, that optimal 
strategy for the obtaining of target compounds are small molecules 

extrusion processes from saturated nitro-compounds. Among them, 
the most universal methodologies based on carboxylic acids 

elimination have been discussed, which provide for smooth 
applications. 
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Introduction  

In the present time, conjugated nitroalkenes are very important building blocks in the 

organic synthesis [1-4]. This is possible due to their high global electrophilicity [5], and in the 

consequence, its high reactivity in the relation to nucleophilic agents. In particular, 

conjugated nitroalkenes are attractive partners for three atom components (TACs) [6] in [3+2] 

cycloaddition (32CA) reaction. These-type transformation open a possibility of the easy 

construction of vide range of nitro-functionalised five-membered heterocyclic systems based 

on nitrile N-oxides [7], imine N-oxides [8], imine N-tiooxides [9], azometineylides [10], 

tiocarbonylylides [11], diazocompounds [12], azides [13] and nitrylimines [14] (Fig.1.).  
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Fig. 1. Transformations of nitroalkenes leading to many heterocyclic compounds via 32CA reactions.  

The direct transformation of conjugated nitroalkenes is a consequence of the 

participation in Diels-Alder reaction with conjugated dienes [15,16] as well as very rare cases 

of non-catalysed Hetero Diels-Alder reactions [17,18] (Fig.2.).  

 

Fig. 2. Diels-Alder and hetero Diels-Alder reaction with the participation of conjugated nitroalkenes. 

Conjugated nitroalkenes can also participate in the formation of three [19], four [20] 

and seven-membered [21] cyclic molecular systems. The application of conjugated 

nitroalkenes in synthetic protocols offer a possibility of the easy introduction of nitrogroup to 

the target molecule, which stimulate a wide range of further functionalization in to amines, 

imines, nitriles, aminoalcohols and many other usable structures [22,23]. In the framework of 

this work, a brief critical review of the key strategies of the preparation of conjugated 

nitroalkenes were performed. We hope, that this type of review will be very attractive for 

scientists in all organic chemistry fields. 

 

Nitration of unsaturated molecular systems 

 First of all, the nitration of alkenes using NO2* radicals generated from oxides of 

nitrogen or nitric acid should be considered as the most simple methodology of the 

preparation of conjugated nitroalkenes. In reality it is completely different. The ambient 

nature of NO2 radicals [24], with scattered radical center on the oxygen and nitrogen atoms 
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determine relatively low reaction selectivity. This is a consequence of many possible places 

within vinyl moieties, which can react with this type of nitration agents. Thus, the large 

number of products will be formed due to the direct nitration processes facing difficulties in 

isolation. In addition, not all nitration agents are usable for the substitution of vinyl hydrogen 

atoms. Actually, interaction between alkenes and nitrogen tetroxide leads to addition 

products instead of substitution products [25-27]. For example, relations between ethene 

and N2O4 produce a mixture of 1,2-dinitroethane and 2-nitroethyl nitrite [26] (Fig.3.). 

 

Fig. 3. Ethene nitration with nitrogen tetroxide. 

Next, the nitration of 2-methyl-prop-1-ene using acetyl nitrate leads to mixture of 

different-type products, in which only small amount of unconjugated nitroalkene was 

detected [28] (Fig.4.). 

 

Fig. 4. The nitration reaction of 2-methyl-prop-1-ene using acetyl nitrate. 

 

Decomposition of saturated nitro-compounds 

Dehydration of 2-nitroalcohols 

 Nitro alcohols dehydration process without presence of any additional agents should 

be considered as rather difficult process from the preparative point of view. For example, the 

preparation of 2-nitro-but-1-ene and 2-nitro-pent-1-ene under these conditions require 

temperature in the range 290-350oC (!) [29,30]. So, in the practice, selected agents with the 

affinity for the water molecules was applied in the dehydration processes. For example, the 

dehydration of 1-chloro-1-nitro-2-ethanol in the presence of phosphorus pentoxide is realised 

at 150oC and give the expected nitroalkene with the satisfactory yield [31] (Fig.5.).  

 

Fig. 5. Dehydration reaction of 1-chloro-1-nitro-2-ethanol in the presence of phosphorus pentoxide. 

Similar transformation was described in the relation of the preparation of 1-bromo-1-

nitroethene [32]. 
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 More effective hydrophilic agent in considered processes is a 

dicyclohexylocarbodiimide (DCHCDI) in the presence of the cuprum (I) chloride. For 

example, under these conditions, the dehydration of 2-nitropropan-1-ol is realised at 35oC 

and lead, with the satisfactory yield, to 2-nitroprop-1-ene [33]. Similar procedure can be 

applied inter alia for the preparation of 2-nitrohept-1-ene (Fig.6.). 

 

Fig. 6. Dehydration reaction of 2-nitropropan-1-ol with DCHCDI. 

Some of 2-nitroalcohol dehydration processes are realised at lower temperature and without 

the participation of the hydrophilic agents. This scenario is most probable in the case of 2-

nitroalcohols functionalised additionally by the second EWG group at 2-position. The example 

of these type transformation is the synthesis of 1,1-dinitroethene. The nitroalkene is formed 

due to high electrophilicity [34] as highly reactive and cannot exist as a stable compound. It 

can be trapped in situ using nucleophilic reagents such as cyclopentadiene [35] (Fig.7.). 

 

Fig. 7. 2,2-dinitroethanol dehydration process as a synthesis of 1,1-dinitroethene. 

 There is a similarity in the preparation and the stability of nitroalkenes with 

phenylsulfonyl, benzoyl as well as carboethoxy groups at the 1-position of nitrovinyl moiety 

[36,37]. 

 2-nitroalcohols can generally be obtained using Henry condensation with the 

participation of aldehydes and primary nitroalkanes [38]. Some molecular systems could be 

converted under reaction conditions directly to respective nitroalkenes. The good example of 

these type transformations is the synthesis of 2-phenyl-1-cyano-1-nitroethene as well as its 

substituted analogues [39-42] (Fig.8.). It is an interesting, that this group of conjugated 

nitroalkenes are generally stable at room temperature. 

 

Fig. 8. Henry condensation as an example of a synthesis of 2-phenyl-1-cyano-1-nitroethene. 
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Nitroalkyl carboxylates decomposition 

 2-Nitroalcohols can be directly dehydrated, but from the preparative point of view, it 

is more convenient first to convert it for respective carboxylates which can be further 

converted in to nitroalkenes via carboxylic acid extrusion. For example, thermolysis of 2-

benzoyloxy-1-phenyl-1-nitroethane give with the good yield 1-phenyl-1-nitroethene, which is 

not available to obtain in the other way [43] (Fig.9.). The starting ester can be easily 

obtained via simple reaction of respective nitro-alcohol with the benzoyl chloride. 

 

Fig. 9. Thermolysis of 2-benzoyloxy-1-phenyl-1-nitroethane leading to 1-phenyl-1-nitroethene. 

According to similar procedure, the preparation of other nitroalkenes, such as 2-nitroprop-1-

ene [44] is also possible. 

 Nitro-alkyl carboxylates can be prepared within independent preparative step, or, in 

some cases directly in the course of the synthesis of target compound. For example, phtalic 

anhydride melted with 2-nitroethanol is converted to the phtalic ester of the nitroalcohol. 

This ester, under reaction condition eliminate the molecule of phtalic acid which yield the 

free nitroethene [45] (Fig.10.). 

 

Fig. 10. Synthesis of the nitroethene via decomposition of the phtalic ester of 2-nitroethanol. 

On the similar way, some substituted nitro-ethenes can be also prepared – such as 2-

nitroprop-1-ene, 1-nitroprop-1-ene [45], 2-nitrobut-1-ene [46], 2-nitrobut-2-ene [47], 2-

nitro-3-methyl-but-1-ene [43] and other. For these-type transformations, the “concerted” 

(“pericyclic”) mechanism was proposed a long term ago. The last discoveries in the 

framework of the Molecular Electron Density Theory [48] shows that the carboxylic acids 

extrusion are realized via other one step, multi-stage mechanism [49-51]. 

 The elimination of carboxylic acids, under relatively milder conditions is possible in 

the presence of the inorganic bases. However, the reaction mechanism dramatically 
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changed. All these-type transformation are realised via stepwise E1cb mechanism, instead of 

one-step mechanism observed under non-catalytic conditions. For example, 2-fluor-2-

nitroethyl acetate decompose in the presence of sodium acetate to 1-fluor-1-nitroethene at 

130oC [52] (Fig.11.). 

 

Fig. 11. Decomposition of 2-fluor-2-nitroethyl acetate. 

 

For the comparison, all attempts for the obtaining the 1-bromo-1-nitroethene in similar way 

were not successful [32]. 

  

Analogous transformations with the participation of largest molecules proceed under 

milder conditions. For example, 3,3,3-trichloro-1-nitroprop-1-ene can be prepared during the 

heating in the boiling benzene solution of respective ester [53] (Fig.12.). Similar 

methodology can be applied for the preparation of very rare 3,3,3-tribromo-1-nitroprop-1-

ene [54]. 

  

Fig. 12. Decomposition of the 1,1,1-trichloro-2-acetoxy-3-nitropropane. 

In the last years, the possibility of the carboxylic acid’s extrusion in the environment 

of ionic liquids was explored using DFT techniques. It was found, that these type 

transformations are possible under relatively mild conditions [55-57]. What is interesting, in 

the case of the reaction in the presence of triethylammonium cations, the stepwise ionic 

mechanism is enforced instead of polar one-step mechanism [55]. 

 It should be mentioned, that not only nitro-alkyl carboxylates can be applied for the 

synthesis of conjugated nitroalkenes. This is possible also based on esters of mineral acids. 

For example, 2-chloro-2-nitroetyl nitrate decompose at 170oC yielded 1-chloro-1-nitroethene 

[58] (Fig.13.). 

 

Fig. 13. Decomposition of 2-chloro-2-nitroetyl nitrate leading to 1-chloro-1-nitroethene. 
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Dehydrohalogenation 

 Some nitroalkenes can prepared via non-catalysed HX extrusion. These type 

processes require rather high temperature. For example, 2-chloro-1-nitroethane in the gas 

phase decompose at 400oC (!) to nitro-ethene (Fig.14.). In this case, reaction yield is only 

30% [59]. 

 

Fig. 14. Gaseous phase 2-chloro-1-nitroethane decomposition into nitroethene. 

 On the other hand, the introduction of base catalyst for the reaction environment 

stimulate rather mild conditions of dehydrohalogenation of 2-halo-1-nitroparafins. Under 

catalytic conditions, the one step or stepwise biradical mechanism, is replaced to the 

stepwise E1CB-like mechanism. This strategy was applied inter alia for the synthesis of 2-

phenyl-1-bromo-1-nitroethene [60] (Fig.15.). For example, it was found, that the elimination 

of HBr from the 1,2-dibromo-1-nitro-2-phenylethane is realized in the presence of the 

pyridine within very short time with 82% yield. 

 

Fig. 15. Elimination of HBr leading to 2-phenyl-1-bromo-1-nitroethene. 

Similar synthesis of 3,3,3-trichloro-1-bromo-1-nitroprop-1-ene is realized at room 

temperature  in the catalytic presence of picoline (Fig.16.) [61]. 

 

Fig. 16. Synthesis of 3,3,3-trichloro-1-bromo-1-nitroprop-1-ene realized in the catalytic presence of 
picoline.  

 The elimination of HCl from saturated chloro-nitro compounds is also possible in the 

suspension of the anhydrous natrium acetate in non-polar environment. On this way, a 

series of 2-EWG-1-nitoethenes can be prepared [62-63]. For example, methyl 3-nitro-2-

chloronitroprop-1-enoate is decomposed at low temperature in the diethyl ether solution with 

the yield higher than 90% (Fig.17.). 
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Fig. 17. Elimination of HCl from the methyl 3-nitro-2-chloronitroprop-1-enoate. 

Less known, but also applied are processes on the basis of HI extrusion [64-65)]. 

 

Deamination 

The direct deamination processes are not attractive in the application of synthesis of 

conjugated nitroalkenes, because amino or alkylamino moieties are not good leaving groups 

[66]. In the consequence, the preparation of conjugated nitroalkenes on this way lead with 

very low yields [67]. Better results can be obtained via the pyrolysis of respective ammonium 

salts. For example, N-(2-nitroamyl)-diethyl-amine can easily be converted to respective 

hydrochloride, and further to 2-nitropent-1-ene via pyrolysis stage (Fig.18.). 

 

Fig. 18. Multistep conversion of N-(2-nitroamyl)-diethyl-amine to 2-nitropent-1-ene. 

Similar transformations are also possible based on respective boron trifluoride complexes. 

These transformations require slightly lower temperatures and give expected products with 

satisfactory yields. The example is the preparation of 2-nitrobut-1-ene [68] (Fig.19.).  

 

Fig. 19. Synthesis of 2-nitrobut-1-ene from boron trifluoride complexes. 

It should be underlined at this point, that this synthetic strategy is adequate only for the 

preparation of alkyl functionalized nitro-ethenes. 

 

 

Other processes 

 For some, rather rare nitroalkenes, specific methodologies should be applied. This 

situation is observed in the case of poly nitro substituted alkenes. For example, only one 

synthetic protocol for the preparation of 1,2-dinitroethene is known. This procedure is based 

on the 1,2-dinitroethane, which can be converted in to respective disodium nitronate. Next, 

the obtained nitronate is treated with cold bromine, which lead directly to relatively stable 

1,2-dinitroethene [69] (Fig.20.). 
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Fig. 20. Synthesis of 1,2-dinitroetnene on the basis of the 1,2-dinitroethane. 

 For the preparation of tetranitroethene, the pyrolysis of hexanitroethane can be 

applied. This process is realized at 260oC and lead to relatively stable nitroalkene (Fig.21). 

 

Fig. 21. Pyrolysis of the hexanitroethane. 

 

Conclusions 

 The preparation of conjugated nitroalkenes is a subject of the intensive exploration 

starting from the first part of the XX century. At the present time, many different strategies 

for the preparation of conjugated nitroalkenes are known. These approaches exhibit 

substantially different value. For example, interactions of alkenes with nitrating agents lead 

to mixtures of many, difficult for the separation nitro compounds as well as esters of nitrous 

acid. The elimination of small inorganic or organic molecules from saturated nitro-

compounds open a wide range of possibility of the selective preparation of target molecular 

systems. For this purpose, different strategies such as dehydration, dehydrohalogenation or 

carboxylic acids extrusion can be applied. The last group of processes attracts especially 

attention, due to the relatively mild conditions, excellent yields and the relatively broadest 

range of potential applications. 
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