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1. Introduction

Nowadays, since they provide fast and efficient data acquisition, airborne laser
scanning techniques are widely used in many applications. Currently, besides the
traditional, discrete LIDAR systems, there are more advanced systems on the market
— so-called full-waveform systems.

Small-footprint full-waveform laser scanners have been available since 2004,
when Riegl presented the world’s first commercial digitizing and full-waveform pro-
cessing airborne laser scanner, LMS-Q560 [14]. The main feature that distinguishes
full-waveform from a conventional discrete system is the possibility to register both
emitted and backscattered laser signal at high sampling frequencies of around 1 GHz.
Therefore restoring a full profile of the reflected energy is achievable (Fig. 1).

In traditional techniques, the echo detection process is done automatically on-
line, most often by simple thresholding methods — the manufactures however do not
provide the end user with information about the used algorithm, so the precision of
the range estimation is practically unknown. An example presenting simple thresh-
olding results is shown in Figure 2.

It should be noted that the obtained point cloud does not perfectly match the
scene. Secondly, neither weak nor overlapping echoes were detected. Moreover, by
comparing the point cloud with the entire energy profile, it can be observed that
full-waveform data holds information about the properties of reflecting objects in
addition to geometry information (i.e. amplitude of recorded energy implies surface
reflectivity and echo width may indicate target’s roughness).
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To sum up, by processing full-waveform data the end user has the ability to
control the echo detection method, which can significantly improve point cloud ac-
curacy. On the other hand, by waveform shape parameters determination, the point
cloud could be enriched by additional attributes characterizing the type of target
surface.

e

Emitted Pulse

/>//
Pulse Backscattered
from Tree

Pulse Reflected
from Roof

Terrain Pulse

Fig. 1. Principles of full-waveform data acquisition
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Fig. 2. Principles of simple thresholding method
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2. Processing Methods

The basic description of the measurement process is given by the radar equa-
tion [18]:
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where
P, — received signal power,
P, - transmitted signal power,
D, — diameter of receiver aperture,
R - range from scanner to target,
B, — laser beamwidth,
Nys — System transmission factor,
Num — atmospheric transmission factor,
o - target cross section.

An undoubted advantage of full-waveform data processing is the potential abil-
ity to extract additional points, not detected by the online system. However, criti-
cal processing situations may occur in areas with complex targets (e.g. vegetation),
where data includes many overlapping echoes or when registered echoes are weak
and hardly detectable from the background noise as well as in the case of a strongly
distorted signal [6].

The following sections show the three most popular methods of full-waveform
data processing: the simple peak detection method, the signal decomposition ap-
proach and correlation techniques. Obviously, the point cloud extraction from regis-
tered energy profiles is the main goal of full-waveform data processing, and each of
the approaches presented below achieves that goal. However, these methods differ
in accuracy of range estimation and processing speed. Furthermore, by using these
techniques some other, additional benefits can be obtained.

Simple peak detection methods could result in not very accurate point cloud
determination, but definitely are the leaders in terms of computation speed. Signal
decomposition by fitting parametric function into data is one of the most time-
consuming full-waveform data processing techniques. This method requires initial
parameter estimation as well as an optimization step, nevertheless, it allows us to
retrieve some additional waveform features. Using correlation techniques permits
us to reduce the impact of initial values estimation. Good range determination can
be achieved, but some important information of the waveform is omitted [21].

2.1. Simple Peak Detection Methods

The most basic technique for pulse detection is a simple thresholding method,
relying on triggering a pulse whenever the rising edge of the signal exceeds a speci-
fied threshold value [18]. While defining this threshold value, the noise level as well as
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amplitude and width of the signal should be taken into account, otherwise using this
method could result in large position errors (Fig. 2). In the literature, another descrip-
tion of peak thresholding can be found as well. In [16], Toth et al. use peak threshold-
ing term for the method based on the assumption that the values around the peak are
always lower than the peak value in a specified interval. Other quite popular methods
are centre of gravity, zero crossing of the first derivative or constant fraction detec-
tion. These techniques have been investigated in [5, 18]. Centre of gravity, also called
average time value detection, is a method where the temporal centre of gravity of the
pulse waveform is determined [5]. The zero crossing method is a typical mathematical
approach for finding local maxima in the signal. It relies on checking the sign change
of the first derivative. This method is very sensitive to noise present in the signal,
which is the reason why noise filtering should be applied prior to any processing. To
limit the degradation of the pulse detection process performance, the amount of filter-
ing should consider the actual signal noise level [16]. With the constant fraction detec-
tion (CFD) the constant fraction signal is computed by adding a waveform inverted
and delayed by fixed time interval to the original signal. Afterwards, the zero crossing
point of the calculated signal, representing peak location, is determined.

The most important advantage of these simple detectors is the processing speed.
However, the quality of results strongly depends on the selected method and signal
shape. That is why these simple detectors are neither appropriate for complex shape
signals processing nor for tasks where geometry has to be provided at the highest
accuracy. Nevertheless, these methods work well in pre-processing for the determi-
nation of initial values.

2.2. Signal Decomposition
Using Different Types of Base Functions

The signal registered by a full-waveform system is a time-dependent function
of the energy reflected at different objects within the laser cone. In order to find
individual targets characteristics, signal decomposition can be performed. This de-
composition process allows us for precise range identification, while the modelling
of each echo with suitable analytical functions permits us to retrieve the waveform
shape, which can provide additional features for segmentation or classification pur-
poses [10]. In general, decomposition is a parametric approach to estimate a math-
ematical model [2]. It aims at presenting a return signal as a sum of components
corresponding with targets within the laser beam travel path:

y=f0=2 f® @)

where:
n — number of components,
f; — analytical function.
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Current practice for signal modelling uses the Gaussian function, generalized
Gaussian, Lognormal, Weibull, Nakagami or Burr functions.

Waveform decomposition by Gaussian function

Since most of the emitted laser pulses are nearly Gaussian in their shape, the re-
flected signal for simple surfaces is also nearly Gaussian. For data over surfaces with
multiple scatterers along the laser line-of-sight the return signal can be modelled as
a mixture of Gaussian components [12]. In fact, the best-known and most frequently
used parametric function for full-waveform airborne laser scanning data decompo-
sition is the Gaussian function:
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echo amplitude,
i, — echo position (shift),
standard deviation (echo width).
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The Gaussian distribution is presented in the Figure 3.
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Fig. 3. The Gaussian distribution

The Gaussian function has three parameters and can be used to model sym-
metric echoes. Gaussian decomposition is sufficient for most applications, especially
for large-footprint LiDAR data, and although modelling results strongly depends
on initial parameters, it has been shown that 98% of the full-waveform data could be
successfully modelled using Gaussian pulses [17].
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Generalized Gaussian model

Another commonly used tool for data modelling is an extension of the Gaussian
model (Fig. 4), namely the generalized Gaussian function (GG), defined as:
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where o, - flatness parameter.
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Fig. 4. The generalized Gaussian (GG) distribution

The generalized Gaussian model, like the Gaussian one, only permits to han-
dle symmetric echoes. However, the additional shape parameter a is responsible
for controlling the waveform flatness, which is very beneficial for modelling the
distorted signal occurring over forested areas and over some building roofs [2].
For 1 < a <+/2 the generalized Gaussian shape is peaked in comparison to the
Gaussian, a = \/5 results in the Gaussian function, whereas for o > x/E the curve is
flattened.

More about the results on generalized Gaussian fitting can be found in [2, 8, 10].

Decomposition by the lognormal function

Besides symmetric echoes full-waveform data can include slightly asym-
metric pulse responses. Consequently, waveform approximation by the sum of
Gaussians or generalized Gaussians could lead to an inaccurate representation.
However, these backscatterers can be modelled by an asymmetric base function
like the lognormal (Fig. 5).
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The lognormal function is described by the following equation:
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where:
Wo- location parameter,
0, — standard deviation (shape),
s; — scale parameter.
Lognormal
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Fig. 5. Lognormal function family

It was proven in [2] that modelling raw signals only with Lognormal functions
is not suitable for the whole, heterogeneous survey area, but can improve the wave-
form fitting locally, where asymmetric echoes are observed. Such cases occur espe-
cially on streets and some building roofs [2].

Waveform decomposition by Weibull modelling

Another function family allowing us to model asymmetric backscatter pulse
reflections is the Weibull family [10] (Fig. 6), defined by:
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where:

k. — shape parameter,

A, — scale parameter.



68 M. Stota
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Fig. 6. Weibull distribution
The Nakagami model

The Nakagami model was introduced by Nakagami in the early 1940’s [15]
(Fig. 7). It is a probability distribution related to the gamma distribution, given by:
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where:
6]. — scale parameter,
W, - skewness parameter,
F(E,j) — the Gamma function.
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Fig. 7. Nakagami distribution
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The Nakagami model for full-waveform data processing has been introduced
in order to model soft right-skewed and left-skewed behaviours [8]. More about the
results of the Nakagami fitting can be found in [10].

Burr function

The Burr distribution (Fig. 8) was firstly introduced in 1942 by Irving W. Burr
as a two-parameter function family. An additional scale parameter was presented
in 1980 by Tadikamalla. It is a very flexible function family that can express a wide
range of waveform shapes [19]. The Burr function is given by the equation:
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where:
a - scale parameter (>0),
b, — shape parameter (>0),
- >
c; shape parameter (>0).
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Fig. 8. The Burr function family

Different parameter values can cover a broad set of skewness, which is why the
Burr function is perfect for model asymmetric waveforms, especially right-skewed.

Typically, the decomposition of full-waveform signal, regardless of the chosen
base function, includes two main steps. Firstly, the number of reflections is estimat-
ed, along with information about echo localization, echo amplitude or other param-
eters. Initial values can be obtained by one of the simple peak detection methods,
however, these results are very sensitive to noise present in the signal. Therefore, de-
noising or signal smoothing is commonly used as one of the pre-processing stages.
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A few examples of initial valu estimation are presented below:

In [17] Wagner et al. use the centre of gravity and zero-crossing of the first
derivative methods for initial values extraction.

The deterministic nonparametric “bump-hunting” procedure, providing
the number, amplitudes, and positions of the suspected returns, is men-
tioned in [3].

In [20] the initial values for amplitude and timing point are calculated after
conducting a specific search procedure for the detection of visible and over-
lapping peaks. Firstly, the local maxima above the defined threshold separat-
ing the signal from background noise are found. Then, the algorithm looks
for inflexion points on both sides of the primary visible peaks. An initial
width value for each component is set to the width of the transmitted pulse.

In [13] initial estimates are derived by combining the peak thresholding
method (called the maximum detection method) with zero crossing method.
The zero crossing of the first derivative technique is used as well in [2]. This
peak detection method is applied to the thresholded version of the waveform.
In addition, the proposed algorithm takes into account a minimal number of
samples separating two detectable peaks (spatial resolution of the system).
In [11] the number of peaks is determined by inspecting the second deriva-
tive of a cubic smoothing spline fitted to the waveform data.

In the second step, one of the optimization methods is carried out to fit the
data with single modelling function to obtain the final estimates of echo parameters.
Currently, there are three typically used optimization approaches:

1) the non-linear least-square method using the Levenberg—Marquardt algo-
rithm,

2) the maximum likelihood estimate with the expectation-maximization al-
gorithm,

3) the stochastic approach based on the reversible jump Monte Carlo Markov
chain model [9].

2.3. Signal Correlation Techniques

Unfortunately, the shapes of the backscattered overlapping echoes usually dif-
fer from the assumed model [20]. Additionally, modelling is much more compli-
cated when the signal is distorted by a high level of noise or when the data include
artificial echoes caused by the so-called “ringing effect”. This effect is due to the
bandwidth limitation of the receiver electronics and can be observed as a smaller
peak right after the main peak [13] (Fig. 9).

To overcome issues mentioned above, another approach of full-waveform data
processing is proposed. These techniques are based on the transmitted and received
waveform comparison. Firstly, a proper correlation function is computed. Then, the
local maxima (minima), representing echoes of the emitted laser pulse, have to be
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detected. This can be performed by using one of the simple peak detection methods,

or, for example, a method based on a few user defined criteria with parabola fitting,
as presented in [13].
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Fig. 9. “Ringing effect” in Riegl LMS-Q680i data:
a) emitted laser pulse; b) backscatter signal

In the first approach, the normalized cross-correlation R between the emit-

ted pulse waveform s(t) and the received waveform r(t) of the backscattered echo is
calculated [1]:

©
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The second method analytically comparable with the direct correlation is called
the averaged square difference function (ASDF). The ASDF is a time delay estima-
tion technique based on the correlation of the reference signal s(t) and the measured
signal r(t) [4]. In full-waveform data processing s(t) and r(t) are equidistanced time
series with sampling interval T. The ASDF response value R, (1) between s(t) and
the shifted waveform r(t + 7) is defined as follows [4]:

N

R, pp (1) = %Z(s(kT) —r(kT + 1:))2 (10)

pa]
where T - time shift, t=—-NT,(-N +1)T,..,NT is an integral multiple of T.
The ASDF method is equivalent to direct correlation (DC) if normalized in the

interval [0, 1] [13]. The minimum of the ASDF function corresponds to the maximum
of correlation coefficient.
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For both techniques, the calculated distance is improved, compared to the peak
detection analysis of the received signal [7]. Moreover, the noise and the “ringing
effect” influence can be significantly reduced.

3. Summary

Full-waveform airborne laser scanning becomes more and more popular. While
full-waveform digitization technology is already well developed, the data process-
ing methods are still in the research stage.

For rough but fast point cloud extraction from full-waveform profiles, one of
the simple echo detection methods, such as zero crossing of the first derivative or
peak thresholding, can be used. If high accuracy of the point cloud is required and
the detection of a maximum number of echoes is essential, signal decomposition
or methods based on signal correlation should be applied. Both these techniques
are more time consuming, but it was shown that they can give much better results.
When full-waveform LiDAR data is used for classification purposes, extracting
additional features during the signal decomposition process is recommended. The
calculated set of full-waveform features depends on the type of function used for
signal modelling. The most popular signal decomposition approach consists in
presenting a waveform as a sum of Gaussian components, and allows us to re-
trieve the echo position, amplitude and width. Moreover, the full-waveform data
can be modelled with generalized Gaussian, Lognormal, Weibull, Nakagami or
Burr functions. The correlation techniques work well for data affected by high
noise level or the “ringing effect”, however, some important waveform features
are not included.

Extensive research on the potential of the LiDAR full-waveform data will cer-
tainly continue in the coming years. The use of such data for forestry applications
has been fairly well studied over the last ten years. The developed algorithms for
creating detailed descriptions of vegetated structures will be improved in the future
as well as methods for modelling single trees. The potential of full-waveform data
use in the urban areas has not yet been fully exploited. Therefore, the full-waveform
processing techniques development will probably be focused on this issue, espe-
cially on the improvement in the separation between vegetation and buildings, and
precise building edge detection methods.
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