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1. Introduction

This paper provides an overview of advanced full-waveform LiDAR data pro-
cessing techniques. The paper is an extension of the article Full-waveform Airborne
Laser Scanning Data Processing Techniques [19].

Since full-waveform scanner systems had emerged on the commercial market
the potential of full-waveform data has gained a lot of interest.

In general, studies on the potential of full-waveform data can be divided into
three groups:

1) Studies focused on the improvement of the classification / segmentation pro-

cess of point clouds by including additional full-waveform parameters. It is
a well known fact that both classification and segmentation rely on an analy-
sis of the differentiability of data sets based on specified attributes values.
Typically, these point cloud attributes are related to geometrical relationships
between points, e.g. number of points in a defined neighbourhood or height
differences between points. Additionally, by modelling raw full-waveform
signals, detected echoes can be characterized by shape parameters such as
echo width or wave skewness. Advanced modelling aims at increasing the
accuracy of echo parameters determination or, alternatively, to appoint new,
additional parameters.

2) Analysis aimed at increasing the density of point clouds by the detection of

weak and overlapping backscattered laser pulses.
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3) Research focused on point cloud accuracy improvement. It has been shown
that by implementing suitable processing methods of full-waveform data
the accuracy of derived point clouds can be significantly increased. Most re-
search in this area focuses on developing improved peak detection methods,
which directly corresponds to vertical accuracy enhancement.

Obviously, the categorization of trends in full-waveform data research present-
ed above is purely schematic and only introduces a coarse systematization of stud-
ies. In practice, development in one category could be followed by improvement
in another category, e.g. an improvement of the signal modelling accuracy of the
determined point cloud could potentially increase the density of the point cloud in
comparison to classic, discrete LIDAR systems.

In order to maintain a clear article structure, the text has been divided into three
main parts. In the first part the advanced signal decomposition techniques along
with methods of weak and overlapping pulses detection are presented. In section 3,
the idea of radiometric calibration with the most important equations can be found.
Since waveform modelling is directly related to full-waveform features extraction
for point cloud classification purposes, the subsequent section of the article is dedi-
cated to the classification of LIDAR data. The overview of studies on the possibili-
ties of improving classification results by using point attributes computed from full-
waveform energy profiles is given.

2. Advanced Processing Methods

For most of the full-waveform data, especially for single echoes from planar
targets, typical processing methods presented in [19] are sufficient for precise 3D
point extraction from the energy profile. However, a critical measurement condi-
tion can occur when the reflected pulse is strongly deformed or more than one echo
is recorded [8]. The complex signal can be registered for small objects randomly
distributed within the laser footprint area, for more than one target with slightly
shifted elevation or for an uneven, rough or sloped surface. In such cases, advanced
processing is usually required.

The most typical approaches for full-waveform data processing rely on signal
decomposition. The idea of decomposition of full-waveform LiDAR data focuses
on extracting individual echoes from raw signal, by modelling waves using a basic
function. The general formulae of signal decomposition is presented below:

y=fx)=> fx) (1)
j=1

where:
n — number of components,
f; — analytical function.
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Various sets of parameters can be extracted using different parameter functions
in the modelling process. A list of commonly used functions and their characteristics
is presented in [19]. The most popular processing method is signal decomposition
into Gaussian components. Using Gaussian modelling amplitude and echo width
parameters can be retrieved (Fig. 1a, b). Using Generalized Gaussian for signal mod-
elling, an additional flattening parameter is extracted (Fig. 1c). On the other hand,
asymmetric functions, such as Lognormal, Weibull or Nakagami, allow us to deter-
mine echo skewness (Fig. 1d).
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Fig. 1. Shape parameters

As mentioned above, more sophisticated processing methods could be required
for data having complex echoes. The overview of some advanced processing tech-
niques is presented below:

— In [25], the authors propose a fast method called PWD (Progressive
Waveform Decomposition). This decomposition method does not require
initial values and is not iterative. In the first step, the waveform is de-noised
and smoothed. Then, a local maximum is detected and a Gaussian function
is fitted to the signal. Secondly, the fitted wave is subtracted from the signal
and peak detection as well as the Gaussian fitting process are conducted
again. The procedure is repeated until no visible peaks are present in the
subtracted signal.
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— Mallet et al. [13] present a novel signal decomposition approach using the
Marked Point Processes. In this method the number of components does not
have to be known. The algorithm fits data with functions from a predefined
parametric function library.

— The advanced full-waveform decomposition technique for digital elevation
model generation purposes was proposed by Hu et al. in [6]. The method
starts with a terrain TIN model. For every TIN facet full-waveform profiles
intersecting the currently analyzed facet are checked for a peak represent-
ing the terrain. The TIN model is successfully updated with newly detected
points. This seeded Gaussian decomposition method allows us to detect ter-
rain points under vegetation. The presented preliminary results show that
the proposed algorithm can increase the accuracy of the ground model under
trees and shrubs by more than 30% [6].

— In [8], authors propose a method of computing a full-waveform signal in the
case of different variety of emitted pulses. To remove the influence of the
transmitted signal on the recorded backscatter waveforms and calculate the
surface response the deconvolution technique is used. The surface response
is obtained by transforming the received waveform into the Fourier domain
and by applying the Wiener filter for noise reduction.

— Waveform decomposition using a one-dimensional wavelet transform is pro-
posed among others by Molnar et al. [14] and Toth et al. [21]. The biorthogo-
nal CDF 3/9 wavelet is used, which provides good waveform representation
and compression.

— The 3D wavelet decomposition technique for vertical object detection and
recognition is proposed by Parrish in [15]. After the process of deconvolution
and georeferencing of full-waveform data a dense point cloud is obtained.
Then, this point cloud is voxelized and a 3D wavelet transform is performed.
The objects are detected in the wavelet domain by a multiresolution template
matching approach.

By recording entire backscattered energy profiles and post-processing them
in an advanced manner additional points could be extracted. However, difficulties
arise while computing complex, weak or overlapping echoes, which are likely to
occur in vegetated areas [9]. In such places, most of the energy is scattered by the
tree canopy layer, resulting in weak echoes for the ground. Most often, such echoes
are below the threshold value for typical processing methods. Overlapping echoes,
on the other hand, can occur in areas of low vegetation, where the distance between
two consecutive targets diminishes. The shapes of superimposed echoes can signifi-
cantly deviate from single returns, which make correct target extraction very diffi-
cult or even impossible for standard pulse detection methods. In fact, typically only
one uncertain point between shrubs and terrain is extracted for low vegetation areas,
resulting in overestimation of the ground height.

The studies on weak and overlapping echoes were conducted by Stilla et al. [20],
Lin et al. [9] and Wang [24].
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A summary of the proposed methods is presented below:

Stilla et al. propose a method of analyzing the local neighbourhood relations
by waveform stacking for searching a prominent geometric pattern in wave-
form data in order to detect weak and overlapping echoes. The algorithm
was tested on a regular, simulated data set, which can be expressed as dis-
crete data cuboid I [x y t]. Results have shown that partially occluded objects
and targets with poor surface response can be detected when using the pro-
posed method [20].

The algorithm proposed by Lin is based on the Gaussian decomposition
technique. It includes two processing steps. Firstly, Gaussian modelling for
visible peaks is applied. Then, shapes of overlapping echoes are analyzed.
The algorithm detects inflexion points for asymmetric pulses on both sides of
the primary peaks. As a result, overlapping echoes, representing asymmetric
behaviour or a non-Gaussian distribution, are successfully resolved. Weak
Gaussian pulses are properly extracted by the algorithm [9].

Wang introduced a detector based on the wavelet transform. The signal is
decomposed and possible echoes are extracted from wavelet coefficients at
a certain scale. The proposed algorithm identifies all the potential echoes in
the registered signal. In the cited study, the influence of noise on the signal
as expressed in the signal-to-noise-ratio (SNR) and the ability to detect weak
pulses depending on the noise level were examined. For the study area, cov-
ering irregularly spaced shrubs and tall crops, more than 18% of additional
returns were found using the proposed algorithm [24].

3. Radiometric Calibration

One of the advanced processing techniques related to the decomposition process
is the radiometric calibration of the backscattered signal. Calibration of full-waveform
data using the radar equation was proposed by Wagner et al. in 2006 [23]. It provides
an estimate of the backscatter cross-section for each target and is necessary for a com-
parison of data acquired by different systems [23] or when analyzing data sets consist-
ing of different flight strips. The calibration equation is presented below:

where:

=

6, =C R I W, ()

— backscatter cross-section for i-th echo,

— calibration constant,

— range (the distance from the sensor to the target),
— echo amplitude,

— echo width.
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The calibration constant can be calculated by extracting the amplitude and echo
width values for small asphalt areas at nadir view. Under the assumption that these
pulses behave like ideal Lambertian scatterers with a reflectivity of p = 0.2, the esti-
mate of the calibration constant can be expressed as [23]:

0.2-m-p?
cal = R2 X I S\t] (3)
asphalt * " Vasphalt
where:
B, - laser beam divergence,
Lysphate echo amplitude for asphalt areas,
asphalt echo width for asphalt areas.

4. Full-waveform Data for Classification Purposes

The point cloud classification process based on data acquired by the discrete, multi-
echo laser system typically operates on geometrical properties (e.g. height difference,
co-planarity), or on characteristics such as intensity or the number of returns. Along
with the introduction of full-waveform scanner systems, researchers discovered the
possibility of extracting additional parameters associated with the shape of the wave-
form for point cloud classification purposes. Since then, studies on the improvement
of classification accuracy by adding parameters directly acquired from full-waveform
data into geometrical attributes have been carried out. The main aspect is the existence
of a specified set of full-waveform parameters, allowing us to completely replace geo-
metrical attributes in the classification process.

Research in this area has been carried out, inter alia, by Duong et al. [2], Heinzel
and Koch [3], Hofle et al. [4, 5], Mallet et al. [10, 11], Molnar et al. [14], Reitberger et al.
[17, 18] and Wagner et al. [22]:

— In [2] the possibility of using ICESat data for land-cover classification is de-
scribed. A decision tree classifier is used to assign the footprints of the laser
pulses based on full-waveform parameters into four categories: high vegeta-
tion, urban, water, and bare land / low vegetation. A classification accuracy
of 73% was achieved.

— The possibility of utilizing full-waveform characteristics for point cloud clas-
sification into vegetation and non-vegetation echoes is described in [4, 22].
In [22] the scattering characteristics (width of the backscattered pulse and
backscatter cross-section) of vegetation and the underlying terrain are in-
vestigated. In [4] a classification based on different sets of segment features
computed from the point cloud and derived from full-waveform attributes
is proposed. Two machine learning techniques, decision trees and artificial
neural networks, were tested in the classification process.
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- In[3, 5,17, 18], the problem of tree species determination based on full-wave-
form features is investigated. Heinzel and Koch [3] describe an approach to
finding the most important factors for tree species classification from full-
waveform LiDAR data. Over 200 parameter constellations were explored
with linear discriminant analysis (LDA) to determine the most suited vari-
ables. Altogether three variables are recommended for the main species clas-
sification in Central European temperate forests: the mean intensity, the me-
dian of the width and the mean total number of targets within a laser beam.
In [5], Hofle et al. propose a new approach for area-based parameterization of
the forest structure. The distributions of full-waveform point cloud attributes
were analyzed with respect to the backscattering characteristics of individu-
al tree species and forest stand level. In [17, 18] a tree species classification
method using salient features is demonstrated. It was shown that classifica-
tion accuracy for deciduous and coniferous trees can reach 93% and 95% for
unsupervised and supervised classification, respectively.

— In [10, 11, 14] the potential of using full-waveform data for classification
in urban areas is discussed. In [11] a pattern recognition approach with
a Support Vector Machine classification based on full-waveform parameters
is proposed. In [10] the relevance assessment of full-waveform features for
automatic classification of urban areas is given. The parameters derived from
full-waveform data have been ranked using three methods: F-score, Relief
and Sum-RFE. Various scenarios based on the rank of features have been
tested with a Support Vector Machines classifier. Molnar et al. in [14] have
investigated the relevance of parameters computed from waveforms as well.
However, different classification methods have been used: supervised Bayes
and unsupervised Self-Organizing Map.

As mentioned above, the improvement of point cloud classification can be
achieved by adding additional full-waveform features during the classification
process. These parameters are associated with the shape of the backscattered laser
pulse. On the other hand, the shape of the returned waveform is directly related to
the physical properties of the reflecting surface, like surface material or angle of in-
cidence between the scanner and the target [14].

Most of the reflected LIiDAR pulses can be sufficiently described by amplitude,
echo width, flatness and skewness parameters:

— Amplitude value is related to intensity, registered by traditional laser scanners,
and it strongly depends on both the radiometric and geometric properties of
the targets. In [11], Mallet et al. show that high amplitudes are observed for
building roofs regardless of the material (except metal), on bare earth, and on
cars. On the other hand, low values could indicate vegetation (due to a higher
target heterogeneity) and street points [11]. This parameter can be useful for
the discrimination of buildings from vegetation and ground points.
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— Laser pulses travelling through layers of tree branches are spread. That ex-
plains why the highest echo width values are observed for vegetation. Ground
points and urban waveforms are generally characterised by narrower width
values due to the reflectance from sharp or artificial objects [2], even in ar-
eas with increasing roof slope [11]. The echo width parameter has proved to
be very useful for digital terrain model generation purposes [10]. In [16] the
potential of using width for discrimination of ground points from the veg-
etation points was investigated. It was shown that on average the width of
the vegetation points tends to be wider in comparison to the ground points.
Nevertheless, a simple classification based only on amplitude and the width
value does not have to cause positive results — the low amplitude and the
wide echoes do not necessarily indicate vegetation.

The other two shape parameters, flatness a and skewness s, were shown to be
rather insignificant for classification purposes [10]. Slightly varying flatness values
can be obtained for buildings, ground and vegetation areas. For small-footprint la-
ser data, the waveform asymmetry is irrelevant and is not linked to specified ob-
jects [10]. Asymmetric echoes can be noticed for building edges or in areas with
surface discontinuities [13].

Other full-waveform parameters found in the literature are: “penetration” and
residuals of Gaussian fitting parameters [14], total energy and the beginning of the
waveform [2], salient features describing tree structure [17], features from calibra-
tion procedures such as backscatter cross-section, the cross-section per illuminated
area and the backscatter coefficient [10]. The type of basic function applied at the de-
composition stage can be additionally used in the classification procedure, however,
it has been shown that a simple symmetric decomposition technique is sufficient for
small-footprint data [10].

In summary, the inclusion of full-waveform parameters can improve classifica-
tion, however, the classification entirely based on waveform shape parameters gives
insufficient results [14].

5. Summary

LiDAR full-waveform data pose a wide range of possibilities for many applica-
tion purposes, although this enormous potential is still not fully exploited, especial-
ly by commercial companies using popular data processing software. This situation
will certainly change in the coming years, mainly thanks to many studies conducted
in research and academic institutions. One of the main areas of research is the possi-
bility of point cloud classification improvement by including full-waveform param-
eters. The cited articles indicate that by adding additional full-waveform features re-
lated to backscattered waveform shape, such as waveform width, amplitude, flatness
or skewness, classification results could be significantly improved. This additional
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full-waveform attributes for simple reflections might be extracted by applying typi-
cal processing methods like Gaussian signal decomposition. However, proper analy-
sis of complex, weak or overlapping echoes could be a challenging task. A solution is
to apply more sophisticated processing techniques, like waveform stacking, wavelet
decomposition or the Progressive Waveform Decomposition (PWD) method. While
computing data from multiple flight campaigns or from different strips, the radio-
metric calibration is recommended before the actual data processing.
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