
Automatic Installation of Software-based Fault
Tolerance Algorithms in Programs Generated by

GCC Compiler
Adam Piotrowski

Abstract—The problem of designing radiation-tolerant devices
working in application critical systems becomes very important
especially if human life depends on the reliability of control
mechanisms. One of the possible solution of this problem are pure
software protection methods. They constitute different category
of techniques to detect transient faults and correct corresponding
errors. Software fault tolerance schemes are cheaper to imple-
ment since they can be used with standard, commercial of-the-
shelf (COTS) components. Additionally, they do not require any
hardware modification. In this paper, author propose a new
implementation mechanism for software based fault protection
algorithms performed automatically during application compila-
tion.

Index Terms—Single Event Upsets, GCC Compiler, software
based fault tolerance

I. INTRODUCTION

S INGLE Event Effects are a serious problem for the elec-

tronic components working not only in a hostile environ-

ment like accelerators or cosmic spaces but also are a common

source of hardware failures in modern desktop computers,

servers or computing clusters. Semiconductor devices are more

and more sensitive to the radiation because of increasing

demand for higher density and lower voltage. Particles pass-

ing through matter lose energy through a several type of

interactions. Two major consequences of energy transfer from

radiation to electronic materials are: atomic displacement and

ionization [1]. The former occurs, when particle removes an

atom from its regular position, while the latter when radiation

creates an electron-hole pairs. Both phenomena lead to serious

degradation effects in the device parameters, disruption of

system functionality and finally to permanent damage of

microelectronic components. Ionizing particles can produce

photo-current in active regions of the semiconductor device

and lead to phenomena called Single Event Effects. According

to National Aeronautics and Space Administration (NASA)

”radiation induced errors in microelectronic circuits caused

when charged particles lose energy by ionizing the medium

through which they pass, leaving behind a wake of electron-

hole pairs [2]” are known as SEUs – Single Event Upsets. SEU

is a change of the device state caused by energetic particle

passing through the sensitive region of the semiconductor

component. High energy particle, through ionization effect,

can change the logic state of the data stored into a memory

A. Piotrowski is with the Department of Microelectronics and Computer
Science of Technical University of Lodz, Wolczanska 221/223, 90-924 Lodz,
Poland, e-mail: komam@dmcs.p.lodz.pl

cell, microprocessor register or the FPGA configuration RAM

(Random Access Memory) memory. Uncharged particles like

photons and neutrons, can induce SEU through an indirect

ionization effect [3]. Information stored in the affected logic

is lost but component remains functional, therefore error

can be corrected if it is detected [4]. Several techniques to

protect microelectronic systems against radiation have been

developed. Key components of the system can be shielded,

unfortunately different type of shield must be used against

different type of particles. Electronic components can be hard-

ened during the design and fabrication. Modifications of the

critical technological parameters, additional layout processing

or modification of integrated circuits electrical construction

allow obtaining devices highly immune to soft errors. Unfor-

tunately, this solution significantly increases the production

expenses. The hardening-by-system methods like components

redundancy, error detection and correction algorithms, memory

scrubbing are less expensive and can be used with standard

commercial off-the-shelf (COTS) components, but require

additional resources and do not guarantee error free operations

in the radiation environment [5].

Another solution to make tolerant microprocessor-based

systems is a purely programming approach known as the

Software-based Radiation Protection (SbRP)[6], [7]. This pro-

tection technique enables system to tolerate faults induced by

the interaction between radiation and hardware components of

the system. When the error occurs, they provide a mechanism

to the software to prevent system failure from occurring. They

offer services by typically using variables duplication, control

sums or redundancy at different levels of system granularity

- instruction, blocks of the source code, procedure or entire

program. Several specialized protection algorithms adopted to

the automatic implementation were developed [8]. To harden

data located in a large memory areas like array or structures,

Composite Data Type Protection (CDTP) algorithm [9] was

formulated. Objects in program are protected by additional set

of control sums calculated and checked during every access

to variable. To protect local variables used into procedures

Live Variable Check (LVC) algorithm [10] was proposed.

Every variable in program is duplicated and data consistency

is checked at the end of every basic block.

II. COMPOSITE DATA TYPE PROTECTION ALGORITHM

In Composite Data Type Protection each complex variable

is treated as set of bytes protected by additional error coding

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ���

�������	
 � �
�
 �� �����
���
 �� ���������
������ � �����
�� �������� ���	����� ��� ����
� �� !�"#

technique. Every read and write operation performed on the

protected object is replaced by the set of operations responsible

for checking correctness of variable. In the case of inconsis-

tency, correct value of variable is restored based on redundant

information stored together with original data.

Automatic insertion of the CDTP algorithm was imple-

mented in the cc1 compiler as an independent stage of the

compilation process. Protection methods are applied at the

beginning of the source code optimization immediately after

transformation of program to GIMPLE internal representation.

Owing to CDTP algorithm do not introduce any redundancy

to the compiled application, every optimization offered by

compiler can be used. Modifications of the program are

limited only to instruction that perform access to protected

variables, therefore techniques like dead code elimination,

constant folding or strength reduction can be used to increase

speed of application by elimination of unnecessary operation

introduced by CDTP algorithm [11].

Algorithm implementation is performed in several, listed

below steps:

1) identify every composite data type variables in analyzed

source code that are not explicitly marked as non-

protected,

2) identify every read and write operations performed on

the protected variables,

3) replace every earlier identified variables with appropriate

byte arrays. Size of new objects must be sufficient

to store original data and additional information about

control sum,

4) map multi-dimensional addressing of array elements to

one-dimensional offset from the beginning of original

variable. If operation cannot be completed during com-

pilation due to lack of necessary information, i.e. array

index is calculated during program execution, insert

appropriate code to perform mapping in run-time,

5) replace every access to protected object with appropriate

accessors functions - for read operation seu get value,

for write operation seu set value.

Type of the control sum utilized by the algorithm is not

specified, only interface to external library is defined. Example

source code before and after implementation of CDTP algo-

rithm expressed in GIMPLE intermediate form is presented

respectively in Fig. 1 and Fig. 2. At the beginning, according to

the first and second transformation rules, algorithm identifies

the array variable as composite data type appropriate for

protection (Fig 1 line 4) and locates every read and write

operation performed on this variable - Fig 1 lines 6, 12

and 27. Original variable is removed and byte array called

the seu copy is introduced (Fig 2 line 3). Size of a new

object depends on the selected error coding technique and

must be enough to store original data and corrections codes.

To set appropriate value of codes, array is first initialized

(Fig 2 line 5). After that, all operations performed on the

protected variable are replaced by an appropriate function from

CDTP protection library. If offset of accessed element can

be calculated during compilation appropriate value is used

directly (Fig 2 lines 6, 7). On the other hand, if offset must be

calculated in run-time, additional source code is introduced -

see Fig 2 lines 13 to 15 and 18 to 21.

simple_test ()
{

int array[10];

array[0] = 1;
i = 1;
goto <D1876>;
<D1875>:;
i.0 = i;
D.1879 = i - 1;
D.1880 = array[D.1879];
D.1881 = D.1880 * 2;
array[i.0] = D.1881;
i = i + 1;
<D1876>:;
i.1 = (unsigned int) i;
if (i.1 <= 9)
{

goto <D1875>;
}
else
{

goto <D1877>;
}
<D1877>:;
D.1883 = array[9];
return D.1883;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Fig. 1. Protected program presented in GIMPLE intermediate representation
before CDTP algorithm implementation.

simple_test ()
{

unsigned char _seu_copy[80];

= {};
D.1888 = 1;
_seu_set_value (& , 0, &D.1888, &D.1888, 4, 40, 0);
i = 1;
goto <D1876>;
<D1875>:;
i.0 = i;
D.1879 = i - 1;
index.3 = D.1879 * 4;
f_index.4 = index.3;
_seu_get_value (& , f_index.4, &D.1891, &D.1891, 4, 40, 0);
D.1880 = D.1891;
D.1881 = D.1880 * 2;
index.5 = i.0 * 4;
f_index.6 = index.5;
D.1894 = D.1881;
_seu_set_value (& , f_index.6, &D.1894, &D.1894, 4, 40, 0);
i = i + 1;
<D1876>:;
i.1 = (unsigned int) i;
if (i.1 <= 9)
{

goto <D1875>;
}
else
{

goto <D1877>;
}
<D1877>:;
_seu_get_value (& , 36, &D.1895, &D.1895, 4, 40, 0);
D.1883 = D.1895;
return D.1883;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

_seu_copy

_seu_copy

_seu_copy

_seu_copy

_seu_copy

Fig. 2. Protected program presented in GIMPLE intermediate representation
after CDTP algorithm implementation.

A. Simulation Results

Four simple programs have been adopted as benchmarks for

simulations:

• bubble sort - an implementation of bubble sort algorithm,

• matrix multiplication - multiplication of two matrices,

• FFT - calculation of Fast Fourier Transformation,

• quick sort - an implementation of iterative version of

quick sort algorithm.

Additionally, during the tests four type of coding techniques

were utilized [12]:

��� ����������� ����
���� �����		����� �� �������������� ���	� ��	������ �	 ����!
� �� ��� ��
� ���

• single-error correct, double-error detect code based on

extended Hamming algorithm,

• triple-error correct, quad-error detect code based on ex-

tended Golay algorithm,

• full iterated coding scheme,

• selective iterated coding scheme.

In iterated coding scheme, a content of array, independently

on the real type of data, is treated as a set of unsigned integer

values stored in 2-dimensional matrix, that is protected by

additional row and column control sum. In full version of

coding scheme, correctness of entire array is checked during

every access to variable. In opposite, selective version of

algorithm checks only rows and columns involved in current

activity. Potentially affected cell is determined based on the

following sequence of operations:

• if discrepancy occurs in a row and column checksum, the

error affects information located at the intersection of the

inconsistent row and column.

• if mismatch is detected only in a row or a column, the

error affected the checksum.

Correction of the faulty element can be performed based on

the following sequence of operations:

• if error affected the data element of the matrix, it can

be corrected by computing XOR operation of the rest of

the values on the same row or column and corresponding

row or column checksum.

• if mismatch was detected in a checksum variable the

correct value can be computed by XOR operation of all

elements of the row or column.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

T
im

e
[m

ic
ro

se
co

nd
s]

Array size [elements]

Golay algorithm
Full iterated algorithm

Selctive iterated algorithm
Hamming algorithm
No coding scheme

No additional protection

Fig. 3. Performance overhead introduced by CDTP algorithm to bubble sort
benchmark application.

Performance overhead introduced by CDTP algorithm to bub-

ble sort benchmark application for different type of coding

schemes is depicted in Fig. 3 and summarized for selected

array sizes in Table I. Plot labeled no additional protection
represents time required to finish program by application

without implemented CDTP algorithm and curve named no
coding scheme shows execution time for empty control sum

calculation functions. Therefore, difference between both plots

TABLE I
PERFORMANCE OVERHEAD INTRODUCED BY CDTP ALGORITHM TO

BUBBLE SORT BENCHMARK APPLICATION.

array no prot. no coding golay hamming iter. full iter. sel.
size [ms] [ms] [ms] [ms] [ms] [ms]

10 0,0006 0,0034 3,04 0,0 0,1 0,1
60 0,02 0,1 114,6 2,2 20,3 5,7
110 0,05 0,3 386,7 7,7 113,2 22,8
160 0,11 0,7 824,6 16,3 336,8 54,1
210 0,19 1,4 1421,7 28,1 729,0 102,2
260 0,29 2,1 2180,3 43,1 1376,5 168,3
310 0,40 2,6 3100,8 61,3 2300,5 254,7
360 0,54 3,6 4182,7 82,8 3516,4 361,2
410 0,70 5,3 5425,4 107,7 5138,6 489,8
460 0,89 6,8 6830,4 135,2 7235,0 646,0
510 1,10 7,3 8396,1 166,2 9890,2 827,0

represents application slowdown introduced mainly by re-

placement of direct access to arrays variable by execution of

functions from CDTP library.

 2500

 3000

 3500

 4000

 4500

 5000

 5500

bubble
sort

fft matrix
mult

quick
sort

P
ro

gr
am

 s
iz

e
[b

yt
es

]

Fig. 4. The size overhead of array consistency check instructions for four
test applications. Left bars represent size of application with implemented
the CDTP algorithm but with empty error coding library and the right bars
represent size of application without CDTP algorithm implementation.

TABLE II
THE OVERHEAD OF ARRAY CONSISTENCY CHECK INSTRUCTIONS.

bubble sort FFT matrix mult quck sort
[bytes] [bytes] [bytes] [bytes]

with protection 3047 5230 3159 3447
without protection 2583 3358 2663 2711

overhead 17,96% 55,74% 18,62% 27,14%

The application size overhead introduced by the CDTP

algorithm is determined by the two factors:

• the size of additional code needed for offset calculations

and fault detection/correction function calls - depends on

application structure and utilization of array variables,

• the size of the error coding algorithm implementation,

that is constant for each program.

The application size overhead introduced by instructions re-

sponsible for run-time array offset calculations and protection

function calls is presented in Fig. 4. Precise results of mea-

surements are stored in Table II. Total size overhead related to

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��"

TABLE III
THE SIZE OVERHEAD OF CDTP ALGORITHM.

bubble sort FFT matrix mult quck sort
[bytes] [bytes] [bytes] [bytes]

golay 6302 (144%) 8541 (154%) 6414 (141%) 6702 (147%)

hamming 4647 (80%) 6814 (103%) 4759 (79%) 5031 (85%)

iter. full 5500 (112%) 7532 (124%) 5612 (111%) 5884 (117%)

iter. sel. 5516 (113%) 7564 (125,25%) 5628 (111%) 5916 (118%)

no library 3047 (18%) 5230 (56%) 3159 (19%) 3447 (27%)

no prot. 2583 3358 2663 2711

protection algorithm for different types of benchmark appli-

cations and utilized coding scheme is presented in Table III.

Row labeled no prot. represents size of application without

implemented CDTP algorithm and row named no library
shows total application size in the case of empty control sum

calculation library.

III. LIVE VARIABLE CHECK ALGORITHM

Live Variable Check algorithm uses time redundancy to de-

tect computational or memory errors affecting local variables.

Secondary set of data is introduced and the same operations are

performed on both groups of variables. Duplicated instruction

have no effects on result of program, but allows to detect

errors in system in run-time. Unfortunately, duplication will

cause execution overhead and performance loss. In order to

minimize negative effects of algorithm, correctness checking

is performed only for variables that are live at the end of

processed basic block and were modified within. Results of

duplicated computations performed of both copies of variables

that are live at the end of basic block, are compared and in

the case of data inconsistency, previous state of each variable

that is live at the beginning of block is restored and block

is reexecuted. Correctness of data must be preserved between

multiple basic blocks therefore after positive data verification,

variables are stored into so called Recovery Array, protected

by Composite Data Type Protection algorithm.

At the beginning of algorithm implementation, non re-

executable instructions like array read/write operations or

nonpure function calls are located and moved into separate

unrepeatable blocks. Next, based on Equations (1) sets of

variables that are live before (set IN) and after (set OUT) each

basic blocks are calculated. DEF and USE are respectively sets

of variables that are defined before use and used before define

in block [13].

INB = USEB ∪ (OUTB −DEFB)

OUTB =
⋃

S a successor of B

INS (1)

Each basic block is processed separately according to the

following steps:

• at the beginning of basic block a recovery point is

established,

• for every scalar variable in a program, secondary variable

of the same type is introduced. Every simple instruction

is duplicated - secondary statements are inserted imme-

diately after the first one. Function call statements for

routines that return value and are marked as pure, are

duplicated. In the case of non-pure functions, located

in non re-executable blocks, returned value is simply

assigned to the copy of original variable,

• before every operation performed on array located in non

re-executable blocks, code that check correctness of index

is inserted and in the case of data inconsistency, correct

value of variable is loaded from Recovery Array. The use

of index value changed by soft error can lead to wrong

memory access exception and result in a critical system

stop,

• for every variable from OUT set modified in processed

basic block, data correctness checking instructions are

inserted. If USE set is not empty, restore basic block is

created and values of each variable from USE set are

loaded from Recovery Array. Otherwise in the case of

fault original basic block can be reexecuted without any

load instruction,

• after positive consistency checking and if original basic

block ends instruction different then return, new values

of live variables modified in block are stored in Recovery

Array,

• if block ends with conditional statement, consistency of

variable used to determined new control flow directions

are checked.

Example source code before and after implementation of

LVC algorithm expressed in GIMPLE intermediate form are

presented respectively in Fig. 5 and Fig. 6. The control flow

graph before and after LVC algorithm implementation are

depicted in Fig. 7 and Fig. 8.

simple_test ()
{

D.1527 = get_int ();
if (D.1527 > 10)
{

t1 = 1;
}
else
{

t1 = 2;
}
D.1528 = t1;
return D.1528;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 5. Source code presented in GIMPLE intermediate form before Live
Varible Check algorithm implementation.

A. Simulation Results

Two sets of simple programs have been adopted as bench-

marks for simulations. The first one includes:

• bubble sort - an implementation of bubble sort algorithm,

• matrix multiplication - multiplication of two matrices,

• FFT - calculation of Fast Fourier Transformation,

• quick sort - an implementation of iterative version of

quick sort algorithm.

The second one includes [14]:

��� ����������� ����
���� �����		����� �� �������������� ���	� ��	������ �	 ����!
� �� ��� ��
� ���

1 simple_test ()
2 {
3 unsigned char [18];
4

5 <L6>:;
6 _seu_bb = {};
7

8 <L5>:;
9 D.1527 = get_int ();

10 __seu_prot_1527.1 = D.1527;
11 __seu_store (& , 0, &__seu_prot_1527.1, &D.1527, 4, 18);
12

13 <L4>:;
14 if (D.1527 > 10) goto <L8>; else goto <L9>;
15

16 <L7>:;
17 __seu_load (& , 0, &__seu_prot_1527.1, &D.1527, 4, 18);
18 goto <bb 6> (<L4>);
19

20 <L8>:;
21 if (D.1527 != __seu_prot_1527.1) goto <L7>; else goto <L0>;
22

23 <L0>:;
24 t1 = 1;
25 __seu_prot_t1.2 = 1;
26 if (t1 != __seu_prot_t1.2) goto <L0>; else goto <L10>;
27

28 <L10>:;
29 __seu_store (& , 4, &__seu_prot_t1.2, &t1, 4, 18);
30 goto <bb 5> (<L2>);
31

32 <L9>:;
33 if (D.1527 != __seu_prot_1527.1) goto <L7>; else goto <L1>;
34

35 <L1>:;
36 t1 = 2;
37 __seu_prot_t1.2 = 2;
38 if (t1 != __seu_prot_t1.2) goto <L1>; else goto <L11>;
39

40 <L11>:;
41 __seu_t_rbb_store (& , 4, &__seu_prot_t1.2, &t1, 4, 18);
42

43 <L2>:;
44 D.1528 = t1;
45 __seu_prot_1528.3 = __seu_prot_t1.2;
46 if (D.1528 != __seu_prot_1528.3) goto <L12>; else goto <L13>;
47

48 <L13>:;
49 return D.1528;
50

51 <L12>:;
52 __seu_load (& , 4, &__seu_prot_t1.2, &t1, 4, 18);
53 goto <bb 5> (<L2>);
54

55 }

_seu_bb

_seu_bb

_seu_bb

_seu_bb

_seu_bb

_seu_bb

Fig. 6. Source code presented in GIMPLE intermediate form after Live
Varible Check algorithm implementation.

simple_test

D.1527=get_int();
if (D.1527 > 10)

t1 = 1; t1 = 2;

D.1528 = t1;
return D.1528;

Fig. 7. Control Flow Graph of example application before Live Varible
Check algorithm implementation.

• false - an implementation of False Position Method called

also regula falsi for function root finding,

• ridder - an implementation of Ridders’ Method for func-

tion root finding,

simple_test

L0

L6

L5

L4

L8 L9

L7

L10 L11

L2

L12

L13

L1

Fig. 8. Control Flow Graph of example application after Live Varible Check
algorithm implementation.

• secant - an implementation of Secant Method for function

root finding,

• dekker - an implementation of Van Wijngaarden-Dekker-

Brent Method for function root finding.

Performance slowdown introduced by LVC algorithm for

different type of test application and different level of opti-

mization are presented in Table IV and Table V. Influence of

protection method to application size are shown in Table VI

and Table VII.

TABLE IV
PERFORMANCE SLOWDOWN INTRODUCED BY LVC ALGORITHM FOR

FIRST SET OF BENCHMARK APPLICATION.

bubble sort FFT matrix mult quck sort
[μs] [μs] [μs] [μs]

with protection
-O0 8489.8 (11) 546.1 (12) 107601.0 (9) 3856.6 (9)
-O1 2932.6 (22) 41.9 (10) 53186.4 (14) 2442.5 (10)
-O2 2851.8 (21) 40.6 (8) 49226.6 (13) 2316.9 (16)
-O3 2820.8 (21) 39.3 (11) 49987.5 (13) 2316.7 (16)
-Os 3793.1 (17) 40.9 (6) 50138.7 (13) 2702.6 (17)

without protection
-O0 732.9 46.2 12161.4 433.2
-O1 133.9 4.0 3769.2 244.9
-O2 133.4 5.1 3757.9 140.2
-O3 133.4 3.4 3761.8 141.5
-Os 224.0 6.3 3781.1 161.4

IV. SUMMARY

In this paper, author presents results of simulations in-

volving two Software-base Radiation Protection algorithms:

Composite Data Type Protection and Live Variable Check.

Both methods are based on redundancy, therefore both intro-

duce additional overhead related to the size of the application

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��#

TABLE V
PERFORMANCE SLOWDOWN INTRODUCED BY LVC ALGORITHM FOR

SECOND SET OF BENCHMARK APPLICATION.

false ridder secant dekker
[μs] [μs] [μs] [μs]

with protection
-O0 28.63 (2,37) 6.24 (2,58) 5.23 (2,16) 7.89 (2,97)
-O1 31.48 (2,63) 6.88 (2,81) 5.71 (2,37) 11.68 (4,53)
-O2 31.30 (2,61) 6.93 (2,86) 5.58 (2,38) 11.71 (4,56)
-O3 31.23 (2,58) 6.88 (2,84) 5.61 (2,46) 11.71 (4,56)
-Os 27.57 (2,29) 5.85 (2,41) 5.10 (2,26) 8.28 (3,22)

without protection
-O0 12.06 2.42 2.42 2.66
-O1 11.99 2.45 2.43 2.58
-O2 12.01 2.42 2.34 2.57
-O3 12.11 2.42 2.32 2.57
-Os 12.03 2.43 2.26 2.57

TABLE VI
THE AREA OVERHEAD INTRODUCED BY LVC PROTECTION ALGORITHM

FOR FIRST SET OF BENCHMARK APPLICATION.

bubble sort FFT matrix mult quck sort
[bytes] [bytes] [bytes] [bytes]

with protection
-O0 5959 (2,31) 19835(5,91) 6683 (2,42) 8187 (3,05)
-O1 4055 (1,61) 6742 (2,38) 5787 (2,17) 5595 (2,06)
-O2 4071 (1,63) 6214 (2,22) 5899 (2,20) 5291 (1,95)
-O3 4071 (1,63) 5318 (1,91) 5899 (2,20) 5291 (1,95)
-Os 3511 (1,41) 4579 (1,67) 4251 (1,61) 4171 (1,56)

without protection
-O0 2583 3358 2763 2683
-O1 2519 2830 2667 2715
-O2 2503 2798 2683 2713
-O3 2505 2782 2683 2713
-Os 2487 2734 2635 2667

TABLE VII
THE AREA OVERHEAD INTRODUCED BY LVC PROTECTION ALGORITHM

FOR SECOND SET OF BENCHMARK APPLICATION.

false ridder secant dekker
[bytes] [bytes] [bytes] [bytes]

with protection
-O0 8320 (2,57) 15091 (3,62) 6816 (2,15) 18368 (3,90)
-O1 7167 (2,27) 12907 (3,29) 6063 (1,94) 16527 (3,76)
-O2 6735 (2,11) 11211 (2,83) 5727 (1,81) 15215 (3,40)
-O3 6735 (2,11) 11211 (2,83) 5727 (1,81) 15215 (3,40)
-Os 5332 (1,69) 8896 (2,31) 4868 (1,56) 12196 (2,85)

without protection
-O0 3239 4170 3175 4711
-O1 3163 3923 3131 4395
-O2 3195 3955 3163 4475
-O3 3195 3955 3163 4475
-Os 3163 3843 3115 4283

and time required to finish operation. In the case of CDTP

algorithm, it is very important to correctly choose coding

scheme utilized by method. Methods with high fault coverage

capability, like extended Golay algorithm, are very expensive

and introduce large application slowdown. It must be adjusted

to expected level of radiation and in consequence number of

generated errors. In the case of LVC algorithm, two different

sets of benchmark programs were tested. The applications

from first set strongly utilized array operations, therefore

during method implementation large number of unrepeatable

basic blocks is introduced. In most cases, each unrepeatable

statement divide basic block into three separate blocks.

REFERENCES

[1] G. Barbottin and A. Vapaille, Instabilities in Silicon Devices, New
Insulators, Devices and Radiation Effects. North Holland, 1999.

[2] National Aeronautics and Space Administration, NASA Thesaurus vol.1,
2007. [Online]. Available: http://www.sti.nasa.gov/thesfrm1.htm

[3] R. Baumann, “Soft errors in advanced semiconductor devices — part
I: The three radiation sources,” Device and Materials Reliability, IEEE
Transactions on Volume 1, Issue 1, 2001.

[4] ——, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” IEEE Transactions on Device and Materials Reliability, Vol.
5, No. 3,, 2005.

[5] D. Makowski, “The impact of radiation on electronic devices with the
special consideration of neutron and gamma radiation monitoring,” Ph.D.
dissertation, Technical University of Lodz, 2006.

[6] N. Oh, “Software implemented fault tolerance,” Ph.D. dissertation,
Stanford University, 2000.

[7] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance. Springer Sci-
ence+Business Media, LLC, 2006.

[8] A. Piotrowski, D. Makowski, G. Jablonski, and A. Napieralski, “The
automatic implementation of software implemented hardware fault toler-
ance algorithms as a radiation-induced soft errors mitigation technique,”
Nuclear Science Symposium NSS/MIC/RTSD, 19 - 25 October 2008
Dresden, Germany, 2008.

[9] A. Piotrowski, D. Makowski, S. Tarnowski, and A. Napieralski, “Au-
tomatic implementation of radiation protection algorithms in programs
generated by GCC compiler,” European Particle Accelerator Confer-
ence, 23-27 June 2008, Genoa, Italy, 2008.

[10] A. Piotrowski and S. Tarnowski, “Compiler-level implementation of
single event upset errors mitigation algorithms,” MIXDES 2009 - Mixed
Design of Integrated Circuits and Systems, 2009.

[11] A. Piotrowski, D. Makowski, G. Jablonski, S. Tarnowski, and A. Napier-
alski, “Hardware fault tolerance implemented in software at the compiler
level with special emphasis on array-variable protection,” MIXDES 2008
- Mixed Design of Integrated Circuits and Systems, 2008.

[12] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding. John
Wiley & Sons, 2006.

[13] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[14] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical recipes in C: the art of scientific computing. New York,
NY, USA: Cambridge University Press, 1988.

Adam Piotrowski received the MSc and PhD de-
grees in computer science all from the Techni-
cal University of Lodz, in 2004 and 2010 respec-
tively. His research interests include compilation
techniques, embedded and fast data acquisition sys-
tems. He is involved in development of ATCA-based
LLRF control system for XFEL accelerator.

��$ ����������� ����
���� �����		����� �� �������������� ���	� ��	������ �	 ����!
� �� ��� ��
� ���

