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Abstract

Neil Tennant’s core logic is a type of bilateralist natural deduction system based
on proofs and refutations. We present a proof system for propositional core logic,
explain its connections to bilateralism, and explore the possibility of using it as
a type theory, in the same kind of way intuitionistic logic is often used as a type
theory. Our proof system is not Tennant’s own, but it is very closely related. The
difference matters for our purposes, and we discuss this. We then turn to the
question of strong normalization, showing that although Tennant’s proof system
for core logic is not strongly normalizing, our modified system is.
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1. Introduction

Neil Tennant’s core logic is a type of bilateralist natural deduction system
based on proofs and refutations. We present a proof system for proposi-
tional core logic, explain its connections to bilateralism, and explore the
possibility of using it as a type theory, in the same kind of way intuitionis-
tic logic is often used as a type theory. Our proof system is not Tennant’s
own, but it is very closely related. The difference matters for our purposes,
and we discuss this. We then turn to the question of strong normalization,
showing that although Tennant’s proof system for core logic is not strongly
normalizing, our modified system is.
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2. Core logic

We open by presenting a natural deduction system for core logic. This is
not Tennant’s own system, although it is closely related. (As the paper pro-
gresses, we’ll get more and more perspective on the differences; we discuss
them in Sections 2.4, 3.5 and 5.1.) The language is an ordinary proposi-
tional language with connectives A, V, —, = of arities 2, 2, 2, 1, respectively.
We use p, q,r, ... for atomic formulas and ¢, 1, 0, ... for arbitrary formulas.
We suppress parentheses according to the following conventions: the con-
nectives A and V bind more tightly than —, and — more tightly still; and —
associates to the right. Thus -pAq — rVs — tis ((-p)Aq) — ((rVs) — t).

2.1. Natural deduction

We first present core logic via a natural deduction system, following pre-
sentations such as [15, 21, 22]. This proceeds in the style of [5, 12], with
an important modification: not every node in a derivation needs to be a
formula. There is one additional symbol @ that can also occupy nodes in
a derivation. It is important to keep in mind, though, that ® is not a
formula, and does not enter into formula construction. As a result, things
like ‘-®’ and ‘@ A p’ make no sense.’

We will call the things that can stand at nodes of a derivation hats (for
reasons that will emerge). That is, a hat is either a formula or else ®.
Recall that we use p, 1,0, ... for arbitrary formulas; for arbitrary hats, we
use €, ®. There is an important partial order on hats: € < ® iff either € is
® or € =®. That is, any two distinct formulas are <-incomparable, and
® is <-below all formulas. We will also use the maximum max(€,®) of
two hats €,® according to this order; note that this is only defined when
either € = or one of €, is ®. A sequent, as we use the term, is a set of
premise formulas and a conclusion hat; we write I' > € for the sequent with
premises I' and conclusion €. We draw a distinction between sequents and
arguments: an argument is a sequent with a formula as its conclusion.

The role of @ in these systems is not to carry content, the way a formula
might. Rather, when it occurs in a derivation, it should be seen as part
of the structure of that derivation, the surrounds that the content-bearing

ITennant uses the symbol L for this purpose; we use ® instead because L is in
common use in other work as a formula. To reduce potential confusion, we’ve chosen a
symbol that is not usually used as a formula.
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formulas fit into. It plays, then, the same kind of role in a derivation as the
horizontal bar separating nodes from each other, or the rule labels decorat-
ing such bars, or markers of which assumptions are discharged; it indicates
(in concert with other such apparatus) relations between the formulas in
play.

Assumptions work as usual in these natural deduction systems, and in
particular only formulas may be assumed. Any derivation, then, has a set
I" of open assumptions, all of which are formulas, and it has a conclusion
node, which is a hat €. We refer to I' > € as the sequent of the derivation,
and the derivation as a derivation of its sequent. What we understand a
derivation as telling us depends on whether the derivation’s sequent is an
argument or not. A derivation with sequent I' > ¢ should be understood as
a proof of ¢ from the assumptions I', or, as we will also say, a proof of the
argument I'>¢. On the other hand, a derivation with sequent I'> ® should
be understood as a refutation of the set I'. It is very much not a proof of
®—that wouldn’t make sense, as ® does not carry content. We have here
two fundamentally different roles for a derivation to play: a proof of an
argument, or a refutation of a set of formulas.

This is the bilateralism in core logic: a bilateralism of proofs and refu-
tations. In this setting, it would not be right to understand either proofs or
refutations as a special kind of the other. The rules of derivation allow us to
build proofs and refutations both, from components that themselves may
be proofs and refutations both. In this sense, then, core logic derivations
are bilateralist: based on two core notions, one positive and one negative,
neither of which should be understood as a special case of the other. In
this regard, the bilateralism in core logic is like the bilateralisms explored
in [1, 23, 24, 25]. Tennant’s discussion of these issues in [19] is useful here.

To forestall any misunderstandings, however, we note that core logic
is not at all symmetrical in the way that many bilateralist theories are.
Proofs and refutations in these systems are not at all each other’s mirror
image. Even before we present the rules, we can see this already, as they
apply to different things. A proof is a proof of an argument: a pair of a
set of premises and a single conclusion; while a refutation is a refutation
of just a set of formulas. Both are species of derivation, to be sure, but
neither is reducible to the other.
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2.2. Rules for core logic

With that understood, derivations are otherwise relatively standard. What
makes core logic distinctive, other than some care about the difference
between formulas and hats, is its use of mostly general eliminations (see
for example [17] or [10, Ch. 8]), and a bit of fuss around discharge policies.

Derivations begin, as usual, from assumptions. Any formula may be as-
sumed; recall that ®, which is not a formula, may not be assumed. An as-
sumption of ¢ counts as a proof of ¢ > ¢: a proof of ¢ from the open
assumption .

2.2.1. Conjunction

From here, rules proceed connective by connective, with introduction and
elimination rules for each connective. Each elimination rule has a major
premise, which will be indicated as we proceed. Many of these rules have
particular restrictions against certain kinds of vacuous discharge, which we
will describe as we go.

[, )"

N pa—_ pgn 21 ¢
pAY ¢

Discharged assumptions are marked with [square brackets]; other as-
sumptions, including other occurrences of these discharged formulas, may
also occur as assumptions.? We use numeral annotations (here schema-
tized as ™) to indicate which rule discharges which discharged assumption:
in any derivation, we assume that each occurrence of each discharging rule
wears a distinct discharge numeral, and that each discharged assumption
wears the numeral corresponding to the rule occurrence that discharged it.
Discharge restriction: in AE, the discharge [¢, )] may not be completely
vacuous. That is, it must discharge at least one occurence of ¢ or at least

one occurrence of ¢». The major premise of AE is ¢ A 9.

2See Section 2.4 for discussion.
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2.2.2. Disjunction

[e]” []"
¢ ¥ Ceve e @
VL eV VIr wV vE max (€, D)

Discharge restriction: in VE, neither discharge [¢] nor [¢)] may be vac-
uous. Recall as well that max(€,®) is only defined when either € = ® or
at least one of €, 9 is @; in other cases the rule VE is not applicable. The
major premise of VE is ¢ V .

2.2.3. Implication

[e]” [v]"

=Y ® <
n n
—I p— —E ¢

In the rule —I, we must have € < 7. In addition, if € is @, then the
discharge of [¢] must not be vacuous. However, in cases where € is 1) itself,
the discharge [p] may be vacuous. In —E, the discharge [¢)] may not be
vacuous. The major premise of —E is ¢ — 1.

2.2.4. Negation

[e]”

® -
LY e
S ®

—In

Discharge restriction: in —I, the discharge [¢] may not be vacuous. The
major premise of —E is —p.
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2.3. Core derivations and core logic

What we have in view so far is in fact a proof system for intuitionistic logic,
not core logic. That is, an argument I" > ¢ is provable in this system iff it
is intuitionistically valid, and a set I" of formulas is refutable in this system
iff it is intuitionistically inconsistent.?

To get to core logic, we use the notion of a core derivation, which we now
present. A derivation is core iff every major premise of every elimination
rule in it is an assumption, and a sequent is core derivable iff it is the
sequent of some core derivation. We say that an argument is core provable
iff it has a proof that is core, and that a set of formulas is core refutable iff
it has a refutation that is core.

Not every provable argument is core provable. For example, —p, p> q is
provable as follows:

p—q p [d?
q

This derivation is not core, as the major premise of —E in it is the con-
clusion of a step of —I rather than an assumption. And indeed there is
no core proof of —p, p>q. To see this, note (by checking the rules) that in a
core derivation, every formula that occurs must be a subformula either of
some open assumption or of the conclusion. That gives very little room to
work with when attempting to prove —p, p> ¢, and it’s not hard to see that
the task can’t be done. The closest we can get is instead a core refutation
of the set {—p, p}:
P p

-K 5

Similarly, not every refutable set of formulas is core refutable. For
example, the set {—p, p, ¢} is refutable as follows:

p q

17
Y [p]*
NE 5

®

g2

3For discussion of this point, see [13, 20].
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However, this set has no core refutation, by similar reasoning to the above.
Again, the closest we can get is a core refutation of the distinct set {—p, p}.
One way to see core logic as a consequence relation is this: say that a
sequent I" > € is in core logic iff it is core derivable. As we’ve just seen,
then, neither —p,p > ¢ nor —p, p,q > ® is in core logic, but —p,p> ® is in
core logic. In this sense, then, core logic is nonmonotonic on both sides:
neither C on the left nor < on the right preserves core derivability.

Core logic is probably best known for not admitting cut: there are cases
where both T' > ¢ and ¢, A > € are in core logic, but where I', A > € is not.
For example, p>pV q and —p, p V q > q are both core derivable, but we’ve
just seen that —p,p > ¢ is not. What holds instead is a property Tennant
calls epistemic gain: whenever both I' > ¢ and ¢, A > € are in core logic,
then there is some X > ® in core logic such that X CTUA and ® < €.
Tennant appeals to epistemic gain to defuse criticisms of core logic based on
its not admitting cut, and we will depend on epistemic gain in much of our
reasoning that follows. It’s not our purpose here, however, to evaluate core
logic, so we don’t discuss such defenses further; our purposes just involve
noting that this epistemic gain property holds.

2.4. The Prawitz restriction

That, then, is the natural deduction system we will work with in what
follows. It differs from Tennant’s own systems for core logic and its rel-
atives in one important respect, which is the topic of this subsection and
Sections 3.5 and 5.1. Tennant’s systems, as we interpret them, impose a
further restriction on discharges, one that we do not impose: that whenever
a rule application can discharge an occurrence of an open assumption, it
must discharge that occurrence.

The first thing to note about this restriction is that it has nothing
special to do with core logic. Restrictions like this can be imposed, or not,
in ordinary natural deduction systems for logics of all sorts. For example,
Gentzen’s original system NJ (in [5]) for intuitionistic logic does not impose
any such restriction; but Prawitz’s closely-related system | (in [12]) for
intuitionistic logic adds this restriction. Accordingly, we call this restriction
‘the Prawitz restriction’, and call a derivation ‘Prawitz’ when it obeys this
restriction.?

4For Tennant’s imposing this restriction, see, e.g., [16, p. 674], [22, §§2.3.2, 4.6].
In some other places, however, Tennant is less explicit. For example, [21, p. 454]
imposes the restriction explicitly only for those cases of —I where vacuous discharge
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2.4.1. Keeping track of discharge

The main reason to impose the Prawitz restriction, as we see it, is that
it saves on some bookkeeping. (This is discussed in [12, § 1.4].) With the
restriction imposed, there is no need to mark separately in a derivation
which assumptions are discharged, and no need to mark what rules do the
discharging work. In a Prawitz derivation, each assumption is discharged
if and only if it can be, and discharged by the earliest rule that could have
done the discharging.®

For example, take our above-presented natural deduction system. Now

consider this:
p p

DPAD
p—>pAp
Pp—=>p—=>pAp

Al

If this is to be understood as a Prawitz derivation, both assumptions of
p must in fact be discharged—despite the fact that these occurrences of
—T allow for vacuous discharges. This is because the Prawitz restriction
requires every rule to discharge every assumption it can. Since these oc-
currences of —I introduce formulas with antecedent p, they can discharge
assumptions of p; and so they must discharge any such assumptions not
already discharged. This means, in addition, that both assumptions of p
must be discharged by the upper instance of —I. The lower instance, then,
does feature vacuous discharge, since by the time it is reached there are no
further open assumptions.

It is the Prawitz restriction that allows us to conclude all this from
the structure above. Without the Prawitz restriction in place, there are

would be permissible; and [20] does not state any explicit policy, but on p. 315 includes
discussion that seems to require the Prawitz restriction. We (tentatively) think it’s
probably best to interpret these sources too as imposing the restriction.

5An anonymous referee suggests that another motivation for the Prawitz restriction
might come from searching for derivations of a given sequent, because the restriction
‘allows for faster breakdown in the complexity of sequents for which proofs are being
sought’.

However, we think that imposing the Prawitz restriction simply cannot be an aid
to finding derivations of a given sequent. Any derivation-search strategy that succeeds
in finding a Prawitz derivation thereby succeeds in finding a derivation. So any strategy
that works in the presence of the Prawitz restriction will work exactly as well in its
absence.
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options. Since these uses of —I both allow vacuous discharge, each as-
sumption of p might be discharged by the upper —I, by the lower —I,
or not at all; and these choices can be made independently. This means
that the above display, read as containing no information about discharges,
corresponds to nine distinct derivations.®

Working in systems without the Prawitz restriction, then, more book-
keeping is needed to indicate which assumptions are discharged and which
are not, and to indicate which rules do the discharging. Our convention
is a usual one: every occurrence of a discharging rule in a derivation must
be annotated with a distinct numeral, and every discharged assumption in
a derivation must appear surrounded by [square brackets] and annotated
with the numeral of the rule that discharged it.

Using this convention, we could indicate the Prawitz derivation de-
scribed above like so:

1 1

[p]
DAD
p— (pAp)
p—p— (pADp)

X [p]

—It
—I2

However, we can also use this convention to indicate non-Prawitz deriva-
tions, for example this one:

y__PAP
, PoDPAp
p—=>p—=pAp

Indeed, one of the key reasons we do not impose the Prawitz restriction
is because we want to study derivations like this latter example. Already,
though, we can see one important effect of the restriction on Tennant’s own
natural deduction systems: the property of being a Prawitz derivation is
not closed under substitution of arbitrary formulas for atomic formulas. To
see this, return to the most recent displayed derivation, the non-Prawitz

6 According to some conventions, this display would be read as containing the in-
formation that no discharges have occurred, thus picking out a particular one of these
nine.



154 Emma van Dijk, David Ripley, Julian Gutierrez

one, and note that it is a substitution instance (substituting p for ¢) of the
following derivation, which is Prawitz:

[p)? [q]"

__Pha
qg—>pPNg

D—>q—pAg

Al

—I
I2

By dropping the Prawitz restriction, we ensure that our derivations are
closed under substitutions. We will look at some other reasons for dropping
this restriction in Sections 3.5 and 5.1.

2.4.2. Prawitz derivations and Prawitz derivability

Before moving on, we pause to explore the effects of the Prawitz restric-
tion on derivability and on core derivability.” It turns out that for simple
derivability, imposing the Prawitz restriction or not makes no difference:

PRrROPOSITION 2.1. If a sequent has a derivation, it has a Prawitz derivation.

PROOF: Take a sequent with a derivation D. If D itself is Prawitz, we're
done. If D is not Prawitz, suppose that all of D’s proper subderivations
are Prawitz. (By induction on D, it is enough to consider this situation
only.)

For example, suppose D ends in an application of —I:

[p]"

¢
o=

If D is not Prawitz, but all its proper subderivations are, then this final
—1 leaves some assumptions of ¢ undischarged. D is then a derivation of
o, > @ — 1, for some set I" that does not contain . By modifying D to
discharge all open assumptions of ¢ at this final step, we reach a Prawitz
derivation D’ of T' > ¢ — ). We can then extend D’ as follows (with fresh
discharge numerals m, 0):

—I"

"Thanks to an anonymous referee for encouraging us to develop this material.
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Dl
=Y
%17”‘ o
, == e [Y]
—E

o=

Note that the discharge labeled m is vacuous, as we know that there
are no open assumptions of ¢ in D’. This resulting derivation is Prawitz,
and is a derivation of ¢, I" > ¢ — 1, just as D itself was.

This strategy works in general: if D is not Prawitz at its final rule
occurrence, it must be because this occurrence leaves some assumption
open that it could have discharged. So we first modify D to a Prawitz D’
that does discharge everything it can at this final step, and then use —I
and —E in tandem to restore the needed open assumptions. O

So removing the Prawitz restriction has no effect on which sequents are
derivable, and thus no effect on provability or refutability. Since derivability
itself is closed under substitutions, then, it follows that Prawitz derivability
is also closed under substitutions, even though the property of being a
Prawitz derivation is not.

The strategy adopted in the above proof, however, produces non-core
derivations, even starting from a core derivation. And indeed, the situation
is different when it comes to core derivability: there are sequents that have
core derivations but no Prawitz core derivations. For example, consider
p>p — p A p; this has the following core derivation:

1
P [p]
. PAD
—I
P—=PAp

It does not, however, have any Prawitz core derivation. To see this, note
that any core derivation of p>p — p A p must end in a step of —I; no
elimination rule is possible as a last step, since the major premise of that
elimination rule would have to be an open assumption, and p cannot stand
as a major premise of any elimination rule. This final step of —I, however,
is able to discharge any open assumptions of p in the derivation, so in a
Prawitz derivation it must do so; p cannot stand as an open assumption
at the end of such a derivation. Accordingly, there is no Prawitz core
derivation of p>p — p A p.
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So imposing the Prawitz restriction or not does make a difference as to
which sequents are core derivable. Moreover, Prawitz core derivability is
not closed under substitution: witness the following Prawitz core derivation
of p>qg—pAg.

gl
. PAg
B
qg—pPNq

Since Tennant’s own version of core logic imposes the Prawitz restric-
tion, then, it is not closed under substitutions. However, our liberalized
version, which does not impose the Prawitz restriction, is.

3. Terms and reductions

Here, we define a language of terms, and consider reduction relations on
these terms. The motivating idea is to develop, for the above natural de-
duction system, a term calculus that corresponds to it in the usual Curry-
Howard way, the way that the calculus of [8] corresponds to a more usual
intuitionistic natural deduction system. (This work is begun in [13], which
explores the —, — fragment of core logic in this way; this section extends
that work to take account of A,V as well.) The usual Curry-Howard cor-
respondence allows us to see intuitionistic proofs as programs in a simply-
typed lambda calculus, and reduction on proofs as execution of those pro-
grams. Similarly, the system presented here allows us to see derivations
in the above-presented proof system as programs, and reduction of those
derivations as execution.®

Our types for this system are the formulas of our language. Hats are as
before: a hat is either a type or ®.

3.1. Terms and eliminators

We use a mutual induction to define terms, eliminators, and the free vari-
ables in a term or eliminator. We use M, N, O, etc for terms; each term
M wears a hat €, indicated as M%. Every term is either typed or excep-
tional, according to its hat: if its hat is a type, the term is typed; and
if its hat is @, the term is exceptional. We use £, F, etc for eliminators;

8For background and details, see for example [6, 14].
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each eliminator £ wears both a type ¢ and a separate hat €, indicated as
o€ ¢, We sometimes have use for metavariables that can be either terms or
eliminators; for this purpose we use X, Y, etc. For every type ¢ we assume
denumerably many variables ¥, y?¥, etc; there are no variables with hat ®.
For any term or eliminator X there is a set FV(X) of variables that are X’s
free variables.

DEFINITION 3.1. (Terms and eliminators)
Terms:

e All variables are terms; for any variable x, we have FV(z) = {«}.

e For any terms M¢¥ and NY, there is a term (M, N)#"¥. We have
FV((M,N)) = FV(M) UFV(N).

e For any term MY and type 1, there are terms (inl(M))¥V¥ and
(inr(M))¥V¥. We have FV(inl(M)) = FV(inr(M)) = FV(M).

e For any term M® with 2% € FV(M), there is a term (A"z.M)™¢,
and in addition for each type ¢ a term (A7z.M)¥*~%. We have
FV(\"2.M) =FV(A\72.M) =FV(M) \ {z}.

e For any term MY and variable x%, there is a term (A 7. M)¥~%.
Again, FV(A\7z. M) =FV(M) \ {z}.

e For any term M¥ and eliminator ,E¢, there is a term (ME)®. We
have FV(ME) = FV(M) UFV(E).

Eliminators:

e For any term N¢ with {z%?,y¥} NFV(M) # 0, there is an eliminator
ene((z,y).N)¢. We have FV(((z,y).N)) = FV(N) \ {z,y}.

e For any terms N¢ and O® with 2% € FV(N) and y¥ € FV(O), such
that either € < D or ® < €, there is an eliminator 4y (z.N, y.0)max(&.D)
We have FV((z.N,y.0)) = (FV(N) \ {z}) U (FV(O) \ {y}).

e For any terms N¥ and O% with z¥ € FV(O), there is an eliminator
oy (N, 2.0)¢. We have FV((N,2.0)) = FV(N) U (FV(O) \ {z}).
(N)®. We have FV((N)) =

e For any term N¥, there is an eliminator

FV(N).

—p

All terms and eliminators are identified up to change in bound variables,
and we make free use of this identification without further comment. As
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you may have noticed in the above definition, we often omit hats, either
where they can be inferred or where we are generalizing.

By comparing the above definitions to the natural deduction system,
you can see the following correspondences:

Open assumption of ¢ Free variable of type ¢

Discharging an assumption of ¢  Binding a variable of type ¢

Derivation of the sequent I' > €  Term M¢ with FV(M)
having types in I'

Let’s look at two examples, to get the flavour. First, our earlier proof
of —p,p>q:

g P [p]

%Il L 5
e P ld
- q

We can annotate this derivation as follows:

Cwip [ep)
o w(z) : ®
L Azaw(z) :p—q y:p [z : q]?

A 7zaw(x))(y, z.2) : q

This derivation thus corresponds to the term (A7 z.w(z))(y, z.2), which,
fully spelled out with all hats visible, is

(A7 2P (w P (2P))° )P (g (07, 2.27) 7)1

Second, our earlier example of a derivation that violates the Prawitz
restriction:

1 PAP
p— (pAp)

I2
p—p— (pAD)

We can annotate this derivation as follows:
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[z:p)*  ly:p'
(z,y) :pAp
A7y (z,y) :p— (PAD)
ATz ATy (2, y) ip—p— (PAD)

A

—I!

—I2

This derivation thus corresponds to the term (A7 2.A7y.(z, y)), which, fully
spelled out, is (A7 aP (A7 yP.((xP, yP))P P)P7PAP)P=P=PAP - Hopefully it is

by now apparent why we often suppress hats where they are not needed!

3.2. Terminology

Terms of the form (M, N), inl(M), inr(M), \7x.M, or A"z.M are introduc-
tions. Terms of the form ME are eliminations. So every term is a variable,
an introduction, or an elimination.

Variables have no immediate subterms. The immediate subterms of
an introduction or an eliminator are what you’d expect. (For example, the
immediate subterms of (N, z.0) are N and O.) The immediate subterms of
an elimination ME are M and the immediate subterms of £. The subterm
relation is the reflexive transitive closure of the immediate subterm relation.

All immediate subterms of an eliminator are minor subterms of that
eliminator. In eliminators of the form ((x,y).N) or (z.N,y.0), these mi-
nor subterms are also commuting subterms. In eliminators of the form
(N,z.0), only O is a commuting subterm. And in eliminators of the
form (N), there are no commuting subterms. The minor and commut-
ing subterms of an elimination ME are those of the eliminator £. The
major subterm of an elimination ME is M. Note that every immediate
subterm of an elimination is either major or minor.

3.3. Composition of eliminators

Given two eliminators ,&¥ and 4, F¢, the eliminator ., (€F)¢ is the elimina-
tor like £, but with each commuting subterm P of &£ replaced with PF. For
example, if £ is .y (N, 2.092)97" and F is gn,((y, 2).P%)%, then (EF)
is (N,z.OF). As the commuting subterms of an eliminator always wear
the same hat as the eliminator’s right (output) hat, this is well-defined.

9Change to bound variables in £ might be needed here to avoid capturing any vari-
ables free in F.
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3.4. Substitution

Capture-avoiding substitution of terms for variables in this calculus works
as it does in similar calculi; there’s nothing particularly remarkable about
it. We pause to go through the details nonetheless; many aspects of core
type theory do not work as usual, so it’s worth checking the details even
of those aspects that do.

Where z{',...,z¢" are distinct variables and NY',..., N¢" terms of
corresponding types, then [z1 — Ny, ..., z, — N,] is a substitution. (Note
that all substitutions are finite.) Given a substitution o, the substitution
o' is just like o except that it does not substitute anything for the vari-
able Y. That is, [l‘l — Ni,...,2p Nn]iz"' is [.131 — Ni,...,xi-1
Ni—17xi+1 — Ni+1a N i d Nn], and [Il — Nl, RN i d Nn]l'y is just
[1 — Ni,..., 2z, — N,] if y is not one of the z;s. Say that a variable y is
free in [z1 — Ni,..., 2, — N,] iff it is free in some N;; and say that y
is acted on by [x1 — Ni,..., 2, — Np] iff it is one of the x;.

Given a term or eliminator, capture-avoiding substitution works as
usual:

o z;[ry— Ni,...,xn — Ny = Ny;

e ylzy — Ny,...,2, = N,| =y, where y is not one of the z;s;
e (M,N)o = (Mo,No);

e inl(M)o =inl(Mo); inr(M)o = inrf(Mo);

o (\7y.M)o = \7y.(Mo"¥), assuming y is not free in o;'°
o (A\y.M)o = \"y.(Mo*V), assuming y is not free in o;

o (M&)o = (Mo)(Eo);

o ,(M)o=_,(Mo);

o oz, y).M)o = pppl{z,y).Mo+™¥¥), assuming neither  nor y is
free in o;

10Recall that we identify terms up to change of bound variable. So if y is free in o,
we first change the bound variable y in A~ y.M to some variable that is not free in o.
(Since all substitutions are finite, there is always some such.) All similar assumptions
in this definition should be read the same way.
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e ouyplz.M,y.N)o = ,yplr.Not® y.OctY), assuming neither z nor y
is free in o; and

o o (M, 2.N)o =, (Mo, z.No+*), assuming x is not free in o.

Note two things: first that, since there are no variables with hat @, that
Mz — N®] is never defined; and second that substitution never affects
hats: that is, the hat on M%[x > N] is always exactly €.

Substitution interacts pleasantly with composition of eliminators:

LEMMA 3.2. Given eliminators £ and F such that (EF) is defined, and a
substitution o, the eliminator ((Eo)(Fo)) is (EF)o.

ProOF: Unpacking definitions. U

3.5. The Prawitz restriction on terms

Recall that the Prawitz restriction on derivations requires that when any
rule application in a derivation can discharge any open assumption, it must
discharge that open assumption. The corresponding restriction on terms
is this: that whenever a component of a term binds a variable of type ¢,
it binds all free variables of type ¢ in its scope. Equivalently, the Prawitz
restriction corresponds to a term system with a single variable of each
type, rather than the denumerably many variables of each type that we
have assumed.!?

We noted in Section 2.4 that there are many derivations in our system
that do not obey the Prawitz restriction, such as the derivation repeated

here: ) .
[Pl [p]
Il &
D—=DpAD
P—=p—=pAp
This derivation corresponds to the term (A7 zP A7 yP.((z, y))P P )P=PPAP,
This term requires two distinct variables of type p. This is because Ay

—I?

HTerm systems like this are not often explored, because they do not allow for a defini-
tion of capture-avoiding substitution; our definition in Section 3.4, like other definitions,
relies crucially on being able to draw on fresh variables of a given type to avoid clashes
between free and bound variables. (As we will see in Section 5.1, this interference with
substitution also blocks strong normalization.)
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must bind the y in (2P, yP) without binding the z, so that the outer A~z
can bind the z instead.

This brings us to the main reason we’ve chosen to go without the
Prawitz restriction: the terms it excludes include terms with natural and
important computational behaviour. The term A7z A7y.(z,y) is a very
simple pairing function, a function that takes inputs xz and y and returns
their ordered pair.'> Imposing the Prawitz restriction would allow us to
define this function only in the case where the two inputs have distinct
types, but it is also perfectly natural to want to pair up two pieces of data
that have the same type.

Indeed, the Prawitz restriction prevents us from defining any functions
that take multiple inputs of the same type: the binding required for the
final input is required by the Prawitz restriction to bind all free variables
of that type; any outer bindings of that same type turn out vacuous. It
would be impossible, for example, to build basic arithmetic on the Church
numerals (see [7, Ch. 4]) in a system obeying the Prawitz restriction, since
this requires defining addition and multiplication functions, each of which
takes two inputs of the same (numeric) type.

We take it, then, that most standard term systems work without the
Prawitz restriction for good reason, and so we develop core type theory
without any such restriction.

4. Reduction

In this section, we define two relations of reduction on terms of our calculus:
what we call principal reduction and full reduction. The difference is that
full reduction includes commuting conversions; principal reduction does
not. We then prove a number of lemmas about these reduction relations,
in the leadup to Section 5, where we prove that principal reduction is
strongly normalizing. We conjecture that full reduction is also strongly
normalizing, but leave that question for future work.

4.1. Redexes and reducts

Both reduction relations are defined by identifying a class of special terms
called redexes, and assigning to each redex a term called its reduct. The

12This is the function written (,) in Haskell, for example.
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difference between principal reduction and full reduction is entirely in which
terms are redexes. Then, given a chosen notion of redex, for any term M
that contains a redex R as a subterm, we define a specific term as the one-
step reduction of M at R. The move from redexes to one-step reduction
is very much not as usual; this is one of the more distinctive features of
core type theory, and it is a key motivation of this work to explore this
nonstandard notion. Let’s dive in.

4.1.1. Principal redexes

The following table displays the forms of all principal rederes and their
corresponding reducts.

Redex Reduct

(M, N)({{z,y).0) Olz — M,y — N]
inl(M)(z.N, y.0) N[z — M]
inr(M)(z.N, y.0) Oly — M]
(A7z.(M?))(N,y.0)  Oly = M[z — NJ|

J(N,y.0) Mz — N]
M)(N) Mlz — N]

In defining principal reduction, all and only the principal redexes count as
redexes.

4.1.2. Commuting redexes

Any term of the form (ME)F is a commuting redex; its reduct is M (EF)).
Note that (EF) is defined, and M (EF) well-formed, whenever (ME)F is
well-formed. Note as well that no commuting redex is a principal redex,
so given a redex (of either kind), the reduct of that redex is unambigu-
ously determined. In defining full reduction, both principal redexes and
commuting redexes count as redexes.

Since we focus on principal reduction rather than full reduction in Sec-
tion 5, we don’t linger specifically on commuting redexes. However, the
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definitions and lemmas in this section don’t care about the difference; when
we speak of ‘reduction’ unqualified, we are making a definition or claim that
applies to both principal and full reduction.3

4.2. One-step reduction

Using these redexes and their reducts, we define a relation of one-step
reduction between terms. (Since we have two different choices for what
counts as a redex—principal only or principal plus commuting—we end up
with two different choices for a one-step reduction relation: principal or
full.) Given any term that contains an occurrence of a redex at a subterm,
we define the unique result of reducing that term at that redex occurrence.
That much is as usual for term systems like this.

However—and this is not usual—reduction in this system is not a com-
patible relation. That is, we do not always simply replace a redex with its
reduct in place, leaving its context alone. Such a procedure could not work
in core type theory. The reason is that the result of such a procedure is
not always well-formed in this system.

For example, consider the redex ((A7y%.2%)w¥)¥ with reduct z¥ as
it occurs in the term (A7 w.(z7¥ (A7 y.x)w))®)¥?. Replacing this redex
with its reduct would yield (A~ w.(z7¥(z%))®)¥~?. This latter, however,
is not a term, as it violates a restriction on A, which may not bind w
vacuously in this situation. (This restriction corresponds to the restrictions
against certain cases of vacuous discharge in the rule —1.)

This is an example of the following. Many of our formation rules (in
the above example, using A~ to bind into an exceptional term) require cer-
tain variables to appear free; but some redexes, because they themselves
involve vacuous binding, contain free variables that are not contained in
their reducts. That is, core type theory allows vacuous binding in some

13There are two more potential sources of redexes that might come to mind, although
we use neither in this paper.

First, uses of an explosion rule like typical LE in natural deduction systems create
possible violations of the subformula property, and so reduction steps are sometimes
introduced to prevent these violations, as in [12, p. 40]. However, core logic contains no
such explosion rules, so no such reduction steps are needed or even possible.

Second, [18] considers a type of reduction there called ‘shrinking’, which in effect
allows a one-step reduction directly from M¢ to N¢ whenever N is a subterm of M.
This makes havoc for computational interpretations of the term language, for reasons
discussed in [11]; we leave it aside here.
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circumstances but not all, and it is the interaction between these circum-
stances that creates the phenomenon of interest.'?
For a different kind of example, consider the redex

(A7y? (2799 )77 (2%, w? )

with redex (zz)® as it occurs in the term ({(A\~y.zy)(z, w.w),v?))¥ ?. Re-

placing this redex with its reduct would yield ((zz)®,w). This latter, how-
ever, is not a term, as the constructor ( , ) requires two typed subterms, and
(21)® is exceptional. This corresponds to the rule Al's requiring formulas
as premises.

This is an example of a different kind of phenomenon. Many of our
formation rules for terms (in the above example, using (, }) require terms
to be typed; but some redexes are typed and yet have exceptional reducts.
Reducing such a redex in place, then, yields a nonsensical result.

The troubles with reducing in place, then, are twofold: moving from a
redex to its reduct can drop free variables, and it can move from a typed
term to an exceptional one. But these reductions can happen in places
where free variables or types are required. Leaving everything else in place,
then, won’t do in general. In what follows, we show how to handle these
problems. We start by noting two important facts about redexes and their
reducts: for any redex R® with reduct R'®, we always have FV(R’) C FV(R)
and ® < €. That is, free variables and hats do not always remain constant
between a redex and its reduct, but they cannot change freely; when there
is a change, it is always in the same direction. We repeatedly use this
constraint—which is the term-level reflection of epistemic gain—in what
follows.

Basically, our strategy works like this: where we can get away with
reducing in place, leaving the immediate context alone, that’s what we do.
Where the result would not be well-formed, we simply drop the immedi-
ate context altogether. That’s the intuition, anyhow; here’s the precise
definition of one-step reduction.

MContrast a usual simply-typed lambda calculus, where vacuous binding is always
allowed; but also contrast the lambda calculus of [3], standardly now called the AI
calculus, where vacuous binding is never allowed; also see [2, Ch. 9]. In this calculus,
redexes and their corresponding reducts always have exactly the same free variables (see
[2, Lemma 9.1.2]), so any nonvacuous binding into a redex remains nonvacuous into its
reduct.
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DEFINITION 4.1 (One-step reduction). First, if R is a redex and S its
reduct, then R reduces to S in one step; as we write, R ~+1 S. The rest of
the definition contains a number of conditions. These are expressed in the
form:

X ad| Y

7~y W

Here is how such a condition should be read. We only apply it if X, Y,Z
are each well-formed, without any assumption that W is well-formed. Un-
der these conditions, if X ~»1 Y and W is well-formed, then Z ~~; W; on
the other hand, if X ~»; Y and W is not well-formed, then Z ~~»1 Y instead.

This fallback condition—that when W is not well-formed we have Z ~+1
Y—is what gives one-step core reduction its distinctive flavour. Note that
there is no indeterminism or choice introduced here: if W is well-formed
we do not have Z ~~; Y from such a condition. Only in the case that W is
not well-formed do we fall back to Z ~»1 Y. Here, then, are the conditions:

MwlM/ (‘:ng/ gwlN
ME ~s1 M'E  ME ~y ME'  ME ~ N

Mwl M/ Nwl N/
<M7N> 1 <M/7N> <M7N> 1 <MvN/>

M ~r M/ M M M/
inl(M) ~>1 inl(M’)  inr(M) ~>q inr(M")

M 2 M/ M M MI
A2 M~ X M AT M~ XNz M

M M1 M/ M ad M/
(M)~ (M) (e, y)- M)~ (2, ). M)
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M aadl M/ NW1 N/
(M, 2z.N) ~1 (M',2.N) (M, z.N) ~1 (M, z.N’')

M M1 M/ N ~r1 N/
(x.M,y.N) ~>1 (x.M’,y.N) (x.M,y.N) ~1 (.M, y.N’)

Expressed in this way, these conditions might look like usual reduce-in-
place conditions. But recall our distinctive way of reading these, involving
fallback in case the lower-right component is not well-formed; this is the
key to the definition.

Since this is an unusual way to handle one-step reduction, let’s look at
an example. Consider the condition for inl(), reproduced here:

Mwl M/
inl(M) ~>1 inl(M")

Suppose first that MY is (A7 2%.y¥)(z,v.v). Then M is a redex, with
reduct y. So, according to the condition for inl(), we can conclude that
inl(M)¥V? can be reduced in one step to inl(y). So far, so normal.

Suppose instead, though, that MY is (\7z%.y "% (z))(z,v.v). Then M
is again a redex, now with reduct (y(z))®. By the same condition, then,
inl(M)¥V? can be reduced. However, note that inl(y(z)) is not well-formed;
inl() can only be applied to typed terms, and y(z) is exceptional. Thus,
inl(M) cannot reduce to inl(y(z))), since the latter isn’t a term at all. So,
according to the condition for inl(), we conclude that inl(M) reduces in one
step directly to y(z).

Three important facts about one-step reduction. First, terms always
reduce to terms, while eliminators sometimes reduce to eliminators and
sometimes to terms. Second, if M® ~s; N®, then ® < €. Finally, if
M ~~1 N, then FV(N) C FV(M). (All these can be shown by induction on
the above definition.)

Let’s look at an example that demonstrates some of these complexities.
Consider the term M~ ) = (A2 (w0 (z((y?, 2¥). (A7 v%.uf)y?)))®).
The free variables of this term are w™? and «?, and so this term corresponds
to a derivation of the sequent =6, 0> —(@Av). It contains a redex (A7 v.u)y
with reduct u, inside the eliminator ((y, z).(A7v.u)y)). Let’s go through the
one-step reduction of M at this redex.



168 Emma van Dijk, David Ripley, Julian Gutierrez

First, we note that ((y, z).u) is not well-formed, since a conjunction
eliminator cannot bind fully vacuously; so we reduce ((y, z).(A7v.u)y) di-
rectly to u itself. Having done this, we note that z#"%u? is also not well-
formed; no rule allows us to juxtapose two terms at all. So we reduce
z({y, z).(A7v.u)y) also directly to u. The next two layers do work in place,
so we reduce w(z((y, z).(A7v.u)y))) to w(u). The final layer, however, runs
into trouble again; as z is not free in w(u)), the binder A"z may not bind
into w(u). So M itself reduces to (w(u)))®. Although we have here worked
through this reduction layer by layer, we emphasize that this is one-step
reduction; this is the result of reducing a single term at a single redex.

4.3. Reduction concepts

DEFINITION 4.2 (Reduction paths). Given a relation ~»; of one-step reduc-
tion, a reduction path from X is a sequence (finite or infinite) Xo, ..., X,,...
such that Xy = X and for each n, X, ~»1 X,,11. For a finite reduction path
Xo, ..., X,, we say it is a reduction path from X, to X,,, and its length is
the number n of reduction steps in it.

DEFINITION 4.3 (Normal, strongly normalizing). A term or eliminator is
normal iff all reduction paths from it have length 0. A term or eliminator
is strongly normalizing iff all reduction paths from it are finite.

If a term M is strongly normalizing, then |M]| is the length of its longest
reduction path. (If M is not strongly normalizing, |M| is not defined.) We
also define |€| for eliminators &, but slightly differently: |£| is the total of
all |N| for &’s immediate subterms N, and is undefined if any such |N| is
undefined.

DEFINITION 4.4 (Multistep reductions). We say X reduces to Y, written
X ~» Y, iff there is a (necessarily finite) reduction path from X to Y. We
say X properly reduces to Y, written X ~»7T Y, iff there is a reduction path
from X to Y with length at least 1.

Note, now by induction on reduction paths, that if M¢ ~~ N*® (and so
also if M ~* N), then © < € and FV(N) C FV(M).

Since we have two different notions of reduction in view (principal and
full), we also have two different notions of normal form, strongly normal-
izing, etc. It’s worth pausing here to think a bit about relations between
these. Since full reduction is defined in terms of all the principal redexes
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(and then some), we have that any principal reduction path is also a full
reduction path. This gives us that any term in full normal form is also in
principal normal form, and that any term that is fully strongly normalizing
is also principally strongly normalizing.'®

We also note that the full normal forms are exactly the core terms.
Corresponding to our definition of core derivations, we say that a term is
core iff in all its subterms of the form ME, the term M is a variable. This
is also what it takes to be a full normal form: M is an introduction iff ME
is a principal redex, and M is an elimination iff M€ is a commuting redex.

4.4. Reduction lemmas

Here we prove a number of facts about reduction, and about interactions
between reduction and substitution, that will be used in Section 5. These
facts hold for both principal and full reduction.

LEMMA 4.5. All the clauses of Definition 4.1 hold as well for ~~. That is,
where
X ~q Y
Z(X) ~1 Z(Y)

is a condition appearing in Definition 4.1, for any terms or eliminators
X,Y,Z(X) such that X ~ Y: if Z(Y) is well-formed we have Z(X) ~ Z(Y),
and if Z(Y) is not well-formed we have Z(X) ~ Y.16

PROOF: Induction on the reduction path from X to Y. At each step, we
need to know that if Z(Y) is well-formed and W ~»1 Y, then Z(W) is also
well-formed—this way, if Z(Y) is well-formed, we can ensure that all the
needed intermediate links from Z(X) to Z(Y) are also well-formed. This
holds, though, because of what we know about how reduction affects hats
and free variables. O

15We do not consider in this paper, outside this footnote, the notion of weak nor-
malization, where a term M counts as weakly normalizing iff there is some normal form
N with M ~» N. In general, when we have two notions of reduction ~+, C ~vp, like
our principal and full reductions, nothing useful follows about a relationship between
weak normalization for a and b. In this regard, weak normalization is unlike both strong
normalization and normal forms.

16Here, Z(X) should be understood as a term or eliminator with X as an immediate
constituent, and similarly for Z(Y).
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LEMMA 4.6. If N ~1 N' and N is a subterm of M, then there is some M’
with M ~1 M’ and N’ a subterm of M'.

PROOF: Induction on N’s being a subterm of M.

e If N = M then reducing the same way yields M’ = N’ and we’re
done.

e Otherwise, let O be the immediate subterm of M that contains N.
By the induction hypothesis, there is some O’ with O ~+; O’ and N’
a subterm of O’. By inspecting the one-step reduction rules, we can
see that there is some M’ with M ~»; M’ and O’ as a subterm. [

LEMMA 4.7. If there is a reduction path of length n from N to N' and N
is a subterm of M, then there is a reduction path of length n from M to
some M’ such that N’ is a subterm of M'.

PRroOOF: Induction on the reduction path from N to N’, using Lemma 4.6
at each step. O

LEMMA 4.8. If M is strongly normalizing and N is a subterm of M, then
N is also strongly normalizing, and |N| < |M]|.

PROOF: Immediate from Lemma 4.7. O

LEMMA 4.9. If M is strongly normalizing and M ~T M’, then M’ is
strongly normalizing and |M'| < |M].

PrROOF: Immediate from definitions. O

LEMMA 4.10 (Substitution lemma (see [2, 2.1.16])).

Let o =[xy = Pi,...;xm = Pyl and 7 = [y1 — Q1,...,yn — Qn] be
substitutions such that all x; are distinct from all y; and no x; occurs free
in any Q;. Let (07) be the substitution [x1 — PiT,...,&m — Py, 7]. Then
Xor = X7(07).

PRrROOF: Induction on X.

e X is a variable. If X is no x; or y;, then both sides are M. If X is x;,
then both sides are P;7. if X is y;, then both sides are Q;.

e X is (O) or (N,O) or inl(N) or inr(N) or NE. These cases follow
immediately from the induction hypothesis.
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e Xis A7z.N. Set up A7 2.N’s bound variables so that z is no z; or y;,
and so that z is not free in any P; or ;. The the induction hypothesis
suffices, since XoT = A7 z.(No7) and X7(07) = A7 z.(N7(07)).

e X is a A7 term or an eliminator other than (N). The reasoning in
these cases is parallel to the A~ case. O

LEMMA 4.11 (Substitution in redexes). If R is a redex and R’ is its reduct,
then R[xy +— Pi,...,xn — P,] is a redex and R'[xy — Py,...,x, — P,] is
its reduct.

PROOF: Verifying is a matter of checking each kind of redex in turn. That
substitution preserves redexhood is relatively straightforward, so we turn to
the second part of the claim. Let o be the substitution [z — Py, ..., 2, —
P,], and change bound variables in R so that no x; is bound in R and no
variable free in any P; is bound in R.

Principal redexes:

o If Ris (A\7x.(MY¥))(N,y.0), then R is Oly — M|z ~ N]]. By
setting up R’s bound variables (which certainly include z and y) as
we have, Ro = (A" z.Mo)(No,y.Oc), and so its reduct is Ocly —
Mo[z — Nol]. By Lemma 4.10 (twice) this is Oly — M|z — N]jo,
which is R'o.

o If Ris (A\72.(M®))(N,y.0), then R’ is M|z + N]. By setting up
bound variables as we have, Ro = (A72.M0c)(No,y.Oc), and so its
reduct is Mo[z — No]. By Lemma 4.10, this is M|z — N]o, which
is R'o.

o If Ris (M, N)({z,y).0), then R" is Oz — M,y — N]. By setting
up bound variables as we have, Ro = (Mo, No)({(z,y).Oc]), and so
its reduct is Oc[z — Mo,y — No|. By Lemma 4.10 this is Oz —
M,y +— Nlo, which is R'o.

o If R is inl(M)(z.N,y.0) or inr(M)(z.N,y.0O) or (\"z.M)(N), the
reasoning is parallel to the above cases.

As for commuting redexes: If R is (ME)F, then R’ is M(EF]), and
Ro = (Mo)(E0))(Fo). The reduct of Ro is thus (Mo)((Ec)(Fo)).
By Lemma 3.2 this is Mo((EF)o); and by Lemma 4.10 this is in turn
(M(EF))o, which is R'o. O
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LEMMA 4.12 (Substitution and reduction).
If X~ Y, then X[zy — Pi,...,zp = Py~ Y[y = Py, ..., 2, — Pyl

PROOF: Because of the complications in our notion of one-step reduction,
Lemma 4.11 does not immediately suffice for this claim; it needs to be
worked through.

It suffices to show that if X ~»; Y, then for all substitutions o we have
Xo ~»1 Yo. This we show by induction on the formation of X, explic-
itly stating only some representative cases. (Recall that all substitutions
preserve hat exactly.)

e If X is a variable z, then there’s nothing to show, since it’s false that
T ~q Y.

o If X is N&, there are three possibilities for X ~»; Y: the redex is in
N, in &, or is NE& itself.

— If the redex is inside N, let N’ be the result of reducing N at
that redex. Applying the induction hypothesis, No ~+; N'o;
moreover, N’ and N’ have the same hat.

« If this hat is @, then Y = N’, and so Xo = (No)(E0) ~1
N'o =Yo.

x If it is some ¢, then Y = N’E, and so Xo = (No)(Eo) ~1
(N'o)(E0) = Yo.

— If the redex is inside &, the reasoning is parallel, except instead
of concern for hats, we are concerned whether £ reduces at this
redex to an eliminator or a term.

— If the redex is NE& itself, we're covered by Lemma 4.11.

e If X'is A7 x.N, change its bound variables so that x is not among the
x; and not free in any P;. The redex securing X ~+; Y must be inside
N. Let N’ be the result of reducing N at that redex. Applying the
induction hypothesis, No ~»; N’c. Moreover, N’ and N’c have
the same hat, and z is free in N’ iff it is free in N'o. Thus, A7 z.N’
is well-formed iff A7 z.(N'0) is.

— If they are well-formed, then Y = A7z.N’, and so
Xo =A"2.(No) ~1 A7z.(N'o) = Yo.
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— If they are not, then Y = N’, and so Xo = A7 z.(No) ~» N'o =
Yo.

e Other cases without bound variables are like the case of N&; other
cases with bound variables are like the case of A7 x. V. O

5. Strong normalization

The foregoing discussion covers both principal and full reduction. In this
section, we narrow our attention to principal reduction only, and show
that every term in our system is (principally) strongly normalizing. In
this, we closely follow the approach of [4]. (Again, we conjecture that
full reduction is also strongly normalizing, but leave that question, which
requires different techniques, for future work.)

5.1. The Prawitz restriction revisited

First, however, we return briefly to the topic of Sections 2.4 and 3.5: the
Prawitz restriction, which Tennant imposes and we do not. In Section 2.4
we saw that the Prawitz restriction rules out a range of derivations that
we allow, and in Section 3.5 we saw that these derivations include some
with important computational interpretations. That much alone, we think,
motivates our dropping the Prawitz restriction. However, there is another
interesting effect of the restriction, which we point out here: it blocks
strong normalization, even for principal reduction (and therefore for full
reduction as well). To show this, we use a (slightly modified) example
of [9]. (Spelling this out in our term language would save space, but at the
cost of even lower readability, so we return to derivations for the example.)

Look to the three derivations in Figure 1. Note that the first principally
reduces (at the redex indicated with x) to the second, and the second
principally reduces (at the redex indicated with x) to the third. Note also
that the first and second obey the Prawitz restriction, but the third does
not; the step of —I indicated with { in the third derivation can discharge
open assumptions of p, and indeed there are two open assumptions of p in
scope at that step in the derivation, also indicated with 7.

Reduction in a system obeying the Prawitz restriction, then, could not
reduce the second derivation here to the third, since the third does not
belong in such a system. Rather, it would reduce the second derivation
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here to a derivation much like the third, but which discharges the indicated
open assumptions of p at the indicated step of —I.

That, in turn, would defeat strong normalization: look to the ¢ node
indicated with { in the third derivation, and consider the subderivation from
that node upwards. With the binding in place needed to meet the Prawitz
restriction, this subderivation is isomorphic to the original derivation, just
with the roles of p and ¢ switched. So we can repeat the cycle endlessly,
producing an infinite reduction path.

Without the Prawitz restriction, on the other hand, the second deriva-
tion reduces to the third, with no additional binding needed. No cycle is
created. And as we now show, indeed strong normalization does hold for
our system.

5.2. Proving strong normalization

DEFINITION 5.1. We define a notion of strongly computable term (SC
term) by induction on hats:

e For an atomic type p, a term MP is SC iff it is strongly normalizing;
e A term M® is SC iff it is strongly normalizing;
e A term M¥ Y is SC iff it is strongly normalizing and whenever it

reduces to a term (N, O), both N and O are SC;

e A term M¥V¥ is SC iff it is strongly normalizing and whenever it
reduces to either inl(N) or inr(N), then N is SC; and

e A term M¥~¥ is SC iff it is strongly normalizing and whenever it
reduces to a term A~ x.N, then for all SC terms O%, the term N[z —
O] is SC.Y7

e A term M™% is SC iff it is strongly normalizing and whenever it
reduces to a term A"x.N, then for all SC terms O%, the term N[z —
O] is SC.

It is clear from this definition that every SC term is strongly normal-
izing. Then we show by induction on terms that every term is SC. This

17[13], which features a similar proof, has a slightly different definition here, following
[7, Appendix A3], but that doesn’t consider conjunction or disjunction. Here, we follow
[4].
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works because the inductive structures of terms and of types do not align,
so we can play them off against each other.

LEMMA 5.2 (Variables). For any type @, every variable of type ¢ is SC.

ProoOF: All variables ¥ do not contain any redexes as subterms, thus do
not have any one-step reductions, and hence all reduction paths from z¥
are of length 0, so finite. When ¢ is complex, the additional conditions
following “whenever it reduces” are vacuously fulfilled, as variables never
reduce to such forms. So all variables are SC. O

LEMMA 5.3 (Closure by reduction). If M is SC and M ~» N, then N is
SC.18

PRrOOF: Note first that if M is strongly normalizing and M ~~ N, then
N too must be strongly normalizing; any infinite reduction path starting
from N would give rise to an infinite reduction path starting from M.
Since M is SC, it must be strongly normalizing, so N too must be strongly
normalizing.

It remains only to check the additional requirements for N to be SC,
according to N’s hat. Recall that if N is N¥, then M must be M¥.

o If N is N®, then there are no additional requirements, and we’re
done.

e If N is NP for an atomic type p, then there are no additional require-
ments, and we’re done.

o If MP"NY ~s NP then if N¥\¥ reduces to (O, P) so does M. Since
M is SC, in this case O and P must be SC, so the additional require-
ment on N is met.

o If M¥VY ~s N9V¥ then if N9V reduces to inl(O) or inr(O) so does
M. Since M is SC, in these cases O must be SC, so the additional
requirement on NN is met.

o If M¥7¥ ~s N¥2% then if N reduces to A7x.0 so does M. Since
M is SC, in these cases it must be that for all SC terms P%, the term
O[z — P] is SC. So the additional requirement on N is met.

18Note that M and N needn’t have the same hat, so this claim precisely as stated in
[4] would be false.
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o If M™% ~» N7%, then if N reduces to \7z.0 so does M. Since M
is SC, in these cases it must be that for all SC terms P¥, the term
O[z — P] is SC. So the additional requirement on N is met. O

LEMMA 5.4 (Girard’s lemma). Let M be a term that is not an introduction,
such that for all N with M ~»1 N, N is SC. Then M is SC.

PROOF: If there does not exist such an N then M is SC because M does
not have any one-step reductions, hence all reduction paths from M are of
finite 0 length and additional requirements depending on hat do not apply.

Since N is SC, every reduction path is finite from N, hence M is strongly
normalizing because M reduces finitely in one step to N.

e If all NV have hat @, then M is SC because M is SN and additional re-
quirements depending on hat don’t apply because M does not reduce
to any introductions.

e If there exists N with an atomic hat, then M has an atomic hat and
is SC because M is SN.

Since M is not an introduction, it is not, in reduction to itself, required
to satisfy the additional conditions for M to be SC for the following hats:

o If there exists IV with a hat of the form ¢ A1), then M has hat p A .
If M ~»1 N~ (O, P), O and P are SC because N is SC. Since M is
strongly normalizing and whenever M reduces to a term (O, P), O
and P are SC, M is SC.

o If there exists N with a hat of the form ¢V, then M has hat V.
If M ~»; N ~ inl(O) or M ~»1 N ~ inr(O), O is SC because N is
strongly normalizing. Since M is SN and whenever M reduces to a
term inl(O) or inr(O), O is SC, M is SC.

o If there exists IV with hat ¢ — 1, then M has hat ¢ — ¢. If
M ~»1 N ~» A72.0, for all SC terms P¥, the term Oz — P] is SC.

Since M is strongly normalizing and whenever M reduces to a term
A7 2.0, for all SC terms P¥, the term Oz — P] is SC, M is SC.

o If there exists N with hat -, then M has hat —p. If M ~»; N ~~
A7z.0, for all SC terms P?, the term O[r — P] is SC. Since M is
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strongly normalizing and whenever M reduces to a term A”z.0O, for
all SC terms P?, the term Oz — P] is SC, M is SC. O

LEMMA 5.5 (Adequacy of A (I)). If for all SC M¥ we have N¥ [z + M] is
SC, then (\7x.N)?=% is SC.

PROOF: By Lemma 5.2 , all variables are SC. Let M := z, N[z — z] =
N is SC and hence N is strongly normalizing. Thus, A7 x.N is strongly
normalizing because the only possible reductions involve reducing N within
the term or reduction to an exceptional term. Thus, the reduction paths
of N bind the reduction paths of A7 xz.N.

If A\72.N ~» A7z.N’, then N ~» N’ by the reduction rules. By
Lemma 4.12, Nz +— M] ~» N'[v — M] and N'[zx — M] is SC by
Lemma 5.3.

Thus, A7 x.N is SC because it is strongly normalizing and whenever it
reduces to A7 xz.N’, for any SC M¥, N'[z — M] is SC. O

LEMMA 5.6 (Adequacy of X (I)). If for all SC M¥ we have N®[z — M|
is SC (and so long as © € FV(N)), then (A\7x.N)¥7% and (\"2.N)™% are
both SC.

ProoF: By Lemma 5.2, all variables are SC. Let M := z, N[z +— z] = N is
SC and hence N is strongly normalizing. Thus, both A7 x.N and A™x.N are
strongly normalizing because the only possible reductions involve reducing
N within the term or reduction to an exceptional term. Thus, the reduction
paths of N bind the reduction paths of A7z.N and \"x. V.

If \7>2.N ~ A7z.N or \z.N ~ A z.N’, then N ~» N’ by the
reduction rules. By Lemma 4.12, N[z — M| ~» N'[z — M] and N'[z —
M] is SC by Lemma 5.3.

Thus, A7 z.N and A" z.N are SC because they are strongly normalizing
and whenever they respectively reduce to A7 z.N’ and A"x.N’, for any SC
M¢?, N'[x+— M] is SC. O

LEMMA 5.7 (Adequacy of (,)). If M¥ and N¥ are both SC, then (M, N)#"¥
is SC.

PROOF: (M, N) is strongly normalizing because the only possible reduc-
tions involve reducing M and N within the term or reduction to an excep-
tional term. Thus, since M and N are strongly normalizing, their reduction
paths bind the reduction paths of (M, N).



Core Type Theory 179

By Lemma 5.3, if M ~» M’ and N ~» N’ then M’ and N’ are SC.

Whenever (M, N) reduces to an introduction (M’, N’), M’ and N’ are
SC, thus, since (M, N) is also strongly normalizing, by Definition 5.1 it
is SC. O

LEMMA 5.8 (Adequacy of inl, inr). If M? is SC, then inl(M) and inr(M)
are both SC.

Proor: Wlog, we consider just inl(M).

inl(M) is strongly normalizing because the only possible reductions in-
volve reducing M within the term or reduction to an exceptional term.
Thus, since M is strongly normalizing, reduction paths from inl(M) are
bound by reduction paths of M.

By Lemma 5.3 if M ~» M’, then M’ is SC.

Whenever inl(M) reduces to an introduction inl(M’), M’ is SC, thus,
since inl(M) is also strongly normalizing, by Definition 5.1 it is SC. O

LEMMA 5.9 (Adequacy of application (I)). If M¥=¥ is SC, N¥ is SC, and
for all SC Q¥, Olx — Q) is SC, then M(N,z.0) is SC.

PROOF: Let @ = x where z is SC by Lemma 5.2, thus Oz — z] = O is
SC. Since M, N and O are SC, they are strongly normalising and hence
|M]|, |N| and |O] are defined. We proceed by induction on |M|+ |N|+]O].
By Lemma 5.4, to prove that M(N,z.0) is SC, we need to prove that all
one-step reducts are SC. Given M ~~»1 M’ or N ~~1 N’ or O ~~1 O where
M’ N’  and O’ are SC by Lemma 5.3:

o If M(N,2.0) ~1 M'(N,z.0) or M(N,z.0) ~»1 M(N',z.0)
or M(N,z.0O) ~1 M(N,z.0'), then we apply the induction hypoth-
esis and Lemma 4.9 to obtain |[M| + |N|+ |O]| > |M'| + |N| + |0O|,
|M|+|N|+|0| > |[M|+|N'|+|0] or |M|+|N|+|0O| > |M'|+|N|+|0’|.

o If M(N,x.0) ~1 M'® or M(N,x.0) ~1 N'® or M(N,z.0) ~; O'®,
then we already have M’, N, or O’ SC.

o If M(N,2.0) is a principal redex, then M is of the form A\~y.P®. If
D = ©, then M(N,z.0) ~»1 Ply — N| which is SC by Definition 5.1.
Otherwise M(N,z.0) ~»; Olz — P[y — N]] which is SC by the
lemma statement. O
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LEMMA 5.10 (Adequacy of application (II)). If M™% is SC and N¥ is SC,
then M(N) is SC.

PROOF: Since M and N are SC, they are strongly normalising and hence
|M| and |N| are defined. We proceed by induction on |M| + |N|. By
Lemma 5.4, to prove that M (N is SC, we need to prove that all one-step
reducts are SC. Given M ~»; M’ or N ~»; N’ where M’ and N’ are SC by
Lemma 5.3:

o If M(N) ~»1 M'(N) or M(N) ~»1 M(N’) then we apply the induc-
tion hypothesis and Lemma 4.9 to obtain |M|+ |[N| > |M’| 4+ |[N| or
|M][ + [N| > [M] + |N].

o If M(N) ~1 M'® or M(N) ~»1 N'®, then we already have M’ or N’
SC.

o If M(N) is a principal redex, then M is of the form A"z.0, and
M(N) ~»1 Olz — N] which is SC by Definition 5.1. O

LEMMA 5.11 (Adequacy of Conjunction elimination). If M¥"\¥ is SC, and
for all SC P?, Q¥ the term N[z + P,y Q] is SC, then M ({x,y).N) is
SC (if well-formed).

PrOOF: Let P =z and Q = y where = and y are SC by Lemma 5.2, thus
N[z — x,y — y] = N is SC. We proceed by induction on |M|+ |N|. By
Lemma 5.4, to prove that M (({z,y).N) is SC, we need to prove that all
one-step reducts are SC. Given M ~»; M’ and N ~; N’ where M’ and N’
are SC by Lemma 5.3:

o If M((z,y).N) ~1 M'((z,y).N) or M((z,y).N) ~»1 M((z,y).N')
then we apply the induction hypothesis and Lemma 4.9 to obtain
M|+ |N| > |M'| +|N|or |[M|+|N| > |M|+|N|.

o If M((z,y).N) ~1 M'® or M((x,y).N) ~1 N'®, then we already
have M’ and N’ SC.

o If M({(x,y).N) is a principal redex, then M is of the form (R, S)
and M((z,y).N) ~»1 N[z — R,y +— S| which is SC by the lemma
statement and Definition 5.1. O
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LEMMA 5.12 (Adequacy of Disjunction elimination). If M¥V¥ is SC, and
for all SC P¥ the term N[z + P] is SC, and for all SC Q¥ the term
Oly — Q) is SC, then M (x.N,y.0O) is SC (if well-formed).

PROOF: Let P = x and Q = y where x and y are SC by Lemma 5.2,
thus N[z — z] = N and O[y — y] = O are SC. Since M, N and O are
SC, they are strongly normalising and hence |M|, |N| and |O| are defined.
We proceed by induction on |M| + |[N| + |O]. By Lemma 5.4, to prove
that M (z.N,y.0) is SC, we need to prove that all one-step reducts are SC.
Given M ~»; M’ or N ~»1 N’ or O ~»; O" where M’, N', and O’ are SC
by Lemma 5.3:

o If M(x.N,y.0) ~»1 M'(x.N,y.0O) or M(z.N,y.0) ~1 M(z.N',y.0)
or M(x.N,y.0) ~1 M(xz.N,y.0’), then we apply the induction hy-
pothesis and Lemma 4.9 to obtain |M |+ |N|+|0| > |M'|+|N|+10|,
|M|+|N[+|0[ > [M|+|N'|+|O| or [M|+|N|+|O| > [M'|+|N|+]0"].

o If M(xz.N,y.0) ~>1 M’ or M(z.N,y.O) ~1 N’ or M(z.N,y.0) ~~1
O', then we already have M', N’, or O" SC.

o If M(z.N,y.0) is a principal redex, then M is of the form inl(R) or
inr(R) and M (z.N,y.0) ~»1 N[z — R] or M(z.N,y.0) ~1 Oly — R]
which are both SC by the lemma statement and Definition 5.1. [

DEFINITION 5.13. A substitution [z1 — Py,..., 2, — P,]is SCiff Py,..., P,
are all SC. A term M is SC under substitution iff for all SC substitutions
o, the term Mo is SC.

THEOREM 5.14. All terms are SC under substitution.

PROOF: Take any term M. To see that M is SC under substitution, pro-
ceed by induction on M’s formation.

e If M is x¥ then any substitution for x will be a variable and Lemma 5.2
applies.

o If M is (N,0O): take any SC substitution . By the induction hy-
pothesis, N and O are SC under substitution, so No and Oc are SC.
Thus, by Lemma 5.7, (No, Oc) is SC; but this is just Mo.

e If M is inl(N) or inr(N), the reasoning is similar to the (,) case.
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o If M is A7z¥.N: take any SC substitution o, and change M’s bound
variables so that x is neither acted on by o nor free in 0. By the induc-
tion hypothesis, N is SC under substitution, so for any SC term P¥,
we have that No[z — P] is SC. Thus, by Lemma 5.5 and Lemma 5.6,
A7 x.(No) is SC; but this is just Mo.

o If M is A"x.M, the reasoning is similar to the A\~ case.

o If M is N(O,x.P): take any SC substitution o, and change M’s
bound variables so that = is neither acted on by ¢ nor free in 0. By
the induction hypothesis, N, O and P are SC under substitution, so
No, Oc and Po are SC. Given SC Q%, we have Po[z — Q] is SC.
Thus, by Lemma 5.9, No(Oac, x.Po)) is SC; but this is just Mo.

o If M is N(O): take any SC substitution o. By the induction hy-
pothesis, N and O are SC under substitution, so No and Og¢ are SC.
Thus, by Lemma 5.10, No(Oo) is SC; but this is just Mo.

o If M is N((z,y).0): take any SC substitution ¢, and change M’s
bound variables so that x and y are neither acted on by ¢ nor free in
0. By the induction hypothesis, N and O are SC under substitution,
so No and Oc are SC. Given SC P¥ and Q¥, Olz — P,y +— Q] is
SC. Thus, by Lemma 5.11, No({x, y).Oc) is SC; but this is just Mo.

o If M is N(z.0,y.P): take any SC substitution o, and change M’s
bound variables so that x and y are neither acted on by ¢ nor free in o.
By the induction hypothesis, N, O and P are SC under substitution,
so No, Oc and Po are SC. Given SC Q¥ and RY, Oc|x — Q] and
Poly — R] are SC. Thus, by Lemma 5.12, No(z.0O0,y.Po) is SC;
but this is just Mo. O

COROLLARY 5.15. All terms are strongly normalizing.
PrOOF: Take any term M. By Theorem 5.14, M is SC under substitu-

tion; clearly, then, M is SC. (Consider the substitution [z¥ — x¥].) By
Definition 5.1, then, M is strongly normalizing. O
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6. Conclusion

In this paper, we’ve presented a natural deduction system for core logic, and
developed a term calculus that corresponds to this natural deduction sys-
tem. We’ve defined two reduction relations on this term calculus—principal
and full reduction—and explored the ways that core logic’s restrictions
make reduction somewhat different from reduction in more familiar term
calculi. We’ve discussed the Prawitz restriction and our reasons for drop-
ping it. And finally, we’ve shown that principal reduction in this system is
strongly normalizing (although it would not be with the Prawitz restriction
in place). In future work, we hope to extend this strong normalization to
full reduction as well, but as that will require different techniques, only
time will tell.
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