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Abstract

In a recent paper, under the auspices of an unorthodox variety of bilateralism, we

introduced a new kind of proof-theoretic semantics for the base modal logic K,

whose values lie in the closed interval [0, 1] of rational numbers [14]. In this

paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism”

– we generalize the fractional method to encompass extensions and weakenings

of K. Specifically, we introduce well-behaved hypersequent calculi for the deontic

logic D and the non-normal modal logics E and M and thoroughly investigate

their structural properties.

Keywords: modal logic, general proof theory (including proof-theoretic seman-

tics), many-valued logics.
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1. Introduction

From a general perspective, the distinctive aspect of bilateralism is that it
recognizes and isolates two different dimensions of logic which are placed
on a par: assertion and denial. Although often neglected in the history
of logic, denial can be seen as a perfectly sensible logical notion which
follows its own specific inferential trajectories [6, 17]. Since the notion of
logical denial admits several consistent meanings, the proper logical realm
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https://doi.org/10.18778/0138-0680.2023.17
https://publicationethics.org/
http://orcid.org/0000-0002-9545-3912
http://orcid.org/0000-0003-0101-0916
http://orcid.org/0000-0003-2810-5835


276 Mario Piazza, Gabriele Pulcini, Matteo Tesi

of bilateralism is still a matter of philosophical controversy. Therefore,
over the last few decades, various proposals concerning the possibility of a
bilateral reading of logic have flourished [19, 4, 22, 17].

On the one hand, Rumfitt has argued that the natural theoretical back-
drop against which bilateralism takes place is classical logic; and in ef-
fect, bilateralism has traditionally been adopted to give a coherent proof-
theoretic account of classical logic. On the other hand, more recently, this
view has been challenged by Kürbis, who claims that a bilateral account
of intuitionistic logic is also possible [8, 9]. This stance seems perfectly
sensible, as the acts of assertion and denial can also be rephrased in proper
intuitionistic terms.

In what follows, we propose a particular conception of bilateralism,
which can accommodate non-classical logics or extensions of classical logic,
such as substructural logics and modal logic. As it is well known, the notion
of denial in bilateralism is primitive and cannot be reduced to the asser-
tion of a negation. Our proposal is based on interpreting the act of denial
by means of the logically “soft” notion of rejection. A formula A can be
considered as rejected just in case it does not admit a proof within the ref-
erence system. For example, in classical propositional logic contradictions
and truth-functional contingencies all qualify as rejectable formulas [18].
This is why we label this type of bilateralism as “soft” to distinguish it
from other narrower interpretations, whereby denial is logically analyzed
as refutation, i.e. in terms of a derivation of grounds for the denial of the
proposition.

In this paper, we introduce calculi for a family of modal logics that
operate within a soft bilateral framework by combining rules for handling
derivable as well as underivable sequents.1 This hybrid approach to infer-
ence rules is both technically useful, as it allows for a more comprehensive
understanding of the logic without reducing it to the set of its theorems,
and conceptually profound, as it is closely linked to the venerable notion
of analyticity, which is essential for manipulating information about under-
ivability in a well-behaved proof-theoretic setting.

Mainstream proof-theoretic semantics embraces the meaning-as-use pa-
radigm, which entails shifting the focus from analyzing truth-conditions to
understanding the inference patterns that govern the recursive construc-

1Proof-systems combining together rules for dealing with valid and invalid syntactic
expressions are sometimes called ‘hybrid’ in the literature on rejection systems [20, 6].
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tion of proofs [21, 15, 5]. In proof-theoretic semantics, the meaning of
connectives is primarily conveyed through the top-down reading of their
respective introduction rules.

As standard bilateralism is conceptually linked to proof-theoretic se-
mantics, our account of bilateralism also yields its peculiar semantics in
terms of proofs, which we call fractional semantics. While proof-theoretic
semantics is mainly concerned with intuitionistic logic, we have recently
shown how a fractional semantics can be provided for a wide class of log-
ics, including classical logic [12], the minimal normal modal logic K [14],
and the multiplicative-additive fragment of linear logic MALL [13].

The term “fractional” is used to describe semantics in which formulas
are interpreted as values in the closed interval [0, 1] of rational numbers.
In the fractional setting, a reference proof system is used as an algorithm
to decompose a formula A into a set of clauses C(A), which are ordinary
sequents in the case of classical logic, and hypersequents when K and MALL
are being analyzed. The interpretation of A, denoted by JAK, is obtained by
calculating the ratio of true clauses in C(A) to the total number of clauses
produced by the decomposition. This interpretation function measures the
degree to which A is satisfied, or the “quantity of truth” in A2. Needless
to say, we must be able to carry out such a decomposition for any formula
A in the language, including the case in which A is neither provable nor
refutable. Therefore, a “soft” variety of bilateralism is necessary to ensure
that this is possible.

Methodologically, the proof-theoretic platform on which the fractional
evaluation is built needs to meet the following requirements:

• Invertibility: for each logical rule in the calculus, the derivability
of the conclusion always implies the derivability of (each of) the
premise(s).

• Stability: any complete decomposition of the endsequent (end-hyper-
sequent) always returns the same set of top-sequents (top-hyperse-
quents).

2In interpreting the formulas of classical logic, we use Kleene’s system G4 enriched
with a ‘complementary’ axiom introducing whatever clause Γ ⊢ ∆ such that Γ ∩ ∆ = ∅
[12]. Consider for instance the formula A ≡ p → (p∧q). The enriched system decomposes

it into the set of clauses {p ⊢ p; p ⊢ q}, so that JAK = 1/2 = 0.5. Actually, this formula
can be rewritten as (p → p) ∧ (p → q) and this form clearly displays that fact that A is
formed by two components of which only one displays an identity.
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• Termination of the proof search: any decomposition of a given end-
sequent (end-hypersequent) always terminates yielding either a proof
or a rejection.

On one hand, invertibility and termination guarantee the possibility of
turning any set of clauses C(A) into some sort of canonical form for A (its
conjunctive normal form, in classical logic). On the other hand, stability
is what allows us to call the described fractional evaluation a ‘semantics’,
making the value JAK a derivation-invariant.

The technical aim of this paper is to extend the fractional approach
proposed for modal logic to other systems beyond K. After reviewing
the main proof-theoretic ingredients, the paper shows how to apply the
fractional approach to basic deontic logic D as well as non-normal modal
logics E and M. E is the minimal non-normal modal logic characterized
by neighborhood semantics. M extends E by introducing the axiom of
distributivity of □ over conjunction. The paper investigates the structural
properties of these systems and establishes the admissibility of the rules
of weakening, contraction, and cut using purely finitary and constructive
methods.

2. The systems

2.1. Separating modality and classicality

As we have remarked above, in order to apply the fractional method to 
modal logic, we need to design a calculus which meets some proof-theoretic 
desiderata. In particular, stability, finiteness of the proof-search space and 
invertibility.

Achieving finiteness of the proof-search space is perhaps the most del-
icate item when dealing with non-classical logics or extensions of classical
logic. In fact, if we stick to a standard sequent calculus setting, we of-
ten lose invertibility. On the other hand, if we supplement the structure
of sequents, we can obtain invertible rules, but often at the cost of losing
finiteness of the proof-search space.

To meet all of these requirements, we find it natural to switch to a
hypersequent formulation of the modal logics we are considering. The
use of hypersequents proves to be well-suited as it maintains a strong ver-
sion of the formula interpretation, meaning that any syntactic object can
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be interpreted as a formula in the language. Furthermore, hypersequents
provide a way to disentangle the classical content of a sequent from its
modal residual elements, which is a key step in obtaining finiteness of the
proof-search space.

2.2. The calculus HK

We shall be mainly working with hypersequents, introduced under a differ-
ent name by Mints in the early seventies of the last century [11, 10] and
independently by Pottinger [16], then further elaborated (and so named)
by Avron [1, 2, 3]. Hypersequents come as a generalization of the standard
notion of sequent in the style of Gentzen. A sequent is a syntactic expres-
sion of the form Γ ⇒ ∆, where Γ,∆ are finite multisets of modal formulas
from the set F recursively defined by the grammar:

F ::= AT | ¬F |F → F |F ∧ F |F ∨ F |□F

with AT collecting the atomic sentences. As usual, ♢A is taken to abridge
the formula ¬□¬A. If Γ = [A1, A2, . . . , An], then

∧
Γ and

∨
Γ are the

two formulas A1 ∧ A2 ∧ · · · ∧ An and A1 ∨ A2 ∨ · · · ∨ An, respectively. If
Γ = ∅, then we set

∧
Γ = ⊤ and

∨
Γ = ⊥, where ⊤ and ⊥ stand for an

arbitrarily selected tautology and contradiction, respectively. With □Γ we
mean the multiset [□A1,□A2, . . . ,□An]. For any formula A we denote
with An the multiset containing exactly n occurrences of A.

In general, if M and N are two multisets, we indicate with M ⊎N and
#M their multiset union andM ’s cardinality, respectively. A hypersequent,
denoted by G,H, . . ., is defined as a finite (possibly empty) multiset of
sequents written as follows:

Γ1 ⇒ ∆1 |Γ2 ⇒ ∆2 | · · · |Γn ⇒ ∆n.

We shall keep calling ‘sequents’ those hypersequents listing exactly one
sequent. The set collecting hypersequents is here indicated with H . Prac-
tically speaking, a hypersequent G turns out to be valid whenever at least
one of the sequents listed in G is valid. Here the meaning of the term ‘valid’
has to be specified in progress, depending on the logical context.

The following definition introduces the notion of hyperclause which ex-
tends that of clause for standard sequents of classical logic.
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axioms

ax
1 □Π1,Γ1, p ⇒ ∆1, p | · · · |□Πn,Γn ⇒ ∆n

ax Γi ∩∆i = ∅ for 1 ⩽ i ⩽ n
0 □Π1,Γ1 ⇒ ∆1 | · · · |□Πn,Γn ⇒ ∆n

logical rules

i G |Γ ⇒ ∆, A
¬ ⇒

i G |Γ,¬A ⇒ ∆

i G |A,Γ ⇒ ∆
⇒ ¬

i G |Γ ⇒ ∆,¬A

i G |Γ, A,B ⇒ ∆
∧ ⇒

i G |Γ, A ∧B ⇒ ∆

i G |Γ ⇒ ∆, A
j
G |Γ ⇒ ∆, B

⇒ ∧
i·j

G |Γ ⇒ ∆, A ∧B

i G |Γ, A ⇒ ∆
j
G |Γ, B ⇒ ∆

∨ ⇒
i·j

G |Γ, A ∨B ⇒ ∆

i G |Γ ⇒ ∆, A,B
⇒ ∨

i G |Γ ⇒ ∆, A ∨B

i G |Γ ⇒ ∆, A
j
G |Γ, B ⇒ ∆ →⇒

i·j
G |Γ, A → B ⇒ ∆

i G |Γ, A ⇒ ∆, B ⇒→
i G |Γ ⇒ ∆, A → B

modal operator rule

i G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□ ,

i G |□Γ,Γ′ ⇒ □A,□∆,∆′
where Γ′ ⊎∆′ ⊆ AT

Figure 1. The HK sequent calculus (read 1 as ⊢ and 0 as ⊣).

Γ1 ⇒ ∆1 | · · · |Γn ⇒ ∆n

such that no rule of the calculus can be upwardly applied to it. An iden-
tity hyperclause is such that, for some i, Γi ⊎ ∆i ̸= ∅; otherwise, it is
complementary.

Example 2.2. An identity hyperclause and a complementary hyperclause,
respectively:

p ⇒ p |□(□p → p) ⇒ ⇒ p | ⇒ p |□(□p → p) ⇒

Figure 1 presents the ‘softly’ bilateral hypersequent calculus HK. The

rules of HK operate on hypersequents prefixed by the symbols ‘⊢’ and ‘⊣ ’:
we write ⊢ G and ⊣ G to assert the validity and invalidity of G, respec-

Definition 2.1 (Hyperclauses). A hyperclause is a hypersequent
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ax⊣⇒ p | ⇒ p |□(□p → p) ⇒
□⊣⇒ □p, p |□(□p → p) ⇒

ax.
⊢ p ⇒ p |□(□p → p) ⇒ →⇒

⊣ □p → p ⇒ p |□(□p → p) ⇒
□⊣ □(□p → p) ⇒ □p ⇒→

⊣⇒ □(□p → p) → □p

Figure 2. An example of HK proof

tively. For the sake of a more compact notation, in Figure 1 the HK rules
are expressed by writing 1 and 0 to indicate the two signs ‘⊢’ and ‘⊣ ’,
respectively. The calculus is equipped with two axiom rules: the ordinary
ax-rule introduces any identity hyperclause, whilst the ax-rule specifically
introduces complementary hyperclauses.

From now on, we will indicate derivations with small Greek letters
π, ρ, . . .. We recall that the height h(π) of a derivation π is given by the
number of hypersequents figuring in one of its longest branches. Moreover,
we indicate with top(π) the multiset of π’s top-hypersequents.

Example 2.3. Figure 2 displays a HK-derivation ending in ⊣⇒ □(□p →
p) → □p , that is a formal rejection for the sequent ⇒ □(□p → p) → □p.

Remark 2.4. The □-rule is the only inference schema in which the hy-
persequent structure comes effectively into play. Intuitively speaking, a
□-application in its bottom-up reading allows us to decompose a sequent-
component in a hypersequent by splitting its classical part from modal
residues. In fact, each time the rule is applied, a new hypersequent com-
ponent is added, thus starting a parallel derivation.

Furthermore, notice that the side condition on the □-rule about con-
texts Γ′ and ∆′ is crucial to avoid pathological situations like the one

indicated below, in which HK proves both ⊢ G and ⊣ G.

ax
⊢ t | p ⇒ p

□⊢ p ⇒ p,□t

ax
⊢ t ⇒ t |□t ⇒ p

□⊢ p,□t ⇒ □t →⇒
⊢ p, p → □t ⇒ □t

ax
⊢⇒ t | p ⇒ p

ax⊣⇒ t | p,□t ⇒ →⇒
⊣⇒ t | p, p → □t ⇒

□⊣ p, p → □t ⇒ □t

The other modal systems are obtained by adjusting the system HK as
indicated below.
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• HD is obtained by adding to HK the rule:

i G |Π ⇒ Σ |Γ ⇒
d where Π,Σ ⊂ AT

i G |□Γ,Π ⇒ Σ

and by revising the ax-rule as follows:

where Γi,∆i ⊂ AT
⊣ Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n

• HM is obtained by substituting the □-rule in HK with the following
inference pattern:

i G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

i G |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

where Π,Σ are multisets of atomic formulas, i ∈ {1, ...,m}, and j ∈
{1, ..., n}. We also need to replace the ax-rule with the following
version:

where Γi,∆i ⊂ AT
⊣ □Π1,Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n,□Σn

• The system HE is obtained from HK by replacing the □-rule with the
following inference schema:

i G | [⇒ Ai ↔ Bj ] |Γ ⇒ ∆
e

i G |□A1, ...,□Am,Γ ⇒ ∆,□B1, ...,□Bn

where Γ,∆ are multisets of atomic formulas and i ∈ {1, ...,m} and
j ∈ {1, ..., n}. We also need to replace the ax-rule with the following
version:

where Γi,∆i ⊂ AT
⊣ □Π1,Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n,□Σn
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⊢ G |Γ ⇒ ∆
LW

⊢ G |A,Γ ⇒ ∆

⊢ G
EW

⊢ G |H
⊢ G |A,A,Γ ⇒ ∆

LC
⊢ G |A,Γ ⇒ ∆

⊢ G |Γ ⇒ ∆
RW

⊢ G |Γ ⇒ ∆, A

⊢ G |Γ ⇒ ∆ |Γ ⇒ ∆
EC

⊢ G |Γ ⇒ ∆

⊢ G |Γ ⇒ ∆, A,A
RC

⊢ G |Γ ⇒ ∆, A

⊢ G |Γ ⇒ ∆, A ⊢ H |A,Π ⇒ Σ
Cut

⊢ G |H |Γ,Π ⇒ ∆,Σ

Figure 3. Admissible structural rules

3. Structural analysis

In this section we spell out the details of a purely syntactical cut-elimination
procedure for these systems. In a previous work [13], cut-elimination was
established in the form of closure under cut due to soundness and complete-
ness of the system. We shall now give a purely syntactic proof thereof.

We recall the standard proof-theoretic definitions and measures. In
particular, the degree of a formula is defined as the number of occurrences
of connectives in it.

We also recall that a rule is height-preserving admissible when (i) the
derivability of the premises entails the derivability of the conclusion and
(ii) the height of the conclusion’s derivation does not exceed that of the
derivations of the premises. Additionally, we need the following notation:

given a calculus HX, we denote by HX the calculus obtained by removing
its complementary axiom.

Lemma 3.1. The rules of the calculus HK are height-preserving invertible.

Proof: The proof is by induction on the height of the derivation of the
conclusion of the rule. We consider only the case of the modal operator,
the other ones are routine. Given a hypersequent shaped as

⊢ G |□Γ,Γ′ ⇒ □A,□∆,∆′,

by inspection of the rules of the system, it can only come as a conclusion
of the □-rule. On the other hand, if □A is the principal formula, then the
premise is the desired conclusion. If the principal formula is a formula in
□∆, say □B, then we have:



284 Mario Piazza, Gabriele Pulcini, Matteo Tesi

⊢ G |Γ ⇒ B |□Γ,Γ′ ⇒ □A,□∆′′,∆′
□⊢ G |□Γ,Γ′ ⇒ □A,□∆′′,□B,∆′

Since the height gets decreased, we can apply the induction hypothesis
which yields a derivation ending in ⊢ G |Γ ⇒ B |□Γ,Γ′ ⇒ □A,□∆′′,∆′.
The desired conclusion then follows by a final application of the □-rule.

Lemma 3.2. The weakening rules (EW ), (LW ) and (RW ) are both admis-
sible.

Proof: Admissibility of the rule of external weakening (EW ) follows from
a straightforward induction on the height of derivations. On the contrary,
to establish the admissibility of the weakening rules (LW ) and (RW ) we
need to argue by double induction, with the main induction hypothesis on
the degree of the formula to be added and the secondary induction hypoth-
esis on the height of the derivation under consideration. In particular:

If n = 0, then if the hypersequent ⊢ G |□Γ,Γ′ ⇒ ∆ is derivable, so are
both ⊢ G |A,□Γ,Γ′ ⇒ ∆ and ⊢ G |□Γ,Γ′ ⇒ ∆, A.

If n > 0 and the last rule is not a □-application, then we apply the
secondary induction hypothesis to the premise(s) and then the rule again.
Otherwise, if the last rule applied is a □-application, we distiguish three
subcases.

• If A is an atomic formula, then we apply the secondary induction
hypothesis and then the rule again.

• If A is a modal formula □B we have:

⊢ G |Γ ⇒ C |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □C,□∆,∆′

If we want to add □B to the succedent we can simply apply the
secondary induction hypothesis and then the rule again. Otherwise,
we get the following configuration:

⊢ G |Γ ⇒ C |□Γ,Γ′ ⇒ □∆,∆′
LW

⊢ G |Γ ⇒ C |□Γ,□B,Γ′ ⇒ □∆,∆′
LW

⊢ G |Γ, B ⇒ C |□Γ,□B,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′,□B,⇒ □C,□∆,∆′
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The first application of LW is removed by secondary induction hy-
pothesis, while the second by the primary induction hypothesis.

• It remains to consider the case in which A is a formula whose principal
connective is one among ∧, ∨, and →. In these case, we decompose
the formula A by applying invertibility of the rules for the classical
connectives, then we add the formulas as described in the preceding
subcases.

Lemma 3.3. The rules of contraction (LC) and (RC) and external con-
traction (EC) are all height-preserving admissible.

Proof: By simultaneous induction on the height of derivations. Exter-
nal contraction follows by a straightforward induction on the height of the
derivation under analysis by applying height-preserving invertibility of
the logical rules.

Internal contraction is slightly more delicate to handle. The critical
situation is the one in which we have a hypersequent ⊢ G |□Γ,Γ′ ⇒
□A,□A,□∆,∆′ and the formula □A is principal in the last rule applied.
In this case, we consider the premise

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □A,□∆,∆′

and we proceed in the following way

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □A,□∆,∆′

Inv-□⊢ G |Γ ⇒ A |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
EC

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □A,□∆,∆′

Theorem 3.4. The cut-rule is admissible.

Proof: The proof is by double induction with main induction hypothesis
on the degree of the cut-formula and the secondary induction hypothesis
on the sum of the height of the derivation of the premises of the cut.

We distinguish the following cases. If the right premise of the cut is
an initial sequent, then, when the cut formula is not active, we remove it.
Otherwise, the conclusion follows by weakening.

If the right premise of the cut is the conclusion of a logical rule different
from □ , we distinguish two subcases according to whether the cut-formula
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is principal or not. In the former case, we apply the invertibility of the
corresponding rule and we replace the cut-application under consideration
with cuts on formulas of smaller degree. In the latter case we permute the
cut upwards.

If the last inference step is a □-application, then the cut-formula is
either atomic or a modal formula. In both cases, we argue by induction on
the left premise of the cut. The relevant case is the one in which the last
rule applied is □ . We have:

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□

⊢ G |□Γ,Γ′ ⇒ □∆,□A,∆′

⊢ H |A,Π ⇒ B |□A,□Π,Π′ ⇒ □Σ,Σ′
□

⊢ H |□A,□Π,Π′ ⇒ □Σ,□B,Σ′
Cut

⊢ G |H |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,□B,∆′,Σ′

The cut is removed as follows (we avoid writing the contexts for better
readability). First, we apply a cross-cut:

⊢ □Γ,Γ′ ⇒ □∆,□A,∆′ ⊢ A,Π ⇒ B |□A,□Π,Π′ ⇒ □Σ,Σ′
Cut⊢ A,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′

The cut is removed by applying the secondary induction hypothesis. The
reduction is then completed as follows:

⊢ Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′ ⊢ A,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′
Cut

⊢ Γ,Π ⇒ B |□Γ,Γ′ ⇒ □∆,∆′ |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′
LW,RW

⊢ Γ,Π ⇒ B | (□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′)2
EC⊢ Γ,Π ⇒ B |□Γ,□Π,Γ′,Π′ ⇒ □∆,□Σ,∆′,Σ′

□⊢ □Γ,□Π,Γ′,Π′ ⇒ □∆,□B,□Σ,∆′,Σ′

where the cut-rule is removed by primary induction hypothesis on the de-
gree of the cut-formula.

We consider now the system HD. In this case the analysis proceeds
analogously. Of course, the admissibility of the structural rules needs to
be established once again.

Lemma 3.5. Every rule is height-preserving invertible in HD.

Proof: The only new case to be detailed is the one involving the rule d.
In this case the proof is immediate, as the only applicable rule is d which
acts on all the formulas in the antecedents.
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Lemma 3.6. The weakening rules (EW ), (LW ) and (RW ) are admissible.

Proof: External weakening is established by a straightforward induction
on the height of the derivation. Proving the admissibility of W requires
a double induction, with main induction hypothesis on the degree of the
formula and secondary induction hypothesis on the height of derivations.

The only new case to detail is the one involving rule d. As usual, we
need to proceed by cases. If the formula to be added is an atomic formula,
then we simply apply the secondary induction hypothesis and then the rule
again. If it is a boxed formula to be added in the antecedent, then we apply
the primary induction hypothesis on the degree of the formula and then
the rule again.

In the remaining cases we first decompose the formulaand we then ob-
tain some hypersequents which contain only boxed formulas in the an-
tecedents of the components and atomic formulas. Hence we apply the
primary induction hypothesis and then we apply the rules in the reverse
order.

Lemma 3.7. The rules of contraction are height-preserving admissible.

Proof: The proof is by induction on the height of the derivation. The
only new case to discuss is the one involving the rule d. We have:

⊢ G |A,A,Γ ⇒ |Π ⇒ Σ
d

⊢ G |□A,□A,□Γ,Π ⇒ Σ

We proceed as follows:

⊢ G |A,A,Γ ⇒ |Π ⇒ Σ
LC

⊢ G |A,Γ ⇒ |Π ⇒ Σ
d

⊢ G |□A,□Γ,Π ⇒ Σ

The application of LC is removed by the induction hypothesis on the height
of the derivation.

Theorem 3.8. The cut rule is admissible in HD.

Proof: By double induction. We discuss only the new interesting case.

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′
□⊢ G |□Γ,Γ′ ⇒ □∆,□A,∆′

⊢ H |A,Π ⇒ |Θ ⇒ Σ
d

⊢ H |□A,□Π,Θ ⇒ Σ
Cut

⊢ G |H |□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′
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We proceed as follows:

⊢ G |Γ ⇒ A |□Γ,Γ′ ⇒ □∆,∆′ ⊢ H |A,Π ⇒ |Θ ⇒ Σ
Cut

⊢ G |H |Γ,Π ⇒ |Θ ⇒ Σ |□Γ,Γ′ ⇒ □∆,∆′
d

⊢ G |H |□Γ,□Π,Θ ⇒ Σ |□Γ,Γ′ ⇒ □∆,∆′
LW,RW

⊢ G |H | (□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′)2
EC

⊢ G |H |□Γ,□Π,Γ′,Θ ⇒ □∆,Σ,∆′

The cut is replaced by a cut on a formula of smaller degree and the con-
clusion is obtained applying the rule d followed by weakening and contrac-
tion.

We now consider the case ofHM. Since by now the reader should be ac-
quainted with the strategies employed to establish the structural properties
of this kind of calculi we shall not get into the details.

Lemma 3.9. Every rule is height-preserving invertible.

Proof: We deal with m. If ⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□C,Σ is
an initial sequent, so is ⊢ G |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒
□∆,□B,Σ. If it is the conclusion of a rule, we apply the induction hy-
pothesis to each of the premises and then the rule again. For example, we
have:

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□C,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□C,Σ

We proceed as follows:

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□C,Σ
IH

⊢ G |A1 ⇒ B | . . . |An ⇒ B |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

⊢ G |A1 ⇒ C | . . . |An ⇒ C |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

Lemma 3.10. The rules (EW ), (LW ) and (RW ) are admissible.

Proof: EW . Straightforward by induction on the height of the derivation.
With respect to W we argue by double induction as above with minor
changes.

Lemma 3.11. The rules (EC), (LC) and (RC) are height-preserving ad-
missible.
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Proof: By induction on the height of the derivation. We deal with the
only relevant cases.

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,□B,Σ

We proceed as follows:

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ
Inv-m

⊢ G | (A1 ⇒ B)2 | . . . | (An ⇒ B)2 |□A1, . . . ,□An,Π ⇒ □∆,Σ
EC

⊢ G |A1 ⇒ B | . . . |An ⇒ B |□A1, . . . ,□An,Π ⇒ □∆,Σ
m

⊢ G |□A1, . . . ,□An,Π ⇒ □∆,□B,Σ

If the formula to contract is in the antecedent, we proceed analogously,
possibly exploiting external contraction and the induction hypothesis on
the height of the derivation.

The last step is the cut-elimination theorem.

Theorem 3.12. The cut rule is admissible in HM.

Proof: By double induction on the degree of the cut formula and the
sum of the height of the derivations of the premises of the cut. We discuss
the case in which the cut formula is principal in both the premises in an
application of the rule m.

G |A1 ⇒ C1 | . . . |An ⇒ C1 |□A1, . . . ,□An,Γ ⇒ □∆,∆′
m

G |□A1, . . . ,□An,Γ ⇒ □∆,□C1,∆
′

H |C1 ⇒ D | . . . |Cn ⇒ D |□C1, . . . ,□Cn,Π ⇒ □Σ,Σ′
m

H |□C1, . . . ,□Cn,Π ⇒ □Σ,□D,Σ′

Cut
G |H |□A1, . . . ,□An,Γ,□C2, . . . ,□Cn,Π ⇒ □Σ,□D,Σ′,□∆,∆′

We construct the following derivation (we omit the contexts for better
readability):

⊢ □A1, . . . ,□Am,Γ ⇒ □∆,□C1,∆
′ ⊢ C1 ⇒ D | . . . |Cn ⇒ D |□C1, . . . ,□Cn,Π ⇒ □Σ,Σ′

Cut
⊢ C1 ⇒ D | . . . |Cn ⇒ D |□A1, . . . ,□Am,Γ,□C2, . . . ,□Cn,Π ⇒ □Σ,Σ′,□∆,∆′

The cut is removed by secondary induction hypothesis. Next, we cut on C1.
We write S as an abbreviation for ⊢ □A1, . . . ,□Am,Γ,□C2, . . . ,□Cn,Π ⇒
□Σ,Σ′,□∆,∆′. We have:

⊢ A1 ⇒ C1 | . . . |Am ⇒ C1 |□A1, . . . ,□Am,Γ ⇒ □∆,∆′ ⊢ C1 ⇒ D | . . . |Cn ⇒ D | S
Cut

⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D |□A1, . . . ,□Am,Γ ⇒ □∆,∆′ | S
LW,RW,EC

⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D | S
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We now apply again a cut on C1 between ⊢ A1 ⇒ D | . . . |Am ⇒ C1 | . . . |
Cn ⇒ D | S and ⊢ C1 ⇒ D | . . . |Cn ⇒ D | S which yields (modulo contrac-
tion)

⊢ A1 ⇒ D |A2 ⇒ D | . . . |Am ⇒ C1 | . . . |Cn ⇒ D | S

By repeating this procedure (formalizable by induction on m), we get:

⊢ A1 ⇒ D |A2 ⇒ D | . . . |Am ⇒ D | . . . |Cn ⇒ D | S

An application of the rule m gives the desired conclusion.

The last system that we analyze is HE. We state the preliminary
structural properties omitting the proofs which can be obtained along the
same lines as the previously discussed systems.

Proposition 3.13. The rule of weakening is admissible. Every rule of the
calculus is height-preserving invertible. The rule of contraction is height-
preserving admissible.

To conclude the section we discuss cut-elimination for the case of HE.
Instead of lingering on abstract technicalities, we give a concrete example
of reduction and we leave to the reader the generalization of the argument.

⊢ G | ⇒ A ↔ C | ⇒ B ↔ C |Γ ⇒ ∆
e

⊢ G |□A,□B,Γ ⇒ ∆,□C

⊢ G′ | ⇒ C ↔ D | ⇒ C ↔ E |Π ⇒ Σ
e

⊢ G′ |□C,Π ⇒ Σ,□D,□E
Cut

⊢ G |G′ |□A,□B,Γ,Π ⇒ ∆,Σ,□D,□E

We first observe that the rule:

⊢ G | ⇒ A ↔ B ⊢ G′ | ⇒ B ↔ C
Eq

⊢ G |G′ | ⇒ A ↔ C

is admissible via cuts on formulas of lower size. Hence we propose the
following reduction containing applications of Eq (we omit the contexts
and the turnstiles and the applications of the rule EC for reasons of space):

⇒ A ↔ C | ⇒ B ↔ C

⇒ A ↔ C | ⇒ B ↔ C ⇒ C ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ C | ⇒ C ↔ E ⇒ C ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ A ↔ E | ⇒ B ↔ C ⇒ A ↔ D | ⇒ B ↔ D | ⇒ C ↔ E

⇒ A ↔ D | ⇒ B ↔ D | ⇒ A ↔ E | ⇒ B ↔ E
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All the cuts are removed by primary induction hypothesis on the degree
of the cut formula.

Theorem 3.14. The cut rule is admissible in HE.

As a matter of fact, proofs in the hypersequent calculi here proposed
amount to the decomposition of the endsequent into non further analyz-
able top-hypersequents. The calculi enjoy invertibility of every rule with
preservation of the height. In addition, as it will be shown in the next
section, the decomposition is unique or, which is equivalent, the calculus
enjoys the stability property.

4. Development of fractional semantics

4.1. Conservativity over the base logic

Conservativity stems from the soundness and the completeness of the cal-
culus. Soundness is established with respect to structures which interpret
modal logics.

Definition 4.1. An E-neighborhood model is a triple ⟨W, I,V⟩, where W is
a non-empty set, I : W → P(P(W)) and V : AT → P(W). Truth conditions
for a formula A in a world x in a model are inductively defined as follows:

• x ⊩ p if and only if x ∈ V(P ).

• x ⊩ B ∧ C if and only if x ⊩ B and x ⊩ C.

• x ⊩ B ∨ C if and only if x ⊩ B or x ⊩ C.

• x ⊩ ¬B if and only if x ⊮ B.

• x ⊩ □B if and only if {y | y ⊩ B} ∈ I(x).

An M-neighborhood model is an E-neighborhood model with the additional
condition: if a ∈ I(x) and a ⊆ b then b ∈ I(x). A K-neighborhood model
is an M-neighborhood model in which, if a ∈ I(x) and b ∈ I(x) then we
get both a ∩ b ∈ I(x) and I(x) ̸= ø, for every x. A D-neighborhood model
is a K-neighborhood model satisfying the following additional condition:
a ∈ I(x) ⇒ ac /∈ I(x).

The definition of validity for a hypersequent in this setting is as follows:
G is valid if one of its components it valid.
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Proposition 4.2. If HX proves ⊢⇒ A, then A is valid.

Proof: The proof is by induction on the height of the derivation in the
corresponding hypersequent calculus. We discuss the case of HE as an
example. Suppose the hypersequent ⊢ G | [⇒ Ai ↔ Bj ] |Γ ⇒ ∆ is valid,
hence one of the components is valid. If any component in G or Γ ⇒ ∆ is
valid, then so is the conclusion, trivially. If for some i, j Ai ↔ Bj is valid,
then this implies that □Ai ↔ □Bj is valid and therefore the validity of
the conclusion follows.

As regards completeness, it suffices to establish that whenever we have
a derivation of the Hilbert style calculus for a given modal logic, the cor-
responding sequent is derivable in our calculus too.

We recall here the modular presentation of the Hilbert style systems for
the logics considered here.

• The system E is axiomatized by adding to a Hilbert-style calculus for
classical propositional logic the rule:

⊢ A ↔ B
E⊢ □A ↔ □B

• The system M is axiomatized by adding to E the rule:

⊢ A → B
M⊢ □A → □B

• The system K is axiomatized by adding to a Hilbert-style calculus for
classical propositional logic the axiom □(A → B) → (□A → □B)
and the rule:

⊢ A
RN⊢ □A

• The system D is axiomatized by adding to K the axiom □A → ♢A.

Theorem 4.3. If X proves ⊢ A, then HX ⊢⇒ A for X ∈ {K,M,D}.

Proof: The proof is by induction on the height of the derivation in the
system X. We give an example of the derivation of the axiom D in HD:
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⊢ A ⇒ A
L¬⊢ A,¬A ⇒

d⊢ □A,□¬A ⇒
R→⊢ □A ⇒ ¬□¬B
R→⊢⇒ □A → ¬□¬A

With respect to the rules of the calculus, we show the admissibility of the
rule M in the calculus HM:

⊢⇒ A → B
Inv→⊢ A ⇒ B

EW
⊢ A ⇒ B |□A ⇒

m
⊢ □A ⇒ □B

R→⊢⇒ □A → □B

of modus ponens:

⊢⇒ A
⊢⇒ A → B

Inv→⊢ A ⇒ B
Cut⊢⇒ B

and of the E rule in HE:

⊢⇒ A ↔ B e
⊢ □B ⇒ □A

R→⇒ □B → □A

⊢⇒ B ↔ A e
⊢ □A ⇒ □B

R→⊢⇒ □A → □B
R∧⊢⇒ □A ↔ □B

As a corollary of the embedding we get the completeness of the resulting
system. Soundness is obtained as usual through a straightforward induction
on the height of the derivation of the system and thus we omit the details.

Corollary 4.4. The systems HX are sound and complete with respect
to the logics X.

Proof: If A is valid, then it is derivable in the corresponding axiomatic

calculus and so in HX.
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4.2. Fractional valued non-normal modal logics

In order to develop a fractional interpretation of non-normal modal logics,
we need to show that the assignment of values to formula does not depend
on the specific shape of the derivations.

Theorem 4.5 (Stability). If π and ρ are two HX-derivations ending with
the same hypersequent, then top(π) = top(ρ).

Proof: The proof is standardly led by induction on the height n of the
derivation of π. If n = 0, then the claim comes straightforwardly. Other-
wise we distinguish cases according to the last rule applied. We consider
the case in which the last inference is an application of a unary rule, that
is:

π′

...
i G′

r
i G

We apply the invertibility of the rule r to get a derivation ρ′ of G′. Since
the height of π′ is strictly lower than that of π, we can apply the induction
hypothesis to get top(π′) = top(ρ′), which immediately yields the desired
conclusion.

Due to the stability property, we can now consider the multiset of top-
hypersequents associated with a given formula as a derivation-invariant
notion. That is, the multiset decomposition remains stable through differ-
ent derivations of the same hypersequent.

Definition 4.6. Given a formula A, topX(A) is the multiset of the top-

hyperclauses in any of the HX-derivation ending in (⊢ or ⊣) ⇒ A. The
multiset topX(A) is partitioned into the two multisets top1X(A) and top0X(A)
collecting all the hyperclauses signed by ‘⊢’ and the hyperclauses signed
by ‘⊣ ’, respectively.

Definition 4.7 (Fractional evaluation function). Let Q∗ = [0, 1] ∩Q, i.e.,
Q∗ is the set of the rational numbers in the closed interval [0, 1]. For each
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system X, the evaluation function
q
·

y
X

: F 7→ Q∗ is defined as follows:
for any logical formula A,

q
A

y
X

=
#top1X(A)

#topX(A)

Let us emphasize some basic features about the evaluation function 
defined above. First, as already noticed, the Stability property makes 
the fractional evaluation of formulas a derivation-invariant, therefore the 
fractional method can be regarded as a semantics to all intents and 
purposes. Second, invertibility of of the rules of the calculus ensures that 
the relevant information stored in the conclusion is entirely preserved 
through the decomposition procedure. Third, the assignment is conser-
vative over the base logic, as valid formulas are mapped to the maximum 
fractional value. The next theorem establishes the latter point.

Theorem 4.8 (Conservativity). The formula A is X-valid just in caseq
A

y
X

= 1.

Proof: (⇐) If
q
A

y
X

= 1, then there is a HX ending in ⊢⇒ A. By
applying the soundness theorem we can infer the X-validity of A.

(⇒) If A is X-valid, then by completeness there is a HX derivation
ending in ⊢⇒ A, so every initial top-hypersequent expresses an identity
and therefore we get

q
A

y
X

=
#top1X(A)

#topX(A)
=

#top1X(A)

#top1X(A)
= 1

Let F c be the language of classical propositional logic. The next the-
orem establishes the surjectivity of the interpretation function

q
·
y
. In

particular, we have:

Theorem 4.9. For any q ∈ Q∗: (i) there is a formula A ∈ F c s.t.
q
A

y
X

=

q, and (ii) there is a formula B ∈ F − F c s.t.
q
B

y
X

= q.

Proof: Let q = m/n, where m,n ∈ N+ and m ⩽ n. (i) Consider the
formula

∧
(p∨¬p)m ∧

∧
pn−m. It is immediate to see that

q∧
(p∨¬p)m ∧∧

pn−m
y
X

= m/n = q.

(ii) We provide details for the modal logic E, other systems can be
handled analogously. We consider now the modal formula

∧
(□p → □p)m∧
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∧
(□p)2n−m in F − F c. It turns out, similarly, that

q∧
(□p → □p)m ∧∧

(□p)2n−m
y
X

= 2m/2n = m/n = q.

Remark 4.10. By combining Theorem 4.9 and the density of Q∗, it is easy
to verify that for, any modal system X and any pair of modal formulas A,
B with

q
A

y
X

<
q
B

y
X
, we can always find a third formula C ∈ F c such

that
q
A

y
X

<
q
C

y
X

<
q
B

y
X
.

The previous theorem extends the result that has already been estab-
lished for the modal logic K and serves as a bridge between classical and
modal propositional logic. Specifically, for any modal formula, it is possi-
ble to provide a classical formula that has the same identity content as the
modal one, as determined by the fractional interpretation. To illustrate
this qualitative analysis, consider the modal formula □(□p → p) → □p
such that

q
□(□p → p) → □p

y
M

= 0.5. The decomposition algorithm
ejects the modal component and returns the classical formula (p ∨ ¬p) ∧ p
whose fractional interpretation is

q
(p ∨ ¬p) ∧ p

y
M

= 0.5. In fact, the de-
composition of the formula leads to two initial sequents: a tautological one
and a complementary one.

5. Concluding remarks

We have developed new logical calculi for modal logic D, as well as the non-
normal modal logics M and E. These systems are able to combine some of
the most important proof-theoretic features: the subformula property (as a
consequence of the cut-elimination theorem), finiteness of the proof-search
space, and invertibility of the logical rules. By fine-tuning a variety of
bilateralism based on the notion of rejection as underivability, we showed
how to articulate a proof-based interpretation of the modal logics under
focus.

We acknowledge that there are differences between canonical proof-
theoretic semantics and fractional semantics, to the extent that a semantics
in terms of proofs does not necessarily qualify as proof-theoretic. In partic-
ular, the fractional technique results in a multi-valued interpretation of the
formulas in the language, whereas proof-theoretic semantics is completely
disengaged from any “quantitative” form of evaluation. This fact deserves
special consideration as it suggests that, when decidable systems are under
consideration, the syntax/semantics dichotomy can be overcome by means
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of a proof-based interpretation, which nonetheless entails a quantitative
evaluation of the formulas in the language.

To conclude, we would like to say something about the problem of
devising a proof-theoretic semantics for the modal operator of necessity.
According to Kürbis, a proof-theoretic semantics should be seriously re-
garded as defective without a proper account of the □-modality [7]. The
technical achievements in this paper show that modal formulas can be max-
imally analyzed by means of a set of logical rules which have the effect of
progressively detecting the modal components as residual elements. That
is, the “quantity of identity” present in a modal formula can be measured
in essentially the same way as in classical logic, provided that the classical
content has been properly isolated. The lesson to be learned is that, if we
consider the fractional method as a legitimate variant of proof-theoretic
semantics, the issue raised by Kürbis can be circumvented inasmuch as
modal formulas can be evaluated without taking the meaning of the □-
modality directly into account. In this sense, we believe that our work is
a step towards a proof-theoretic semantics for modal logics Nonetheless,
the problem of providing a fully satisfactory proof-theoretic account of the
□-modality remains an open and challenging task, which requires further
investigation and research.
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