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For a given ¢-function ¢ and an element = from the space X of
all real double sequences. We first introduce a sequential ¢-modulus
wy. Next, for a given function ¥, we define the spaces X (¥) and
X, generated by w,. The purpose of this paper is to investigate
properties of the spaces X (¥) and X,.

1. DEFINITIONS AND PRELIMINARIES

Let X be the space of all real bounded double sequences. Se-
quences belonging to X will be denoted by = = (t,,) = ((z),,) or
= (tw)io=o = (@)w)iv=0, ¥ = (swv); Yl = (Isu]), 2, = (t5.)
for p = 1,2,.... By a convergent sequence we shall mean a double
sequence converging in the sense of Prinsgheim.

For any two nonnegative integers m and n, we may define the
sets I = {p,v) : p<m, v<n}, Ih ={pv):p>m v<n}
I = {p,v):p<m, v2n}and Iy = {,v) : p > m, v > n}.
An (m,n)-translation of a sequence z € X is defined as the sequence

137
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Tmnl = ((Trvtnm)ltu);)‘?,,:() where

sk for (p,v) € I,
(T#,,.’I.')I“, = Tutm,v for (p,v) € I,

Tu,w+n for (//,, 1/) € I,

Tu+m,v+n for (/u/) =g 7

It 1s obvious that ((m002) s )Py=0 = ((=)w )pv=0 and, moreover,

Tl for 0<pu<m andall v,
(7m0 ) = { Tutm, o for p>m andall v,
. T for 0 <v <n andall g,
(e, = { T for v >n andall u.

Next, we define M u(2) = My, (z) by the formulae
M;:':/n(“’) = I(TOO'T)W = (TmO-'E)tw &5 (Tﬂn"’)uu ot (Tmnw)IWI
for all 4 and v such that u >m >1and v > n > 1 and, moreover,

Mﬂ,‘l(x):o o) oV i 0[O e B 1T, TR 1 I S

M;":,O(m) = |(100%)ur — (Tmo ) s | forany p>1and v >0,
M;ZLO(’E) = [(7002) p» — (T0n ) o | forany v>1and p>0.

Let us remark that

an((l:) o { IT#,II — Tpu+m,w — Tpv+n + T,u+m,u+n.|, (,Lt, y) € I4’
B 0, (,U,V)EI1UI2UI3’

and, moreover, for m = 0 or n = 0, we have Mat(z) = lru e Tairkal
or M’ (2) = |74,y — Tutm.u|, respectively.

By a p-function we mean a continuous nondecreasing function ¢ u)
defined for u > 0 and such that ¢(0) = 0, ¢(u) > 0 for v > 0 and
@(u) — 0o as u — co. A @-function ¢ is said to satisfy the condition
(A2) for small u if, for some constants K > 0, uy > 0, the inequality
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(2u) < K(u) is satisfied for 0 < u < ug. A p-function ¢ is said to

satisfy the condition (4Ay) for all u, if there exists a positive number

K such that (2u) < Kp(u) for all u > 0 (compare [3], [4], [5] or [9]).
A sequential p-modulus of a sequence x € X is defined as

o0
(1) wy(z;r,s) = sup sup Z o(M)," ()
m2>rn>s p,v=0

where ¢ is a given p-function and r and s are nonnegative integers.
It is easy to check that

o0

we(z;7,8) = sup sup Z P(M" (2))

m>rn>s p=m, v=n

(compare e.g. [7] or [8]).
2. THE SPACE X (%)

Let (a,s) be a sequence of positive numbers with

(2) s=infar > 0.
8
Moreover, let ¥ be a nonnegative nondecreasing function of u > 0
such that ¥(u) — 0 as u — 04, ¥(u) is not the identity.
We define the set

: X(P) = {z € X : ars¥(wy(Az;7,5)) = 0
®) as r,s — oo fora A> 0}

Theorem 1. Let ¢ be a -function which satisfies the condition
(Az) for small u, with a constant K > 0, and let the function ¥
satisfy the conditions ¥(0) = 0 and (A ) for small u, with a constant
K, > 0. Then x € X(¥) if and only if

lim apsP(we(Az;r,8)) =0

r,8—00
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for each A > 0.
Proof. The condition z € X (%) implies that

(4) lim a,¥(wy(Aoz;r,s)) =0 for some Ay > 0

r,8—00

and there exists a constant M > 0 such that [tuv| < M for all y and v.
For A > )y, we choose an integer k such that 2k=1)y < A < 2¥) and
28+2)0 M < ug. Next, we have AM,,(z) < 280 M, (2) < 2842\, M
for all x4 and v; by (A,), for the function ¢ with with a constant

K > 0, we have

00
wo(Azir,s) = supsup 3" o(AMu(2))
m2>r 712.9“ =0

< sup sup Z K*o(AoM,,(2)) = K*w,(Aoz;r, s).

m>rn>s #,v=0

By (2) and (4), we have ¥(w,(Aoz;T,s)) — 0 as r, s — o0o. It is seen
at once that the condition ¥(w,(Agz;7,s)) < § for sufficiently large
r and s implies that w,(Aoz;r,s) < M for sufficiently large r and
s, where 6 and M are some positive numbers. But the function ¥
satisfies (Az) with the constant K;; then

W(?qua(/\gx; Ea)) = K{W(wg,(/\om; r,s))

for sufficiently large r and s, where I is chosen so that K* < 9l
Consequently,

ars¥(wp(Aoz;r,s)) < ars¥(2'wy(Noz; r8)) < I&'llar,!l'/(w‘,,(/\ox;r,s))

for sufficiently large r and s. Applying the above inequality and
condition (4), we obtain a,,¥(w,(Aoz;r,s)) — 0 as r,s — oo for
each A > 0.



SPACES OF DOUBLE SEQUENCES 141

Theorem 2. If¥ satisfies (Ay) with a constant K, for small u, then
X(¥) is a vector space.

Proof. Let ¢ = (tu,), y = (8uv). From the inequality ¢(u + v) <
©(2u)+¢(2v) and the properties of the ¢-function ¢ and the function
v we get

1
(5) am!P(wq,(§/\(m +y); r,s)) < arsW(wy(Az;r,8) + wyu(Ay; 1,y 8))
< A P20 (AZ; 7, 8)) + ars U(2wi(Ay; Ty 8)).

Since z,y € X(¥), therefore, by assumption (2),
V(wep(Az;r,s)) =0 and  P(wu(Ay;r,s) =0

as r,8 — o0, for some A > 0. Next, from the properties of the
function ¥ we obtain that there exist indices 7y and sy such that
P(wy(Az;r,s)) < 6 and P(wy(Ay;r,s)) < 6 for all 7 > ry and s > s,
where ¢ is some positive number. Consequently, w,(Az;r,s) < M
and we(Ay; r,s) <M; moreover, ¥(2wy(Az;7,5)) < K1¥(w,(Az;r, 8)),
V(2w (Ay; 1, 8)) < Ky ¥(wy(Ay;r, 8)) for r > rg and s > sg. Thus

a”d?(wq,(%/\(m +v); r,s)) < Ki(arsP(wp(Az;r, 8)

+ ars¥(we(Ay;7,8))) — 0 as r,s — 00,

and X (¥) is a vector space.
Theorem 3. Let us suppose that a function ¢ satisfies the following
condition:
(a) there exists an @ > 0 such that for each v > 0 and any «
satisfying the inequality 0 < a < @, the inequality ¢(au) <
3¢(u) holds.

Then X(¥) is a vector space.
Proof. For z,y € X and some A\, a > 0, we have

(o]

1 o0
sup sup Z pladM,,(z)) < o 1p Eup Z P(AM,(2))

m>rn>s 4, =0 m2>rn>s 1, 0=0
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and, similarly,

: :
sup sup Z p(aAM,(y)) < P SHD Z (AM ().

m>r nZSp,u:O “m2rn>s )

By these two inequalities and (5),
1
a”,!'/(wqo(;a/\(.?: +y); 7‘,3)) < arsW(wyp(Az;r,8))
+ arsU(wy(Ay;7r,8)) = 0 as r,s — oo,

for some A > 0. Finally, X () is a vector space.

3. PSEUDOMODULARS AND PSEUDONORMS

Let p be a functional defined on a real vector space Y with values
0 < p(z) < oo. This functional will be called a pseudomodular if it
satisfies the following conditions:

p(0) =0,

p(—z) = p(z),

plaz + By) < p(x) + p(y), for all z,y € X and for any o, 3 > 0
with a + 8 = 1.

If p satisfies the condition
p(z) =0 ifandonlyif =0
instead of condition one, then p is called a moduler (compare e.g. (3],

4], [5] or [11]).
Now, we define in X the functional

(6) p(z) = 5:1}) arsW(wy(z;T,3)).
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Theorem 4. Let a function ¥ be concave and let ¥(0) = 0. Then
X (W) is a vector space and p is a pseudomodular in X

Proof. First, let us remark that if ¥ is concave and ¥(0) = 0, then ¥
satisfies (Ay) for all u > 0. Thus, by Theorem 2, the space X(¥) is
a vector space. Moreover, if 2,y € X and a,3 > 0, a + = 1, then

plaz + By) < supar,?( supsup D @(aMu(2) + BMu(y))
il Wr=0

m>rn>s
U=

< p(x) + p(y)-

Theorem 5. If a p-function  is convex, then X(¥) is a vector space
and p is a pseudomodular.

Proof. A trivial verification shows that each convex function satisfies
(a), and so, by Theorem 3, X (¥) is a vector space. For a,3 > 0,
a+ =1, and z,y € X, we have

plaz + Py) < sup aps¥(wy,(az;r,s))

r,8

+sup ars(we(By; 7, 8)) < p() + p(y).

Theorem 6. If ¥ is 5-convex with 0 < 3 < 1 (i.e. Y(az + fy) <
a®W(z)F*W(y) for a,f > 0, a® + #* < 1) and ¢ is convex, then p is
an s-convex pseudomodular.

Proof. Let us notice that p is a pseudomodular (see Theorem 5), and
that, for z,y € X, we have

plaz + By) < sup arsP(awy(z;7,8) + Pwy(y;r,s))
< sup arg (@Y (wy(x;7,8)) + BT (wy(y; 7, 5)))

< a®p(z) + Ap(y)

where a, 3> 0, a® 4+ 3° < 1.
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The functional p defines the modular space

(7) Xp={zr€eX:p(Ar) >0 as A — 0.}
and the F-pseudonorm

! T
(8) |:tl,,=1nf{u>0.p(;) Su}

(compare (3], [4], [5]).

Theorem 7. Let ¥ be an 5-convex function, 0 < <1, let ¥_, be
the inverse function to ¥ and, moreover, let ¢ be convex. Then the
$-homogeneous pseudonorm

9) el = inf {u >0 o) <1}

satisfies the inequalities

Wolz T s)N® ¥
> su (‘P*”) forz € X, and ||z||® < 1,
[ mp (52723 p and ol

]lx”ﬂ < b (—;il%%) forz € X, and ||z||3 > 1,

Ay

ted fon cag A
rs>1 sp-l(a

\ rs

Proof. First, let us note that, by Theorem 6, p is 3-convex, so || - H
is an 3-homogeneous pseudonorm. If lz||5 < u <1, then

amW(wv(#; 7',3)) g |

and
oo

1 1
raw( —_Mu/ >< ,-,y./(——_ xir, )<1,
(220 3 (i Munlo))) < anb(ieatain, ) <

for all r, s. Thus wy(z;r,s) < u'/*W_;(-1) and, for u — lz]I%4, we
obtain first inequality. If lz[l5 > u > 1, then we have the condition

sup ar,,W(1Ll/§w‘p(z; ) e |

738

which gives the second inequality. The last identity is evident.
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4. SOME FRECHET SPACES

In the sequel, ¢ will denote the space of all double sequences z =
(tuw)iCv=0 such that too = to, toy = t; for v =1,2,..., t,0 = t; for
p=12,... and t,, = t3 for all ¢ > 1 and v > 1, where 1y, t;, 13
and t3 are arbitrary numbers.

It is easy to verify that:

¢ is a subspace of the space of all convergent double se-
quences;
e= {re X p(z)=10)
if ¢ is convex, then z € € if and only if |z|, = 0;
if ¥ is concave and ¢ is 3-convex with some 0 < 5 < 1, then
x € ¢ if and only if |z]|, = 0

(compare e.g. (2], [7] and [10]).

Next, let one of the following two conditions hold:

¢ satisfies (a),
¥ satisfies (Az) for small w.

Applying the results of [2], we shall consider quotient spaces X p =

X,/¢ and X(¥) = X (¥)/c with elements 7, y, etc. Moreover, we
may define the modular

p(z) = inf{p(y) : y € T}

and the pseudonorms |z|, = |z,, [|Z]|5 = ||z[|5 where = € 7.

Let (¢;)52, be a given sequence of p-functions. By formulae (1)
and (6), we may introduce sequences (wy, (z;7,s)) and (p;) = (p, ),
respectively. Next, applying definitions (3) and (7), we have two se-
quences of spaces (X;(¥)) and (X, oy ) = (X, ), respectively. More-
over, by means of the sequence (p;) we shall introduce sequences
(lell$) = (21, ) and (fal;) = (el ) (see (8) and (9)). Arguing as
in [1] and [6], we shall define the extended real-valued modulars

— 1 pj(z)
r)=s ; d pu(z) = CTE SR
po(z) t}pm(m) and pu(z) ;wupi(m)
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and the countably modulared spaces X,, and X, .
Evidently, we have X, C X, = ;= X, , and it is easily verified
that:

Theorem 8. If ¥ is a function which satisfies the condition (A,) for
small u and if (p;) is a given sequence of @-functions which satisfy
the condition:

(b) there exist positive constants K, ¢, uy and in index jo such
that

pj(cu) < Kpjo(u) forall j > jo and 0 < u < uy,

then the spaces X,, and X,, are identical.

Theorem 9. Let ¢; for j =1,2,... satisfy the conditions:

(c) foreache > 0, there exist A > 0 and @ > 0 such that, for any
« and u satisfying the inequalities 0 < o < @, 0 < u < A,
the inequality ¢ ;(au) < ep;(u) holds for all j,

(d) for each n > 0, there exists an € > 0 such that, for all u > 0
and all indices j, the inequality j(u) < € implies u < 7).

Let ¥ be increasing, continuous, ¥(0) = 0, and satisfying the condi-
tion:

(e) for arbitrary vy > 0 and é; > 0, there exists an 1, > 0 such
that the inequality ¥(nu) < §,¥(u) holds for all 0 < u < v,
and 0 < n < ;.

Moreover, let one of the conditions hold: W is concave or ¢; (j =

1,2,...) are convex. Then X, is a Fréchet space with respect to the
F-norm |- |,,.

Proof. Let z, € Ty, zp = (t5,)70,=0 be such that}’f‘y =18, =0 for
all u, v and p, let (z,) be a Cauchy sequence in X,; and, moreover,
let j be an arbitrary index. For each € > 0, one can find an N such
that |z, — 24|, < a¥(e) for p,q > N, where a is defined by (2). Thus
there exists u. such that 0 < u. < a¥(e) and

Ty — 2
p T~ Zq,
a,.,!I/(w‘,,J. (—u i 3)) < u,
&
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for p,q > N and all r, s. Hence

gy (5 1,5) < 0 (22) < 0 (%) <6

Ue Arg

for p,q > N and all r, s, where ¥_, denotes the inverse function to
¥. Applying (1), we have

p=m, v=m

(10) b cp,-(u%M,,.,(z,, ~ xq)) <W_, (%) <e
p=m, v=n

forppg>Nm>pu>m>randa>2v>n>es. By (d), for each
n > 0, one can find an £ > 0 such that

1
(11) %5 w(Tp —Tq) <

€

for p,g > N, u>m >1, v >n > 1. Next, we have

Itﬁ-f-m, v+n t;lt+m, u+n| < A1 i A2 * A3 + Mﬂ”(zl’ 5 x‘l)

where 4, = Itz,u i tz,ula A; = It/,:+m,u ¥ tz+m,u', A3 = Itz,u+n o
th y4nl- First, let us remark that, by the definitions of t},, and 8 |,

we have 4) = Ay = A3 =0forr=s=1and g = v = 1 and
we see that (t’2’,2);‘;1 is a Cauchy sequence. Next, by induction we
obtain that (¢£,)22, are Cauchy sequences for all y, v. Hence these
sequences are convergent. We write 2 = (4, )55,—o Where t,, = 0 for
p=0o0rv=0andt, = limpy o0 8, for u,v = 1,2,.... Taking
¢ — oo in (10), we have

p=m, v=m

Z i (;tl—e uv(Tp — "’")) S¥ ( — )

Arg
p=m, v=n

forp>N,m>m>r,n>n>s; and, for m,7 — 0o, we obtain

oo

Z ‘Pj('&l’ v (Tp —"L')) SW, (0—1:3.)

p=m, v=n £
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forp>N,m>r>1landn>s>1. Consequently,

Ty — T Ue
en (5 )2 (2)
Ue Arg

for p> N and r,s > 1, so

1
(12) a”!['(w%. (—(zp — 2); r,s)) Sue forp> N and all r, s.
Ue

We are going to prove that p(A(z, — z)) — 0 as \ — 04 for large
p. Let N be chosen as above. For e, A > 0 and p > N, we have

Ty, —T
we; (A(zp — T);71,8) = We; (/\ue P . s)

U

= sup suchp] (/\u ]\/I,“,(E —J)).

m>rn>s Ue

If we take p — oo in (11), then M,“,( ) <17. By (c) with g = ¢,

n=A a=\u.<aforu= IM'“’( w), we have

‘P(’\ueMuV(xpu: z)) < Ep( (u-leMuu(xp % 33))

forp>Nandu>m>1,v>n>1. Hence

Ty — T u
w¢j(A(mp—w);r,s)§€w¢j( £ ;7‘,3) SEW_1< C) <7

Ue Qrg

Finally, for 0 < )\ < ul, we have

pi(Mzp —2)) < supamsp(al?__l (;E ))

Next, we apply condition (e) with v; =
For 6; > 0 and & = 5, we have

o) sao(o2) -

Arg Qrg

W_i(%) and u = ¥_, (a”).
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Thus
pi(Mzp — ) < suparé s S8 Sru,

r,8 rs

for 0 < Au, < @. Since u, is fixed, this implies po(A(z, — z)) — 0 as
A= 04, for p> N, ie. x, — 2 € X,, for sufficiently large p. Since
Xy; 1s a vector space, z € X,,. By (12), po(;“— (zp — 7)) < u, for
p> N. Thus |z, —2|,, < u.a¥(e) for p> N. Finally, |z, — z|,, — 0
as p — 00, which proves the completeness of the space X, .

Theorem 10. Let a function ¥ satisfy the same assumptions as in
Theorems 1 and 9 and let o-functions (¢;), where p = (¢j), satisty
conditions (c), (d) and the condition (Az) (ie. ¢ = pj(u) satisfies
the condition (Ay) for small w with a constant K > () independent of
7). Then X’,’(J/) N f,,,. is a Fréchet space with respect to the F-norm
[#lp; for g =1;2: %

Proof. Let j be an arbitrary positive integer. It is sufficient to remark
that X;(¥) N X, is a closed subspace of X,, with respect to the F-
norm |- |,;. Let ¥, — & in X,,, 7, € X;(¥) NX,, zp €Tp, z € 7.
Then, for each A > 0,

arskp(wtpj (’\(‘EP — z)iT,8)) = 0- 'de p— oo

uniformly with respect to » and s. Applying the property of Wy, and
the condition (A,) for ¢ with a constant K > 0, we obtain

we; (AZ; 1, 8) S wy; (2A(2p — T); 7, 8) + wy; (2251, 8)
< K(wg,; (Mzp — z);7,8) + wy; (Az; 1y 8)).

Taking A > 0 fixed, by the properties of ¥, we may find some p such
that ¥(we; (A(zp, — z);7,s)) < 8 for p > p and for all r and s, where
6 is some positive constant. Hence there exists M > 0 such that
we; (AM(xp.— x);7,8) < M for p > p and all » and s. If k is chosen so
that K < 2%, then, from the inequality ¥(u + v) < P(2u) + ¥(2v)
and the condition (A,) for @, for small v with a constant K, > 0, we
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obtain

ars¥(wy; (Az;1,8)) < ars¥(2Kwy, (A(z)p — z);1,8))
+ ars P(2Kwy, (Azp;r, 8))
< I\’,k"'lars(sp(w% (A(zp — x)z;7,8))
+ P(wy, (Azp; T, 8)))

for p > p and all r and s. Let us fix ¢ > 0. There is an index py > p
such that

. 1 —(k
amW(ww(/\(:c,,o —z);r,8)) < §6K1 AAHL),

But z,, € X;(¥), and so, by Theorem 1, we obtain
arg¥(wy; (AZpy;7,8)) = 0 as r,s — oo.

Thus, there exist ry and sy such that
) R e
arsW(we; (A(zpy;1,8)) < 5eK;
for all r > ry and s > s,. Finally,
S 0 ey L R T
are¥(wy, (Az; 7, ) < K (551&1 + 5T =

for all r > 7y and s > 89, which shows that z € X;(¥). Since,
by Theorem 9, z € X,;, therefore z € Xj(?)N X,,, and so, z €

X,(#)nX,,.

We may also consider Theorems 9 and 10 with modular conver-
gence (with respect to the modular p(Z)) in place of F-norm con-
vergence. In the subsequent paper an application to problems of
two-modular convergence of sequences will be shown.



SPACES OF DOUBLE SEQUENCES 151

REFERENCES

(1] J. Albrycht and J. Musielak, Countably modulared spaces, Studia Math. 31
(1968), 331-337.

[2] T.Jedryka and J. Musielak, Some remarks on F-modular spaces, Functiones
et Approx. 2 (1976), 83-100.

[3] A. Kufner, O. John and S. Fuéik, Function spaces, ACADEMIA, Prague,
1977.

[4] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034,
Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.

and A. Waszak, On some countably modulared spaces, Studia Math.

38 (1970), 51-57.

, Generalized variation and translation operator in some sequence

spaces, Hokkaido Math. Journal 17 (1988), 345-353.

, Sequence spaces generated by moduli of smoothness, Revista Math.
Comp. (Madrid) 8 (1995), 1-15.

[9] H. Nakano, Generalized modular spaces, Studia Math. 31 (1968), 439-449.

[10] A. Waszak, On some modular spaces of double sequences I, Commentationes
Math. 30 (1991), 255-264.

[5]
(6]

(7]
(8]

Aleksander Waszak

PRZESTRZENIE CIAGOW PODWOJINYCH
GENEROWANE MODULAMI GLEADKOSCI

Dla danej @-funkcji ¢ oraz elementu = = ((«),,,) z przestrzeni
X ciagoéw rzeczywistych podwéjnych, najpierw wprowadzony zostal
ciaggowy @-modut w, wzorem

o0
ww(x;r,s) = sup sup Z (,o(I(Toox)yu T (Tmoill),w

m>rn>s =0

== (TOnx);w # (Tmnx)}“/,)

gdzie T, oznacza (m,n)-translacj¢ ciagu z € X. W dalszym ciggu



152 A. WASZAK
dla danej funkeji ¥ zdefiniowane zostaly przestrzenie

X(¥)={z € X :a,,¥(wy(z;r,s)) = 0 dla X > 0 oraz r,s — oo},
X, = {z € X : p(Az) = sup a, sP(wy(z;7,8)) = 0 gdy A — 07},

r,s

gdzie (a,,) oznacza ciag liczb dodatnich. Celem prezentowanej pracy
jest podanie whasnosci przestrzeni X(¥) oraz X ,.

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
ul. Matejki 48/49, 60-769 Poznari, Poland



