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ABSTRACT

We consider hierarchical regression models for circular data using the projected
normal distribution, applied in the development of weights for the Access Point
Angler Intercept Survey, a recreational angling survey conducted by the US Na-
tional Marine Fisheries Service. Weighted estimates of recreational fish catch are
used in stock assessments and fisheries regulation. The construction of the survey
weights requires the distribution of daily departure times of anglers from fishing
sites, within spatio-temporal domains subdivided by the mode of fishing. Because
many of these domains have small sample sizes, small area estimation methods are
developed. Bayesian inference for the circular distributions on the 24-hour clock
is conducted, based on a large set of observed daily departure times from another
National Marine Fisheries Service study, the Coastal Household Telephone Survey.
A novel variational/Laplace approximation to the posterior distribution allows fast
comparison of a large number of models in this context, by dramatically speed-
ing up computations relative to the fast Markov Chain Monte Carlo method while
giving virtually identical results.

Key words: deviance information criterion, Laplace approximation, model selec-
tion, projected normal distribution.

1. Introduction

In the United States, the Marine Recreational Fisheries Statistics Survey (MRFSS)
has been the traditional source of information on recreational fishing in saltwater.
The key question for stock assessment and fisheries regulation is the amount of
recreational fishing catch, determined from the simple relationship

(recreational catch) = (catch per angler-trip)× (number of angler-trips).
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3Colorado State University. E-mail: jopsomer@stat.colostate.edu
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Due to a number of coverage and measurement issues, the two factors in the above
expression are measured using different surveys: (catch per angler-trip) is mea-
sured by an on-site survey called the Access Point Angler Intercept Survey (APAIS),
while the number of angler-trips is measured by an off-site survey called the Coastal
Household Telephone Survey (CHTS). Data from these two surveys are combined
to estimate the recreational catch in 17 US states along the coast of the Atlantic
Ocean and the Gulf of Mexico, during six two-month waves (January–February,
March–April,. . . , November–December), in four different fishing modes (from the
shoreline, from a private boat, from a small guided vessel called a charter boat, or
from a large guided vessel called a party boat). Because the state of Florida is di-
vided into its Atlantic coast and its Gulf of Mexico coast, we will refer to 18 “states”
instead of 17.

As part of the weighting procedure for the APAIS, estimates are needed for the
fraction of anglers who leave the fishing site during a prespecified time interval on a
selected day. In principle, these estimates could be readily obtained from extensive
historical data from the CHTS, consisting of reports on 980,000 trips between 1990
and 2008. These data include the angler’s departure time (on a 24-hour clock) from
the fishing site, the mode of fishing, the fishing date (from which we determine
the two-month wave), and the fishing site (from which we determine the state).
Figure 1 shows these data in histogram form for the state of Alabama. There are
24 histograms, corresponding to six waves by four fishing modes. The bars in the
histograms, when normalized by sample sizes, can be regarded as direct estimates
F̂direct

hi jk of the hourly fractions of daily departures by state, wave, and mode:

Fhi jk = fraction of a day’s anglers leaving a site during hour h

in state i, wave j, mode k.

The fraction for any prespecified block of hours is then modeled as ∑h Fhi jk, where
the sum is over all hours h in that block. Other time intervals are rounded to the
nearest whole hours, for simplicity.

The direct estimates F̂direct
hi jk from the off-site CHTS data are unbiased, but have

a small (or even zero) sample size in many of the (h, i, j,k) cells, of which there are

(24 hours)× (18 states)× (6 waves)× (4 modes) = (10368 cells).

We therefore consider the small area estimation approach, combining the direct esti-
mates with modeled estimates using the Fay and Herriot (1979) estimation method-
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Figure 1: Histograms of trip departure times from the Coastal Household Tele-
phone Survey for the state of Alabama (st 1) in six waves (top row = wave 1 =
January–February, . . . , bottom row = wave 6 = November–December) and four
modes (column 1 = shoreline, 2 = private boat, 3 = charter boat, 4 = party boat).
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ology. Briefly, we consider an area-level linear mixed model

F̂direct
hi jk = Fhi jk + ehi jk = Fmodel

hi jk +uhi jk + ehi jk

for h = 1, . . . ,23 hours, where the sampling errors are assumed to be

ei jk = (e1i jk,e2i jk, . . . ,e23,i jk)
T ∼ independent N (0,Ψi jk),

with Ψi jk known, and where the model errors are assumed to be

ui jk = (u1i jk,u2i jk, . . . ,u23,i jk)
T ∼ independent N (0,σ2

∆i jk),

with ∆i jk of known form. Sampling errors and model errors are assumed to be
independent. To implement the estimation strategy, we replace Ψi jk by design-based
variance estimates and we choose ∆i jk to be the variance of a scaled multinomial
random vector, specified as follows. Consider a vector of 24 independent normal
random variables with covariance matrix

σ
2diag

{
Gmodel

1i jk , . . . ,Gmodel
23i jk ,Gmodel

24i jk

}
= σ

2diag
{

Fmodel
1i jk

(
1−Fmodel

1i jk

)
, . . . ,Fmodel

24i jk

(
1−Fmodel

24i jk

)}
.

Then σ2∆i jk is the covariance matrix of the first 23 elements of the vector, condi-
tioned on the sum of the 24 elements being equal to one; namely,

σ
2
∆i jk = σ

2diag
{

Gmodel
1i jk , . . . ,Gmodel

23i jk

}

− σ2

∑
24
τ=1 Gmodel

τi jk


Gmodel

1i jk
...

Gmodel
23i jk

[Gmodel
1i jk , · · · ,Gmodel

23i jk

]
. (1)

We use a projected normal model for Fmodel
hi jk to account for the circular nature of

the time-of-day departure data, replacing Fmodel
hi jk by posterior means E

[
Fmodel

hi jk | D
]

and also Gmodel
hi jk by

(
E
[
Fmodel

hi jk | D
])(

1−E
[
Fmodel

hi jk | D
])

for implementation.
The mean vector in the projected normal includes state, wave, and mode effects
to account for the spatial and temporal distribution of fishing behavior. Since we
consider various interactions among the effects as well as placement within the hi-
erarchy (essentially, specifying whether a given effect is treated as fixed or random),
we are interested in conducting model selection.

The main contribution of the present paper is to show that in this small area
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estimation context, with a model somewhat more complex than a hierarchical linear
model (due to the embedding in a projected normal model), fast and accurate model
selection can be accomplished with a Laplace/variational approximation. Specif-
ically, we show that a simple and fast deterministic approximation can replace a
sophisticated Markov Chain Monte Carlo (MCMC) sampler, giving results that are
essentially identical at a far lower computational cost. In this paper, we emphasize
model selection as both the motivation for the deterministic approximation and the
evaluation of its accuracy. However, the Laplace/variational approximation can also
be used effectively in model estimation and inference even when no model selection
is needed.

In §2.1, we briefly review the projected normal distribution. The MCMC pro-
cedure that serves as the benchmark for comparison is presented in §2.2. The vari-
ational approximation is given in §3.1 with its Laplace refinement in §3.2. Model
selection criteria based on MCMC and on the Laplace/variational approximation are
compared in §4; discussion follows in §5.

2. Inference for the projected normal distribution

2.1. The projected normal distribution

Suppose X = (X1,X2)
T ∼ N (µ, I2), the bivariate normal distribution with mean

vector µ and identity covariance matrix I2. Writing X in polar coordinates, we have

X1 = ‖X‖cosD = RcosD, X2 = ‖X‖sinD = RsinD.

Discarding the random length R ∈ (0,∞), the random angle D ∈ [0,2π) has a pro-
jected normal distribution, PN (µ, I2). As illustrated in Figure 2, the parame-
ter vector µ plays the role of both “location” and “spread” for the projected nor-
mal: the further µ lies from the origin, the more concentrated the PN distri-
bution around the direction determined by µ . As µ → 0, the PN distribution
converges to the uniform distribution on the unit circle. In our application, the
departure time di jkt for trip t in state i, wave j, mode k is on the 24-hour clock.
Converting clock time to [0,2π), we model Di jkt = 2πdi jkt/24 as independent and
identically distributed projected normals within state×wave×mode cells. For ob-
servations following a projected normal distribution, the fraction Fhi jk for a given
hour h is the integral of the projected normal probability density function over the
interval (2π(h−1)/24,2πh/24].

Presnell, Morrison and Littell (1998) used the projected normal distribution as
the basis for the Spherically Projected Multivariate Linear Model (SPMLM) for
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Figure 2: Realizations (n = 20) from three projected normal distributions. The
large circle is centered at mean vector µ of bivariate normal N (µ, I2) and contains
95% of its probability. Arrows are the realized bivariate normal random vectors
(RcosD,RsinD). Projected normal random variables are the angles D, or the in-
tersections of the normal random vectors with the unit circle (small circle), scaled
to [0,2π). Left: Projected normal distribution with mode equal to π/4 and with
low variance. Middle: Projected normal distribution with mode equal to π/4 and
with high variance. Right: Projected normal distribution that is uniform on the unit
circle.

directional data, specifying µ as a linear model. Parameters of the model were esti-
mated with the maximum likelihood and the EM algorithm in Presnell et al. (1998).
In the current paper, we specify hierarchical linear models for µ i jk in terms of cat-
egorical covariates for the state, wave and mode. We conduct Bayesian inference
for the model, comparing approximate posterior inference based on Markov Chain
Monte Carlo to approximate inference based on deterministic approximations.

2.2. Markov Chain Monte Carlo for the projected normal distribution

The key step in conducting Bayesian inference under the SPMLM is to augment
the observed angles {Di jkt} with the latent lengths {Ri jkt}, so that the structure of
the complete data is simply that of a normal linear model. See Nuñez-Antonio and
Gutiérrez-Peña (2005), Nuñez-Antonio, Gutiérrez-Peña, and Escalera (2011), and
Hernandez-Stumpfhauser (2012) for details.

The likelihood for the complete-data model is the product of the joint densities
of
(
Ri jkt ,Di jkt

)
which can be obtained by a change of variables X i jkt = Ri jktAi jkt ,

where X i jkt is distributed as N
(
µ i jk, I2

)
and Ai jkt =

(
cos
(
Di jkt

)
,sin

(
Di jkt

))T :

p
(
Ri jkt ,Di jkt | µ i jk

)
=

1
2π

ri jkt exp
{
−1

2
(
Ri jktAi jkt −µ i jk

)T (Ri jktAi jkt −µ i jk
)}

.
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We specify conjugate normal priors for µ i jk. For example, for a model specified
as µ i jk = µ +mk + si +w j, we set vague normal priors for the overall mean µ and
mode effects mk, and mean-zero normal priors with inverse gamma variances for
the random state effects si and wave effects w j.

In this work, we draw the latent lengths using a slice sampler (Neal 2003). Given
the latent lengths and the conjugate priors, the full conditionals of the model param-
eters all have closed forms, and so the Gibbs sampler is fast and easy to conduct.
Nonetheless, the large number of models to be evaluated led us to consider fast,
deterministic approximations to the posterior distribution. This is the subject of the
next section.

3. Deterministic approximations to the posterior

3.1. Variational approximation

In this context, a carefully-developed MCMC works well and serves as a bench-
mark for comparison. But it is extremely slow, given the very large size of the
off-site CHTS data set. Because we wanted to compare a number of different model
specifications, we investigated replacing the MCMC approximation of the full pos-
terior distribution by a deterministic “variational approximation” that is easier to
compute.

The variational idea is to find the best approximation of the posterior within
a class of densities Q, which is chosen so that the densities in the class are more
analytically tractable than the posterior density itself. A natural choice for the “best”
approximating density in Q, and the one most commonly used, is the density that
minimizes the Kullback-Leibler (KL) distance between it and the posterior density.
Let D denote the observed data and ω denote the unknown parameters, so that
p(D,ω) is their joint density and p(ω | D) is the unknown posterior density. Let
q(ω) denote a density in Q. Finding q that minimizes the KL distance to p(ω | D)

is equivalent to maximizing the variational lower bound, denoted by

p(D;q) = exp
[∫

q(ω) log
{

p(D,ω)

q(ω)

}
dω

]
. (2)

Let
q∗ = max

q∈Q
p(D;q).

If Q = {all densities q}, then q∗(ω) = p(ω | D) , the true posterior of ω given D.
If Q is a sufficiently rich class of densities, then q∗ should be a good approximation
to the true posterior. In practice, the approximation method is necessarily of limited
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accuracy, so q∗ will not converge to the true posterior if the true posterior /∈Q.

If Q =
{

q : q(ω) = ∏
M
m=1 qωm(ωm)

}
, then q∗(ω) = ∏

M
m=1 q∗ωm(ωm), which is

called a “mean field variational approximation” (Bishop 2006; Ormerod and Wand
2010). This approximation can be computed efficiently, even for very large samples.
See Ormerod and Wand (2010) for an excellent review. The solution satisfies

q∗ω1(ω1) ∝ exp{E−ω1 log p(ω1 | ω2, . . . ,ωM,D)}
q∗ω2(ω2) ∝ exp{E−ω2 log p(ω2 | ω1,ω3, . . . ,ωM,D)}

...

q∗ωM(ωM) ∝ exp{E−ωM log p(ωM | ω1, . . . ,ωM−1,D)} ,

where E−ωm [·] denotes expectation with respect to all of the variational component
distributions except q∗ωm .

In our setting, q∗ωm(·) and E−ωm [·] have simple parametric forms; iteratively up-
dating the parameters leads to the solution. Convergence is assessed by monitoring
the change in the lower bound p(D;q) from (2).

For simplicity, we begin by considering {Dt} independent and identically dis-
tributed PN (µ, I2), with prior p(µ) =N2

(
µ0,σ

2
0 I2
)
. Denoting the observed data

as AT
t = (cosDt ,sinDt), the mean field variational approximation satisfies

q∗µ (µ) = N

(
µ0/σ2

0 +∑
n
t=1 E−rt (rt)At

n+
(
1/σ2

0

) ,
1

n+
(
1/σ2

0

) I2

)
(3)

q∗rt (rt) ∝ rt exp
(
−1

2
r2

t + rtAT
t E−µ (µ)

)
, (4)

where the expectations in these expressions are computed iteratively:

E−µ(µ) ←
µ0/σ2

0 +∑
n
t=1 E−rt (rt)At

n+
(
1/σ2

0

)
bt ← AT

t E−µ(µ)

E−rt (rt) ← bt +

√
2π exp(b2

t /2) Φ(bt)

1+
√

2π bt exp(b2
t /2) Φ(bt)

.

The mean field variational approximation yields a highly tractable approximate
posterior, and the iterative solution is simple to compute and fast to converge. In
fact, it is proved in Hernandez-Stumpfhauser (2012) that the parameter iterations
for µ converge to the posterior mode of the parameters of the projected normal
distribution, denoted here by µ†. Extension of the mean field variational approx-
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imation to the case of a linear model for µ is straightforward, and involves up-
dates of means and variances of each one of the fixed and random effects as well
as updates of the means of inverse variances of the random effects. See Hernandez-
Stumpfhauser (2012) for details.

3.2. Refinement via Laplace approximation

While the mean field variational approximation of the previous section is simple
and fast, it is not very accurate. Indeed, the approximate posterior variance for µ

in (3) depends on the sample size but not on the data, and so cannot be accurate
except in simple cases. Our approach to improving the accuracy of the variational
approximation is to replace q∗µ(µ) by a Laplace approximation N (µ†,V †), where
µ† is the posterior mode and the covariance matrix V † is the inverse of minus the
Hessian of the log posterior distribution evaluated at the mode,

V † =

−
 ∂ 2

∂ µ2
1

log p(µ | D) ∂ 2

∂ µ1µ2
log p(µ | D)

∂ 2

∂ µ1µ2
log p(µ | D) ∂ 2

∂ µ2
2

log p(µ | D)

∣∣∣∣∣∣
µ=µ †


−1

.

The log posterior distribution is

log p(µ | D) = logN
(
µ0,σ

2
0 I2
)
+

n

∑
t=1

logPN (Dt ; µ, I2)+C,

where C is a term that does not depend on µ , and the calculations to compute the
Hessian are given in Hernandez-Stumpfhauser (2012). This Laplace refinement to
the variational approximation greatly improves the quality of the original approx-
imation, as is shown in Hernandez-Stumpfhauser (2012) by comparing the varia-
tional approximation and the variational/Laplace approximation to the output of the
Gibbs sampler. Similar results hold in the regression case: the Laplace refinement
substantially improves the quality of the variational approximation.

4. Comparing model selection via Gibbs, variational, and
variational/Laplace

For a general Bayesian estimation problem, the deviance is defined as ∆(D,ω) =

−2ln p(D | ω) where D are the data, ω are the unknown parameters and p(D | ω)

is the likelihood function (Gelman et al. 2004, p. 179–184). The expected deviance
E [∆(D,ω) | D] is a measure of how well the model fits and it can be estimated
by the posterior mean deviance ∆(D) = B−1

∑
B
b=1 ∆(D,ω(b)), where {ω(b)}B

b=1 are
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random draws from the posterior distribution. The difference between the posterior
mean deviance and the deviance at the posterior mean, estimated as

p∆ = ∆(D)−∆(D, ω̄)

where ω̄ = B−1
∑

B
b=1 ω(b), is often interpreted as a measure of the effective number

of parameters of a Bayesian model. More generally, p∆ can be thought of as the
number of “unconstrained” parameters in the model, where a parameter counts as 1
if it is estimated without constraints or prior information, 0 if it is fully constrained
or if all the information about the parameter comes from the prior distribution, or
an intermediate value if both the data and prior distributions are contributing.

We used the Deviance Information Criterion,

DIC = 2∆(D)−∆(D, ω̄) = ∆(D)+ p∆,

to compare different model specifications for the departure time data. The DIC can
be interpreted as a measure of goodness-of-fit (the estimated expected deviance)
plus a penalty for model complexity in the form of the total number of effective
parameters. Lower values of DIC correspond to more preferable tradeoffs between
fit and model complexity.

We evaluated a large number of different model specifications for the mean of
the projected normal distribution, including fixed and random effects for the states,
waves and modes as well as for interactions between these factors. As an example
of the type of models compared, the following is the full hierarchical specification
for a model with mode as fixed effect and state and wave as random effects:

Di jkt ∼ PN (µ i jk, I2)

µ i jk = µ +mk + si +w j

µ ∼ N (0,106I2)

mk ∼ N (0,106I2)

si ∼ N (0,σ2
s I2)

w j ∼ N (0,σ2
wI2)

σ
2
s ∼ I G (0.001,0.001)

σ
2
w ∼ I G (0.001,0.001).

In this specification, µ,mk have vague priors while those of si,w j are determined by
their variance parameters, which follow pre-specified inverse gamma hyper-priors.
This hierarchical set-up is similar to the usual Bayesian normal regression model.
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We computed DIC and p∆ values using Gibbs sampling, variational and varia-
tional/Laplace. Table 1 shows the Gibbs DIC values for different models applied to
the departure time data. In Table 1, the models containing all three factors (mode,
state, wave) consistently achieve lower DIC values than the models that excluded
any of those factors. While not shown here, models with mode as random effect
performed worse than models with mode as fixed effect. In contrast, very similar
DIC values were obtained with the state and wave treated as either fixed or random.
When we investigated models with interactions between the three factors, those
with state-wave interactions scored better than any other arrangement of two-way
interactions. Among the various models considered, DIC leads to selection of

µ i jk = µ +mk + swi j,

with mk a fixed mode effect and swi j a random interaction effect between the state
and wave, with 99 total levels. Note that there are 6×18 = 108 possible state-wave
combinations, so that there are nine state-wave combinations without observations
where a mode-only model was applied. This was the final model used for purposes
of small area estimation.

The effective number of parameters p∆ for each model, computed via Gibbs
sampling, are shown in Table 2. In interpreting these values, it should be noted that
one level of a factor is represented by two parameters. Hence, in a model with only
a mode effect there are eight parameters: two for the overall mean and six more for
the three remaining free mode levels. The model with only a mode effect has p∆

values (in the first row of Table 1) very close to eight. The final selected model has
p∆ = 191.5.

We now turn to a comparison of the computation of DIC and p∆ using Gibbs,
variational and variational/Laplace. All three methods yield essentially identical
posterior means ω̄ , so ∆(D, ω̄) is also essentially identical across methods. The dif-
ferences in DIC across methods, displayed in Table 1, and differences in p∆ across
methods, displayed in Table 2, therefore come from differences in the posterior
mean deviance ∆(D) across methods. As can be seen from the two tables, the vari-
ational approximation without Laplace refinement significantly underestimates the
posterior mean deviance, resulting in large negative differences in both DIC and p∆

values. By contrast, Gibbs and variational/Laplace yield nearly identical estimates
of the posterior mean deviance, hence virtually identical DIC and p∆ values. For
the tabled results, iterating the variational/Laplace approximation to convergence is
about 15 times faster than 5000 iterates of Gibbs sampling. For purposes of model
selection, therefore, the variational/Laplace approximation performs extremely well
in this example.
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Table 1: DIC values from Gibbs sampler for ten different projected normal model
specifications, along with comparisons to DIC computed via other methods: Varia-
tional DIC minus Gibbs DIC and Variational/Laplace DIC minus Gibbs DIC.

Fixed Random Gibbs Variational Variational/Laplace
Effects Effects DIC − Gibbs DIC − Gibbs DIC

mode 2642714.6 −2.7 −0.5
mode; wave 2631925.2 −4.3 0.1

mode wave 2631925.9 −5.1 0.0
mode; state 2626382.7 −18.1 0.7

mode state 2626383.6 −20.0 0.1
mode; wave; state 2616177.1 −23.4 0.2

mode; state wave 2616177.2 −23.5 −1.7
mode; wave state 2616175.4 −21.5 1.3

mode state; wave 2616176.3 −22.9 −0.4
mode state×wave 2613338.4 −105.9 −0.4

Table 2: Effective number of parameters p∆ values from Gibbs sampler for ten
different projected normal model specifications, along with comparisons to effective
number of parameters computed via other methods: Variational p∆ minus Gibbs p∆

and Variational/Laplace p∆ minus Gibbs p∆.

Fixed Random Gibbs Variational Variational/Laplace
Effects Effects p∆ − Gibbs p∆ − Gibbs p∆

mode 8.3 −1.3 −0.2
mode; wave 17.7 −2.1 0.1

mode wave 18.0 −2.5 0.0
mode; state 41.4 −9.0 0.4

mode state 41.8 −9.9 0.1
mode; wave; state 52.5 −11.7 0.1

mode; state wave 52.5 −11.7 −0.8
mode; wave state 51.5 −10.7 0.7

mode state;wave 52.0 −11.4 −0.2
mode state×wave 191.5 −53.4 −0.9
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5. Discussion

In this paper, we have briefly described an important small area estimation problem
in which a hierarchical linear model is embedded in a nonlinear, projected normal
model. A massive data set is considered, for which MCMC is feasible but slow. A
large number of models are compared. Though a mean field variational approxi-
mation is not very accurate in this problem, it can be refined substantially by us-
ing a Laplace approximation, and the resulting variational/Laplace approximation
is both accurate and extremely fast to compute. In particular, model selection re-
sults are virtually indistinguishable between the MCMC and the variational/Laplace
approaches. While these results are limited to the particular problem under consid-
eration, they do suggest that there is considerable promise for variational/Laplace
approximations in model selection and inference in small area estimation problems.
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