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ON CLASSES OF MODIFIED RATIO TYPE AND 
REGRESSION-CUM-RATIO TYPE ESTIMATORS IN 

SAMPLE SURVEYS USING TWO AUXILIARY 
VARIABLES 

A.K.P.C. Swain1 

ABSTRACT 

In this paper generalized classes of modified ratio type and regression-cum-ratio 
type estimators of the finite population mean of the study variable are suggested 
in the presence of two auxiliary variables in simple random sampling without 
replacement when the population means of the auxiliary variables are known in 
advance. Some special cases of the generalized estimators are compared with 
respect to their biases and efficiencies both theoretically and with the help of 
some natural populations.  

Key words: ratio type estimators, regression-cum-ratio type estimators, simple 
random sampling, auxiliary variables, bias, efficiency.  

1. Introduction 

In sample surveys a sampler invariably observes certain auxiliary variables to 
provide more efficient estimators of the finite population mean of the study 
variable. The literature on the use of auxiliary information in sample surveys is 
quite vast and old dating back to early part of the 20th century when the 
foundation stone of modern sampling theory dealing with stratified random 
sampling was laid out utilizing the auxiliary information by Bowley (1926) and 
Neyman (1934, 38). However, the use of auxiliary information in the estimation 
procedure to improve the precision of estimators was initiated by Watson (1937) 
and Cochran (1940, 42). Hansen and Hurwitz (1943) were the first to suggest the 
use of auxiliary information in selecting units with varying probabilities. The 
customary sources of obtaining auxiliary information on one or more variables 
having strong correlation with the main variable under study are various census 
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data, previous surveys, pilot surveys, etc., or may be made available while 
collecting information on the study variable during the survey operations.  

Cochran (1940) was the first to introduce a ratio estimator of the population 
mean of the study variable by using a single auxiliary variable in the form of a 
ratio of the sample mean of the study variable to the sample mean of the auxiliary 
variable, multiplied by the population mean of the auxiliary variable. That is, the 
classical ratio estimator of the population mean Y  of the study variable y in 
simple random sampling is defined as   

          ˆ ,R
yY X
x

=  

where y  and x  are the sample means of the study variable y and auxiliary 
variable x respectively and X  is the population mean of the auxiliary variable x. 
Ratio estimator is seen to be most efficient when the regression line of y on x 
passes through the origin. When the regression line does not pass through the 
origin, Cochran (1940, 42) suggested a linear regression estimator which was 
generalized by Hansen et al. (1953) in the form of a difference estimator. The 
linear regression estimator of the population mean Y  is defined as  

        Re
ˆ ( ),g yxY y b X x= + −  

where yxb  is the sample regression coefficient of y on x and the difference 
estimator is defined as  

         ˆ ( ),DY y X xλ= + −  

where λ  is a real constant to be suitably chosen.  
To estimate the population mean Y  of the study variable y in the presence of  

p-auxiliary variables 1x , 2x , …, xp with the advance knowledge of the population 

means 1 2, ,..., pX X X  respectively, Tripathi (1970, 87) discussed two general 
classes of estimators for any sampling design, defined by  

      ( )
1

ˆ ˆ ˆp

MT i i i i
i

Y W Y t X X
=

 = − −  ∑ ,  

and      ( )* *ˆ ˆˆ ,MT i i iY Y t X X= − −∑  

where Ŷ  and ˆ
iX  are unbiased estimators of Y  and iX  (I = 1, 2, …,p) 

respectively, it  and *
it  are statistics (or real constants) such that their expected 

values exist, Wi’s are non-negative  and 
1

1
p

i
i

W
=

=∑ .  

These classes include Olkin’s (1958) multivariate ratio estimator, Raj’s (1965) 
multivariate difference estimator, Ghosh’s (1947), Srivastava’s (1965) and 
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Shukla’s (1965) multivariate regression estimator. Tripathi (1987) also considered 
other classes of estimators for any sampling design defined by  
  

  ( )1
1

ˆ ˆ i i

p

i i i
i

e Y t X Xα α

=

= − −∑ ,  2
1

ˆ
ˆ

i
p

i

i i

Xe Y
X

α

=

 
 =
 
 

Π  

  3
1

ˆ
ˆ

i
p

i
i

i i

Xe Y W
X

α

=

 
 =
 
 

∑          , 1
4

1

ˆ
ˆ

i

i

p

i i
i
p

i i
i

W X
e Y

W X

α

α

=

=

=
∑

∑
 

  1
5

1

ˆ
ˆ

i

i

p

i i
i
p

i i
i

W X
e Y

W X

α

α

=

=

=
∑

∑
  

where iα ’s are suitably chosen constants and Wi’s are non-negative weights such that 

1
1

p

i
i

W
=

=∑ . 

These classes include estimators proposed by Shukla (1966) and John (1969). 
Singh (1965,67) suggested a ratio-cum-product estimator where some of the 
auxiliary variables are positively correlated and others are negatively correlated 
with the study variable. 

Srivastava (1971) suggested a general class of estimator in case of simple 
random sampling without replacement, defined by  

   1 2, ,..., ( , ,..., )6 1 2
1 2

xx x pe y y u u u pX X X p
= =

 
  
 

, 

where 1 2, , ,... py x x x are sample means of 1 2, , ,... py x x x respectively and 

,
xiui Xi

=     i = 1, 2, …, p and h(.) is a function of u1, u2, …, up obeying 

regularity conditions, such as  
(a) The point (u1, u2, …, up) assumes the value in a closed convex subset Rp of  
 p- dimensional real space containing the point (1, 1, …, 1). 
(b) The function h(u1, u2, …, up) is continuous and bounded in Rp 
(c) h(1,1,…..,1) = 1 
(d) The first and second order partial derivatives of h(u1, u2, …, up) exist and are 
 continuous and bounded in Rp.  
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Subsequently, Srivastava and Jhajj (1983) suggested a wider class of 
estimators defined by  

       1
7

1

, ,..., p

p

xxe g y
X X

 
=   

 
 

In what follows we shall consider certain specific classes of modified ratio 
type, difference-cum-ratio type and regression-cum-ratio type estimators and 
compare them as regards their biases and efficiencies in the presence of two 
auxiliary variables having known population means.  

2. A generalized class of modified ratio type estimators 

Let U =( , ,....,1 2U U UN ) be the finite population of size N . To each unit 

( )1,2,...,iU i N=  in the population , the values of the study variable y and the 

auxiliary variables x and z denoted by the triplet ( ), ,i i iy x z  , ( )1,2,...,i N=  are 
attached.  

Now, define the population means of the study variable y and the auxiliary 
variables x and z respectively as  

  
1 1 1

1 1 1, ,
N N N

i i i
i i i

Y y X x Z z
N N N= = =

= = =∑ ∑ ∑  

Further, define the finite population variances of y, x and z and their 
covariances as  

  2 2

1

1 ( )
1

N

y i
i

S y Y
N =

= −
− ∑ , 2 2

1

1 ( )
1

N

x i
i

S x X
N =

= −
− ∑  

  2 2

1

1 ( )
1

N

z i
i

S z Z
N =

= −
− ∑ ,

1

1 ( )( )
1

N

yx i i
i

S y Y x X
N =

= − −
− ∑  

  
1

1 ( )( )
1

N

yz i i
i

S y Y z Z
N =

= − −
− ∑ ,and 

1

1 ( )( )
1

N

xz i i
i

S x X z Z
N =

= − −
− ∑  

Also, the coefficients of variations of y, x and z and their coefficients of 
covariation are defined by  

 
  

yx
yx yx y x

S
C C C

YX
ρ= = , yz

yz yz y z

S
C C C

YZ
ρ= = , and xz

xz xz x z
SC C C
XZ

ρ= = , 

, ,y x z
y x z

S S SC C C
Y X Z

= = =
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where ,yx yz xzandρ ρ ρ  are simple correlations between y and x, y and z and x 
and z respectively.  

A simple random sample ' 's of size n is selected from U  without 
replacement and values ( , , )i i iy x z  , i  = 1, 2, …, n are observed on the sampled 
units.  

Define the sample means of ,y x and z  as  

   
1 1 1

1 1 1,
n n n

i i i
i i i

y y x x and z z
n n n= = =

= = =∑ ∑ ∑  

Let us propose a class of generalized modified ratio type estimator defined by  

( )
1

1 1

1 1
ˆ 1

g h

gmr
X xY y
x X

δ

α α
    = + −    

    
  ( )

2
2 2

2 21
g hZ z

z Z

δ

α α
    + −    

    
 

where 1 2 1 2 1 2 1 2, , , , , ,g g h h andα α δ δ  are real constants to be determined 

suitably. 1 20 , 1α α< < .We may fix 1 2 1 2 1 2, , , ,g g h h andδ δ  determine the 

optimum values of 1 2andα α by minimizing the mean square of ˆ
gmrY . Now, 

write  
   ( )11y Y e= + , ( )21x X e= + , ( )31z Z e= + , 

where  1 2,y Y x Xe e
Y X
− −

= =   and 3
z Ze

Z
−

=  

We now have E ( )1e  = ( )2E e   = ( )3E e = 0 , 

    ( ) ( ) ( )2 2 2
1 2 3, ,y x xV e C V e C V e Cθ θ θ= = =  

    1 2 1 3 2 3( , ) , ( , ) , ( , )yx yz xzCov e e C Cov e e C and Cov e e Cθ θ θ= = =  

where  
1 1
n N

θ  = − 
 

. 

Assuming that ˆ
gmrY  is a continuous function of ,y x and z and the first and 

second order  partial derivatives of ˆ
gmrY exist, we may expand ˆ

gmrY  in a Taylor’s 

series at the point ,y Y x X= = and z Z=  and  write   

2 2
1 2 1 2

( 1)ˆ
2gmrY Y Y e δ δδ µ µ−− = − +

  

1 1
1 1 1 2 1 1 2 2 1 1 1 1 1

( 1) ...
2

e eδ δδ λ δ δ µ λ λ δ µ δ λ− − + + − − + 
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where

 ( ) 2 21 1 1 1 1 1
1 1 1 1 2 2 1 2 2

( 1) ( 1) ( 1)
2 2 2

h h g g h hg h e e h e eλ α  − + −   = + + − − +        
 

 { }2 2
2 1 1 1 1 2( )g h h eλ α= + +  

 

( ) 2 22 2 2 2 2 2
1 2 2 2 3 3 2 3 3

( 1) ( 1) ( 1)
2 2 2

h h g g h hg h e e h e eµ α  − − −   = + + − − +        
 

 { }2 2
2 2 2 2 2 3( )g h h eµ α= + +  

 
Retaining the first degree terms of 1e , 2e  and 3e  we have  

  ( ){ } ( ){ }1 1 1 1 1 2 1 2 2 2 2 2 3 2 3
ˆ
gmrY Y Y e g h e h e g h e h eδ α δ α − ≅ − + − − + −   

  = ( ){ } ( ){ }1 1 2 1 1 1 1 2 3 2 2 2 2Y e e g h h e g h hδ α δ α − + − − + −   

 

Thus, to the first order of approximation, i.e. to 
10
n

 
 
 

, the mean square error 

(MSE) of  ˆ
gmrY  is given by  

ˆ( )gmrMSE Y ( ){ } ( ){ }2 22 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2y x zY C g h h C g h h Cθ δ α δ α= + + − + + −

 

 ( ){ }1 1 1 1 12 yxg h h Cδ α− + −  

 ( ){ }2 2 2 2 22 yzg h h Cδ α− + −  

 ( ){ } ( ){ }1 2 1 1 1 1 2 2 2 22 xzg h h g h h Cδ δ α α + + − + −   

 

Now, minimizing MSE ( ˆ
gmrY ) with respect to 1 2andα α , we have  

  
( )

2
1

1( ) 2 2 2
1 1 1 1 1

1 x yx xz yz
opt

x z xz

C C C Ch
g h g h C C C

α
δ

 −
= +  

+ + −  
 

  
( )

2
2

2( ) 2 2 2
2 2 2 2 2

1 x yz xz yx
opt

x z xz

C C C Ch
g h g h C C C

α
δ

 −
= +  

+ + −  
 

Substituting 1( )optα and 2( )optα in the expression for MSE ( ˆ
gmrY ) we have to 

10
n

 
 
 

, 
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 MSE ( ) ( )2 2 2
.

ˆ 1gmr y y xz
opt

Y Y C Rθ= −  

where .y xzR is the multiple correlation coefficient of y on x and z. 

Also, to  
10
n

 
 
 

 the bias of  ˆ
gmrY  with optimum values of 1 2andα α is given 

by  

Bias ( )ˆ
gmr

opt
Y  

( )( )1 1 1 1 1 2 21 1 1
1 1

1

1( 1) 1
2 2 2 x

h m g hh hY m C
δ δθ δ

δ
 + + −− −

= + + 
 

 

     
( )( )2 2 2 2 2 2 22 2 2

2 2
2

1( 1) 1
2 2 2 z

h m g hh h m C
δ δδ

δ
 + + −− −

+ + + 
 

 

     1 2 1 2yx yz xzm C m C m m C − + 
 

 

where  
2

1 2 2 2 21
z yx xz yz y yx xz yz

x z xz x zx

C C C C C
m

C C C C
ρ ρ ρ

ρ
− − 

= =  − − 
 

   
2

2 2 2 2 21
x yz xz yx y yz xz yx

x z xz z xz

C C C C C
m

C C C C
ρ ρ ρ

ρ
− − 

= =  − − 
 

2.1. Some special cases of generalized modified ratio type estimators  

Consider nine estimators t1,t2, …, t9 in Table 1, which are special cases of 
ˆ
gmrY by substituting some simple but arbitrary real constants for g1, g2, h1, h2, δ1 

and δ2. The optimal asymptotic mean square errors (optimized with respect to α1 

and α2) of these cases are equal to the optimal asymptotic MSE ( ˆ
gmrY ) in the 

general case, which is independent of free parameters g1, g2, h1, h2, δ1 and δ2. 
 

Thus, MSE (t1) = MSE (t2) = … = MSE (t9) = MSE ( ˆ
gmrY )  

          ( )2 2 21 .Y C Ry y xzθ= − . 

The biases of estimators to 
1

0
n

 
 
 

 in the special cases excepting the constant 

multiplier Yθ are presented in Table 1.  
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Table 1. Biases of some modified ratio type estimators  

Estimator 1g
 

1h
 

2g
 

2h
 

1δ
 

2δ
 

Bias ( )ˆ /gmrY Yθ  

t1= ( )1 11X xy
x X

α α
    + −    

   
 

x ( )2 21Z z
z Z

α α
    + −    

   
 

1 1 1 1 1 1 
2 21 21 1

2 2x z
m mC C+ +

+  

1 2 1 2yx yz xzm C m C m m C− − +  

t2 = ( )1 11Xy
x

α α
  

+ −  
  

 

x ( )2 21Z
z

α α
  

+ −  
  

 
1 0 1 0 1 1 

2 2
1 2x zm C m C+  

1 2 1 2yx yz xzm C m C m m C− − +  

t3= ( )1 11 xy
X

α α  + −     
 

x ( )2 21 z
Z

α α  + −     
 

0 1 0 1 1 1 1 2 xzm m C  
1 2yx yzm C m C− −  

t4 = ( )1 1/ 1X xy
x X

α α
    + −    

   

 

x ( )2 21Z z
z Z

α α
    + −    

   
 1 1 1 1 -1 -1 

2 21
1

1
2 x

m m C− + 
 

 

2 22
2

1
2 z

m m C− + + 
 

 

1 2 1 2yx yz xzm C m C m m C− − +  

t5 = ( )1 1/ 1Xy
x

α α
  

+ −  
  

 

x ( )2 21Z
z

α α
  

+ −  
  

 
1 0 1 0 -1 -1 

( ) ( )2 2
1 1 2 21 1x zm m C m m C+ + +

 
1 2 1 2yx yz xzm C m C m m C− − +  

t6 = ( )1 1/ 1 xy
X

α α  + −     
 

x ( )2 21Z z
z Z

α α
    + −    

   
 

0 1 0 1 -1 -1 
2 2 2 2
1 2x zm C m C+  

1 2 1 2yx yz xzm C m C m m C− − +  

t7 = 

( )

( )

1 1

2 2

1

1

X x
x X

y
Z z
z Z

α α

α α

   + −      
   + −      

 1 1 1 1 1 -1 

2 2 21 2
2

1 1
2 2x z

m mC m C+ − + + 
 

 
1 2 1 2yx yz xzm C m C m m C− − +  

t8 = 
( )

( )

1 1

2 2

1

1

X
x

y
Z
z

α α

α α

 
+ − 

 
 

+ − 
 

 1 0 1 0 1 -1 
( )2 2

1 2 2 1x zm C m m C+ +  

1 2 1 2yx yz xzm C m C m m C− − +  
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Table 1. Biases of some modified ratio type estimators (cont.) 

Estimator 1g
 

1h
 

2g
 

2h
 

1δ
 

2δ
 

Bias ( )ˆ /gmrY Yθ  

t9 = 
( )

( )

1 1

2 2

1

1

x
Xy
z
Z

α α

α α

 + −  
 
 + −  
 

 0 1 0 1 1 -1 
2 2
2 zm C  

1 2yx yzm C m C− −  

1 2 xzm m C+  

2.2. Numerical illustrations 

To compare the biases of estimators t1, t2, … and t9 empirically, consider the 
data on Population-1 and Population-2 referred by Perri (2007) as follows:  

Population – 1 
 The data (Perri, 2007) are taken from the survey of Household Income and 

Wealth conducted by the Bank of Italy in 2002. The survey covers 8011 Italian 
households composed of 22148 individuals and 13536 income earners. On the 
target population comprising of 8011 households three variables – y 
(the household net disposable income), x (household consumption) and z 
(the number of household income earners) were observed and the summary 
statistics are:  

Cy = 0.787, Cx = 0.668, Cx = 0.4596 

yxρ = 0.74, yzρ = 0.458 and xzρ = 0.348 

Population – 2 
The data (Perri, 2007) have been collected by a market research company. The 
population consists of 2376 points of sale for which three variables are 
surveyed – the sale area (y) in square meters, the number of employees (x) and 
the amount of soft drink sales (z) in euro x 1000 in a year. The summary 
statistics are:  

Cy = 1.285, Cx = 2.35, Cx = 1.651 

yxρ = 0.898, yzρ = 0.861 and xzρ = 0.773 

The absolute biases of t1, t2, … and t9 without constant multiplier Yθ are 
shown in Table 2.  

Table 2. Absolute biases of estimators without constant multiplier Yθ  

Estimator Absolute bias without constant multiplier 
Population – 1 Population – 2 

t1 0.20862 4.29576 
t2 0.09479 1.48338 
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Table 2. Absolute biases of estimators without constant multiplier Yθ  (cont.) 

Estimator Absolute bias without constant multiplier 
Population – 1 Population – 2 

t3 0.33501 1.14016 
t4 0.14630 3.11798 
t5 0.39732 2.31794 
t6 0.3248 0.30560 
t7 0.02961 1.85373 
t8 0.12702 1.76716 
t9 0.30278 0.85639 

Comments: The computations show that 7t for Population -1 and t6 for 
Population-2 are least biased. 

The asymptotic optimal mean square errors of t1, t2, and t9 to 
1

0
n

 
 
 

are the 

same.  

For Population-1: MSE (t1) = MSE (t2) = … = MSE (t9) = [ ]2 0.367490Yθ  

For Population-2: MSE (t1) = MSE (t2) = … = MSE (t9) = [ ]2 1.445764Yθ  

3. Difference-cum-ratio estimators  

Consider a difference-cum-ratio estimator defined by  

       ( )1
ZT y X x
z

λ
  = + −     

 

where λ  is a real constant or a random variable converging in probability to a 
constant. λ  may be selected in an optimum manner by minimizing the mean 
square error of  T1  with respect to λ .  

Now, T1 may be expanded in a power series with assumption that 1z Z
Z
−

<  

for all the N
nC  samples. In order to derive the bias and mean square error of T1 to 

10
n

 
 
 

, we retain terms up to and including second degree of the concerned 

variables and thus  

   2
1 3 3 1 1 3 2 2 31T Y e e e e e e e e

R R
λ λ ≅ − + + − − +  

, 
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where  1 2 3, ,y Y x X z Z Ye e e and R
Y X Z x
− − −

= = = =  

   ( )
2

2 2
1 2

10z x yz xzE T Y C C C C
R R n
λ λθ

    = + − + +    
     

. 

Thus, T1 is a biased estimator of Y , but the bias decreases with increase in 
sample size.  

The mean square error of T1 to 
10
n

 
 
 

 is given by  

 ( )
2

2 2 2 2
1

22y x z yx yz xzMSE T Y C C C C C C
R R R
λ λ λθ

    = + + − − +    
     

 

Minimizing 1( )MSE T  with respect to λ , the optimum value of λ  is given by  

    optλ  2
yx xz

x

C C
R

C
−

=  

    yx xz
Y
Z

β β
 

= −  
 

, yxβ  and xzβ  being the  

population regression coefficients of y  on x   and x  on z   respectively. 

Substituting the optimum value of λ  in the expression for MSE(T1), the 

optimum mean square error of T1 to 
10
n

 
 
 

 reduces to  

 ( ) ( ) ( )22 2 2
1 2y z yz yx y xz zopt

MSE T Y C C C C Cθ ρ ρ = + − − −  
 

Further, the bias of the optimum estimator to 
10
n

 
 
 

 is given by  

Bias (T1)opt = ( ) ( )2 21z xz y z yz yx xzY C C Cθ ρ ρ ρ ρ − − − +   

In practice, a consistent estimator of optλ  may be substituted in place of λ  in 
T1.  

Alternatively, let us consider the regression-cum-ratio estimator.  

     ( )*
1 yx

ZT y b X x
z

  = + −     
 

This estimator was independently proposed by Mohanty (1967) and Swain 
(1973).  
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The large sample mean square error of *
1T  to 

10
n

 
 
 

 is given by  

 ( )*
1MSE T  ( )2 2 2 2 22 2y z yz yx y yx xz y zY C C C C C Cθ ρ ρ ρ = + − − +   

   ( ) ( )22 2 2 2 22y z yz yx y xz z xz zY C C C C C Cθ ρ ρ ρ = + − − − +  
 

Now, ( ) ( )* 2 2 2
1 1 0xz zMSE T MSE T Y Cθ ρ− = ≥  

 
Therefore, *

1T  is less efficient than 1T  in large samples.  
Consider a class of difference-cum-ratio estimators defined by  

     ( )2 ,ZT y X x
z

α

λ
  = + −     

 

where α  and λ  are suitably chosen constants and the optimum α  and λ  may 
be obtained by minimizing the approximate mean square error of 2T with respect 
to α  and λ .  
 

Following the usual procedure of obtaining the expected values and mean 

square errors of non-linear estimators to 
10
n

 
 
 

, we have  

 ( ) ( ) 2
2

1
2 z yz xz

XE T Y Y C C C
Y

α α
θ α λα

 +  
= + − +  

  
 

 

( )
2

2 2 2 2 2
2 2 2 2y z x yz yx xzMSE T Y C C C C C C

R R R
λ λ αλθ α α

  = − + − − +  
   

 
Minimizing ( )2MSE T  with respect to α  and λ , we have  

 21
y yz yx xz

opt
z xz

C
C

ρ ρ ρ
α

ρ
− 

=  − 
 

 21
y yx yz xz

opt
x xz

S
S

ρ ρ ρ
λ

ρ
− 

=  − 
 

 

As such, ( ) ( )2 2 2
2 .1y y xzopt

MSE T Y C Rθ= − . 
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Considering an alternative to T2, replacing λ  by yxb  the sample regression 
coefficient of y or x, we have  

      ( )*
2 ,yx

ZT y b X x
z

α
  = + −     

 

suggested by Khare and Srivastava (1981).  

Now, 

( )
2

* 2 2 2 2 2
2 2 2

12 2 2 0yx yx yx
y z x yz yx xzMSE T Y C C C C C C

R R R n
β β β

θ α α α
   = + + − − + +   

   
 

Minimizing ( )*
2MSE T  to 

10
n

 
 
 

 with respect to α , we have  

      ( )y
opt yz yx xz

z

C
C

α ρ ρ ρ= −  

Thus, ( ) ( ) ( )2* 2 2 2
2 1y yx yz yx xzMSE T Y Cθ ρ ρ ρ ρ = − − −  

 

 ( ) ( ) ( )
( )

22
* 2 2

2 2 2
0

1
xz yz yx xz

y
xz

MSE T MSE T Y C
ρ ρ ρ ρ

θ
ρ

 −
 − = ≥
 −
 

 

This shows that *
2T  is less efficient than 2T . 

4. A generalized class of difference-cum-ratio estimator 

Define a generalized class of difference-cum-ratio estimator as  

   ( ) ( )1
g h

g
Z zT y X x
z Z

δ

λ α α
     = + − + −          

 

where , , , ,g h andλ α δ  are real constants to be determined suitably and 
0 1α< < . 

Considering only first degree terms in 1 2 3, ,e e and e gT may be linearised as  

   ( ){ }1 3 21g
XT e h g e e
Y

δ α α λ≅ + − − −  

   ( ) ( ){ }
2

22 2 2 2 2 2
21g y z x

XMSE T Y C h g C C
Y

θ δ α α λ


= + − − +


  

    ( ){ } ( ){ }2 1 2 2 1yz yx xz
X Xh g C C h g C
Y Y

δ α α λ λ δ α α


+ − − − − − − 

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Minimizing ( )gMSE T with respect to α  and λ , we have  

   optα  
( ) ( )2 2 2 2

2 2 2

1
( )

z x xz yz x yx xz

z x xz

C C C h C C C C
g h C C C

δ

δ

 − + −
 =

+ −  
 

      
2

2 2 2

1
( )

yz x yx xz

z x xz

C C C Ch
g h g h C C Cδ

 −
= +  

+ + −  
 

       optλ  
( )

2

2 2 2
z yx yz xz

z x xz

C C C CY
X C C C

 −
 =

−  
 

 

Thus, ( ) ( )2 2 2
.1g y y xzopt

MSE T Y C Rθ= −  

 

Also, Bias ( ) 2 2
2

( 1) 1 ( 1) ( 1)
2 ( ) 2 2g z zopt

h h h g g h hT Y C m C
g h g h

δθ δ
δ

  − + − = + + −   + +   
 

   
2

22
2 1 22

( 1)
2 z yz xz

m C m C m m Cδ δ
δ

−
+ − + 


 

where  
2

1 2 2 2
yx z yz xz

z x xz

C C C C
m

C C C
−

=
−

 and 
2

2 2 2 2
yz x yx xz

z x xz

C C C C
m

C C C
−

=
−

 

 
Let us consider an alternative class of estimators when λ  is substituted by the 

yxb , the sample regression estimate, may be defined as  

 ( ) ( )* 1
g h

g yx
Z zT y b X x
z Z

δ

α α
     = + − + −          

 

Following usual procedure of finding an approximate mean square error of 
*

gT , it may be seen that to terms of 
10
n

 
 
 

, 

 ( )*
gMSE T   = ( ){ }22 2 2 21y zY C h g Cθ δ α α + − −

 

   ( ){ }
2

2 2 1yx
x yzC h g C

R
β

δ α α
 

+ + − − 
 

 

   ( ){ }2 2 1yx yx
yx xzC h g C

R R
β β

δ α α
 

− − − −  
  

 



STATISTICS IN TRANSITION-new series, December 2012 

 

487 

Minimizing the ( )*
gMSE T  with respect to α , we have  

 
2

2 2

1 .
( )

yz x yx xz
opt

z x

C C C Ch
g h g h C C

α
δ

−
= +

+ +
 

 ( ) ( ) ( )2* 2 2 21g y yx yx xz yzopt
MSE T Y Cθ ρ ρ ρ ρ = − − −  

 

As ( )*
gMSE T  > ( )gMSE T , gT  is more efficient than *

gT  

4.1. Some special cases of Tg 

 In the following Table 3, we compare the biases of some special cases of Tg.  

Table 3. Biases of some special cases of Tg 

Estimator g h δ
 

Bias 

T1= ( )y X xλ + −   

x ( )1Z x
z z

α α
    + −    

   
 

1 1 1 22
2 1 2

1
2 z yz xz

mY C m C m m Cθ + − +  
 

T2= ( )y X xλ + −   

 x ( )1Z
z

α α
  

+ −  
  

 
1 0 1 2

2 2 1 2z yz xzY m C m C m m Cθ  − +   

T3= ( )y X xλ + −   

 x ( )1 z
Z

α α  + −     
 

0 1 1 1 2 2xz yzY m m C m Cθ  −   

T4= ( )
( )1

y X x
Z z
z Z

λ

α α

+ −

   + −      

 
1 1 -1 

2 2 22
2

1
2z z

mY m C Cθ − +

1 2 2xz yzm m C m C + −   

T5=
( )
( )1

y X x
Z
z

λ

α α

+ −

 
+ − 

 

 
1 0 -1 ( ) 2

2 2 2 1 21 z yz xzY m m C m C m m Cθ  + − + 
 

T6= ( )
( )1

y X x
z
Z

λ

α α

+ −

 + −  
 

 
0 1 -1 

2 2
2 1 2 2 0z xz yzY m C m m C m Cθ  + − =
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4.2. Numerical illustrations 

For the Population-1 and Population-2 considered in section 2.2, the absolute 
biases without constant multiplier are compared in Table 4.  

Table 4. Comparison of absolute biases of estimators T1 - T6.  

Estimator Absolute bias without constant multiplier 
Population – 1 Population – 2 

T1 0.11464 1.51887 
T2 0.39060 0.32265 
T3 0.05028 0.59572 
T4 0.06436 0.92315 
T5 0.08251 0.87949 
T6 0 0 

5. An alternative class of difference-cum-ratio estimator  

Consider a generalized class of estimators suggested by Tripathi (1970, 80) 

        
( )
( )

1
1

2
g

y X x
T Z

z X x
λ

λ

+ −
=

+ −
 

Following usual procedure of obtaining an approximate mean square error of 

1gT  to 
10
n

 
 
 

, we have  

    ( )
2

2 2 2 22 1
1

1
g y x zMSE T Y C C C

R R
λ λθ

  
= + − + 
  

 

    2 1 2 1

1 1

2 2 2yx yz xzC C C
R R R R
λ λ λ λ             + − − − −          

              
, 

where 1
ZR
X

= . 

Minimizing ( )1gMSE T  with respect to 1λ  and 2λ  it may be verified that the 

minimizing equations are not independent and hence 1λ  and 2λ  cannot be solved 
uniquely. Therefore, fixing 1λ (or 2λ ) to a suitable real constant, we may solve for 

2λ (or 1λ  ). Thus, the optimum value for 2λ  in terms of 1λ  is given by  

                       ( )1 1
2 12 xz yx

x

R RC C
C R

λ λ  = − +  
 
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The optimum asymptotic  mean square error  is given by  
 

  ( ) ( ) ( )22 2 2
1 2g y z yz xz z yx yopt

MSE T Y C C C C Cθ ρ ρ = + − − −  
 

 
This shows that there is reduction in the mean square error for Tg1 by the 

difference type of adjustment made for y and z , using the second auxiliary 
variable x. It may be mentioned here that the optimum value of 2λ  in Tg1 is not 
unique because of the presence of free parameter 1λ . A meaningful optimum 
estimator is obtained by the choice of 1 yxλ β= , which results in obtaining 

2 zxλ β= . Thus, one of the optimum estimators may be obtained as  

      
( )
( )2

yx
g

zx

y X x
T Z

z X x
β

β

+ −
=

+ −
 

As yx zxandβ β  are unknown in practice, we may substitute their consistent 

sample estimates yx zxb and b  respectively in Tg2. This reduced estimator was 
proposed by Sahoo (1984). It may be verified that 

 
 

 
 

Now, consider the generalized estimator, proposed by Khare and Srivastava 
(1981) as  

       
( )
( )

1
3

2

g

y X x
T Z

z X x
α

α

λ

λ

+ −
=
 + − 

 

 

Minimizing the MSE(Tg3) to 
10
n

 
 
 

 with respect to 1 2, andλ λ α  we get 

          1 yxλ β=  

          2 zxλ β=  

and 21
y yz yx zx

z zx

C
C

ρ ρ ρ
α

ρ
−

=
−

 

 
As such,  

  ( ) ( )2 2 2
3 .1g y y xzopt

MSE T Y C Rθ= −                                                       

  

( ) ( )1 2g gopt
MSE T MSE T=
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Now, MSE(Tg1) – MSE(Tg3)  

   2 2

2
1 0

1
yz yx xz

z zx y

xz

Y C C
ρ ρ ρ

θ ρ
ρ

 −
 = − − ≥
 − 

, 

showing thereby that Tg3  with optimum values of the parameters 

1 2, andλ λ α  is more efficient than Tg1.  

5.1. Comparison of mean square errors 

In the following the optimal asymptotic mean square errors of  

             * * *
Re 1 1 2 2 1 2
ˆ , , , , , , , ,g g g g gY T T T T T T T T  and 3gT  are presented and 

compared. 

Now, ( )Re
ˆ

gMSE Y ( )2 2 21y yxY Cθ ρ= −  

   ( )1MSE T  ( ) ( )22 2 2 2y z yz yx y xz zY C C C C Cθ ρ ρ = + − − −  
 

   ( )*
1MSE T  ( ) ( )22 2 2 2 22y z yz yx y xz z xz zY C C C C C Cθ ρ ρ ρ = + − − − +  

 

   ( )2MSE T  ( )2 2 2
.1y y xzY C Rθ= −  

   ( )*
2MSE T  ( ) ( )22 2 21y yx yz yx xzY Cθ ρ ρ ρ ρ = − − −  

 

   ( )gMSE T  ( )2 2 2
.1y y xzY C Rθ= −  

   ( )*
gMSE T  ( ) ( )22 2 21y yx yx xz yzY Cθ ρ ρ ρ ρ = − − −  

 

   ( )1gMSE T  = ( )2gMSE T  

       ( ) ( )22 2 2 2y z yz yx y xz zY C C C C Cθ ρ ρ = + − − −  
 

   ( )3gMSE T  ( )2 2 2
.1y y xzY C Rθ= −  

 
Thus, we find  

   (i)  ( )2MSE T  = ( )gMSE T = ( )3gMSE T ( )2 2 2
.1y y xzY C Rθ= −  

   (ii) ( )*
2MSE T  = ( )*

gMSE T ( ) ( )22 2 21y yx yx xz yzY Cθ ρ ρ ρ ρ = − − −  
 

   (iii) ( )1MSE T  = ( )1gMSE T = ( )2gMSE T  
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        ( ) ( )22 2 2 2y z yz yx y xz zY C C C C Cθ ρ ρ = + − − −  
 

   (iv)  ( ) ( ) ( ) ( )*
1 1 1 2g gMSE T MSE T MSE T MSE T> = =  

5.2. Numerical illustrations 

In the following Table 5 we compare the percent relative  efficiencies of the 
difference-cum-ratio estimators/ regression-cum-ratio estimators with respect to 
the linear regression estimator with x without adjusting for the second auxiliary 
variable z , using data on populations referred to in section 2.2. The efficiency is 
defined as the inverse of the optimal asymptotic mean square error. 

Table 5. Comparison of Percent Relative Efficiencies  

Estimator 
Population – 1 Population – 2 

2/MSE Yθ  
Relative 

Efficiency 
2/MSE Yθ  

Relative 
Efficiency 

( )
ˆ
reg xY  0.28020 100 0.31967 100 

1 1 2g gT T T= =  0.32083 87 0.70878 45 
*

1T  0.34641 81 2.33752 14 
* *

2 gT T=  0.25531 110 0.27370 117 

2 3g gT T T= =  0.25188 111 0.20546 155 
 
Comments: Comparison of efficiencies of the estimators under consideration 
shows   that 2 3g gT T T= =  and * *

2 gT T=  are more efficient than 1 1 2g gT T T= = , *
1T  

and ( )
ˆ
reg xY . 

 
Further, in case of numerical illustrations under consideration, there has been 

substantial loss in efficiency in using 1 1 2g gT T T= =  and *
1T  in place of  ( )

ˆ
reg xY  

using single auxiliary variable x in a linear regression set up.  
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