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ABSTRACT 

High income inequality can be a source of serious socio-economic problems, such 
as increasing poverty, social stratification and polarization. Periods of 
pronounced economic growth or recession may impact different groups of earners 
differently. Growth may not be shared equally and economic crises may further 
widen gaps between the wealthiest and poorest sectors. Poverty affects all ages 
but children are disproportionately affected by it. The reliable inequality and 
poverty analysis of both total population of households and subpopulations by 
various family types can be a helpful piece of information for economists and 
social policy makers. The main objective of the paper was to present some 
income inequality and poverty estimates with the application to the Polish data 
coming from the Household Budget Survey. Besides direct estimation methods, 
the model based approach was taken into regard. Standard errors of estimates 
were also considered in the paper. 

Key words: income inequality, poverty, variance estimation, small area statistics. 

1. Introduction 

The range of survey data analysis has expanded enormously over time in 
response to growing demands of policy makers. Recently, the demand for 
estimates at a small level of aggregation has increased, in contrast to national 
estimates that were commonly used in the past. Since income inequality in Poland 
increased significantly in the period of transformation from the centrally planned 
to the market economy, reliable inequality and poverty analysis of the total 
population of households and subpopulations by various family types can provide 
helpful information for economists and social policy makers.  
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In the paper, some direct and indirect model-based estimation methods for 
income inequality and poverty parameters are presented and applied. Income 
inequality is measured by the Gini and Zenga indices. Among the indicators of 
poverty we consider: at risk of poverty rate, poverty gap and poverty severity with 
special attention paid to the estimation of their standard errors. The estimates of  
inequality measures are produced only for large domains (regions or family types 
considered separately) using direct estimation, while poverty related measures are 
also calculated for small domains that require small area estimation. For subsets 
of the Polish population cross-classified by region and family type small area 
estimators based on linear mixed models are used. 

Measures of income inequality and poverty are presented in Section 2. Section 
3 provides a brief survey of direct variance estimation methods, while in Section 
4 the outline of EBLUP theory is presented. Some empirical applications based on 
Polish HBS data are included in Section 5.  

2. Measures of income inequality and poverty 

Income inequality refers to the degree of difference in earnings among various 
individuals or segments of a population. Measures of inequality, also called 
concentration coefficients, are widely used to study income, welfare and poverty 
issues. They can also be helpful in analyzing the efficiency of a tax policy or in 
measuring the level of social stratification and polarization. They are most 
frequently applied to dynamic comparisons, i.e. comparing inequality across time. 
Among numerous inequality measures, the Gini and Zenga coefficients are of the 
greatest importance. The Gini concentration coefficient is the most widely used 
measure of income inequality, mainly because of its clear economic 
interpretation. The Zenga „point concentration” measure based on the Zenga 
curve has recently received some attention in the literature.  

The Gini inequality index, based on the Lorenz curve, can be expressed as 
follows: 

  ∫ −=
1

0

))((2 dppLpG    (1) 

where: p = F(y) is a cumulative distribution function of income, L(p)- the Lorenz 
function given by the following formula: 

  ,)()(
0

11∫ −−=
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dttFpL µ     (2) 

where μ denotes the expected value of a random variable Y and F–1(p) is the pth 
quantile.  
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One can estimate the value of the Gini index from the survey data using the 
following formula:  
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where: y(i) – household incomes in a non-descending order, wi- survey weight for 
i-th economic unit, ∑ =

i

j jw
1

- rank of i-th economic unit in n-element sample.  

An alternative to the Lorenz curve (2) is the concentration curve proposed by 
Zenga (1984, 1990), defined in terms of quantiles of the size distribution and the 
corresponding quantiles of the first-moment distribution. It is called “point 
concentration measure”, as it is sensitive to changes of inequality in each part 
(point) of a population.  

The Zenga point measure of inequality is based on the relation between 
income and population quantiles:  

 ,/][ **
pppp yyyZ −=    (4) 

where yp denotes the population pth
 quantile and yp

* is the corresponding income 
quantile defined as follows:  

 ).(1* pQy p
−=    (5) 

The function Q(p), called first-moment distribution function, can be 
interpreted as cumulative income share related to the mean income. Thus, the 
Zenga approach consists in comparing the abscissas at which F(p) and Q(p) take 
the same value p.  

Zenga synthetic inequality index can be expressed as the area below the 
Zenga curve (4), and is defined as simple arithmetic mean of point concentration 
measures Zp, p ∈<0.1>: 

 ∫=
1

0

dpZZ p  .   (6) 

The commonly used nonparametric estimator of the Zenga index (6) was 
introduced by Aly and Hervas (1999) and can be expressed by the following 
equation:  
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where: yi:n – i-th order statistics in n-element sample based on weighted data,  
             y  – sample arithmetic mean.  
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The poverty measures are statistical functions which translate the comparison 
of the indicator of well-being and the poverty line, made for each household, into 
one aggregate number for the population as a whole or a population sub-group. 
Since the publication of Sen (1976) article on the axiomatic approach to the 
measurement of poverty, several indices of poverty have been developed that 
make use of the three basic poverty indicators (Panek, 2008). The most popular 
poverty measure is headcount ratio also called at-risk-of-poverty rate ARPR. It 
represents the share of the population whose equivalent income or consumption is 
below the poverty line: 

  100
n

n
H p= ,   (8) 

where: np- number of the poor, n- total number of households. 
Poverty gap index provides information regarding the distance of households 

from the poverty line. This measure captures the mean aggregate income or 
consumption shortfall relative to the poverty line across the whole population. It 
is obtained by adding up all the shortfalls of the poor and dividing the total by the 
population size: 
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where: y* denotes the poverty line (poverty threshold). The poverty gap (9) can be 
used as a measure of the minimum amount that one would have to transfer to the 
poor under perfect targeting, i.e. each poor person getting exactly the amount 
he/she needs to be lifted out of poverty so that they are all brought out of poverty. 
By replacing the number of households n by the number of the poor np in the 
formula (9), we obtain the alternative poverty gap index:  
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Poverty severity index (squared poverty gap) takes into account not only the 
distance separating the poor from the poverty line (the poverty gap), but also the 
inequality among the poor. That is, higher weights are placed on those households 
which are further away from the poverty line.  
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According to their definitions, the headcount index (ARPR), the poverty gap 
index and the poverty severity index (Panek, 2008) can be expressed as ratio 
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estimators. Thus, the precision estimation algorithms can be similar to the 
algorithm for a ratio estimate. The headcount index estimator can be expressed as 
follows: 
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while the estimator of poverty gap index given by (10) takes the form: 
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where: Ii – indicator function taking value 1 when i-th household equivalent 
income is below a poverty line, and taking value 0 in the opposite situation,  
wi – survey weight for i-th economic unit, Up denotes the poor families population 
(or subpopulation).  

3.  Methods of variance estimation 

The precision of an estimator is usually discussed in terms of its variance or 
standard error. When the standard errors of inequality and poverty measures are 
large, many conclusions about the comparisons over time and between groups 
may not be warranted. For most income concentration measures, the Gini and 
Zenga indices included, explicit variance estimators are theoretically complicated, 
i.e. it is hard to derive general mathematical formulas for nonlinear statistics, 
especially when the sampling design is complex. Also, most widely used poverty 
statistics are nonlinear functions of sampling observations so their standard errors 
are rather difficult to obtain and have been rarely reported in practice. To solve 
this problem, some special approximate techniques for variance estimation can be 
used. They include: Taylor linearization technique, random groups method, 
jackknife, bootstrap, balanced half samples, also called balanced repeated 
replication BRR. (Wolter, 2003;  Särndal et al., 1997).  

In the context of inequality measures, the Taylor linearization, the bootstrap 
and the parametric approach based on a theoretical income distribution model are 
the methods of variance estimation most often used (Jędrzejczak, 2011); while 
standard errors of poverty statistics are usually estimated by means of the 
bootstrap and balance repeated replication. An interesting outline of the variance 
estimations methods for the Gini index was offered by Langel  and Tillé  (2013). 

The parametric approach uses a model-based variance with respect to 
hypothesized data generating process, provided that an empirical income 
distribution can be approximated by a theoretical model described by a 
probability density function f(y,θ). Applying the maximum likelihood (ML) 
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theory, the estimators obtained are asymptotically unbiased and normally 
distributed with variances given by the Cramer-Rao bound. Let us assume that an 
inequality measure of interest can be expressed as a function g(θ) of the model 
parameters θ. The variance of the ML estimator of an inequality measure g(θ) 
takes the form:  
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where: Iθ denotes the Fisher information matrix.  
The estimator of the variance (14) can be obtained by replacing the unknown 

parameter values θ by their large sample ML estimates .θ̂  It preserves the 
asymptotic properties of maximum likelihood estimators (Zehna, 1966). The 
parametric approach can be very effective for large samples, assuming that the 
income distribution model as well as the parametric formula for an inequality 
statistic are both known. 

Another method of variance estimation that can be used for poverty and 
inequality measures is balanced repeated replication. It proves especially useful 
when data come from a complex survey design with a large number of strata. 

Let a stratified sampling frame with H strata be considered, with two subsets 
of primary sampling units (PSU) obtained for each stratum. They should be 
constructed in such a way that every stratum consists of two subsamples, each of 
them having similar number of units. A half-sample is a set consisting of one of 
the two subsets for each stratum. The number of all possible half-samples is 2H, 
what may cause complication when the number of strata is large. To avoid such 
difficulties, we can choose the balanced set of R half-samples, so that the number 
of variants is significantly smaller than 2H. The subset of balanced half-samples 
can be defined as a matrix of dimension R × H with the elements (r,h) equal δrh = 
+1 or –1, indicating whether the PSU from the h-th stratum selected for the r-th 
half sample is the first or the second PSU. The set of R half-samples is considered 
as balanced, if 

 0
1

' =∑
=

H

r
rhrhδδ     'hh =∀ . (15) 

Balanced matrix RH can be obtained from Hadamard matrix, that has 
dimensions R × R. The rows of Hadamard matrix denote half-samples while 
columns denote the strata, and the following condition is satisfied H+1≤R≤H+4. 
Because the lines and columns in such a matrix are mutually orthogonal the half-
samples selected are mutually independent (examples of Hadamard matrices to be 
found in: Bruch, Münnich and Zins, 2011). 

The weights for selected elements may be equalized and are usually 
multiplied by 2 (Shao et al., 1998). Next, the estimated values for parameter of 
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interest rθ̂  are determined by balanced repeated replication for each half-sample. 
The standard variance estimator can be expressed by the following formula: 

  2

1

)ˆˆ(1)ˆ(ˆ
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R

r
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V θθθ −= ∑
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 , (16) 

where StrRSθ̂  is parameter estimate for the whole sample in the case of stratified 
random sampling (StrRS). 

4. Model-based approach and EBLUP estimation  

Sample survey data can be used to derive reliable direct estimates for large 
domains  (discussed in Section 3), but sample sizes in small domains are seldom 
large enough for direct estimators to provide adequate precision for these 
domains. Thus, it is necessary to employ indirect estimation methods that borrow 
strength from related areas. Many subpopulation parameters, including means and 
totals, can be expressed as linear combinations of fixed and random effects of 
small area models. Best linear unbiased prediction (BLUP) estimators of such 
parameters can be obtained in a classical way using BLUP estimation procedure. 
BLUP estimators minimize Mean Square Error (MSE) within the class of linear 
unbiased estimators and do not depend on the normality of random effects. 
Maximum likelihood (ML) or restricted maximum likelihood (REML) methods 
can be used to estimate the variance and covariance components, assuming 
normality.  

The EBLUP procedure has been applied in many important statistical surveys 
conducted all over the world. The pioneer work in this area was that of Fay and 
Herriot (Fay, Herriot, 1979), where the EBLUP technique was used for evaluating 
per capita income and some other statistics obtained for counties. The model-
based approach to small area estimation of inequality indices for regions in 
Poland was applied in the paper of Jędrzejczak, Kubacki (2010). The authors 
provided empirical Bayes (EB) and empirical best linear unbiased prediction 
(EBLUP) estimators under area level models. Molina and Rao (2010) estimated 
poverty indicators as examples of nonlinear small area population parameters by 
using the empirical Bayes (best) method, based on a nested error model. 
Hierarchical Bayes multivariate estimation of poverty rates for small domains was 
lately discussed by Fabrizi et al. (2011).  

Many applications of EBLUP in the context of small area estimation are 
based on a special kind of the general linear mixed model, widely known as basic 
area level model (Rao, 2003): 

  evXβy ++=      (17) 
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where: y is n × 1 vector of sample observations, X – known matrix of explanatory 
variables, β is a vector of linear regression coefficients, v denotes area-specific 
random effect vector, e is sampling error vector. 

It is usually assumed that v and e are independently distributed with mean 
0 and covariance matrices G and R, respectively. EBLUP estimator for the small 
area model given by (17) has the following form: 

  )( XβyMGVXβθ 1 −+= −
EBLUP   (18) 

where: yVXX)V(Xβ 1T11T −−−= ,   M is the identity matrix,  G is the matrix 
with non-zero diagonal and its values are equal to 2

vσ , which is the model 
variance. It is usually computed using special iterative procedure that applies 
Fisher algorithm.  

Mean square error estimate (MSE) of EBLUP can be obtained from the 
following formula: 

 )ˆ(2)ˆ()ˆ()ˆ()ˆ()( 3211 δδδδδθ δ gggbgMSE T
EBLUP ++∇−=   (19) 

where δ is a variance dependent parameter. Using this formula we usually assume 
that the mean square error of EBLUP is the sum of three main elements g1, g2 and 
g3 which are described by the following equations (Rao, 2003): 

  )()ˆ(1 GGVG 1−−= diagg δ   (20) 

 X)GVm(XX)VX)(XGVm(X 1
i

111
i

−−−− −−= T
i

TT
iig )ˆ(2 δ    (21) 

  )I))VG(V(V))V(mVG(V(V(m T111111 −−−−−− −−= T
i

T
iig )ˆ(3 δ   (22) 

where mi is a vector with zeros for all elements with exception for the element 
having an index i while I is the inversed Fisher information matrix. 

5.  Application 

The methods given above were applied to the estimation of inequality and 
poverty measures in Poland by region and family type. The basis for the 
calculations was micro data coming from the Polish Household Budget Survey 
(HBS) conducted in 2009. The data obtained from the household budget survey 
allow for the analysis of the living conditions of the population, being the basic 
source of information on the revenues and expenditure of the population. In 2009 
the randomly selected sample covered 37,302 households, i.e. approximately 
0.3% of the total number of households. The sample was selected by two-stage 
stratified sampling with unequal inclusion probabilities for primary sampling 
units. In order to maintain the relation between the structure of the surveyed 
population and the socio-demographic structure of the total population, the data 
obtained from the HBS were weighted with the structure of households by 
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number of persons and class of locality coming from the Population and Housing 
Census 2002.  

The analysis has been conducted after dividing the overall sample by region 
NUTS1, constructed according to the EUROSTAT classification, and by 6 family 
types, classified according to the number of children. The variable of interest was 
household's available income that can be considered the basic characteristic of its 
economic condition. It is defined as a sum of households’ current incomes from 
various sources reduced by prepayments on personal income tax made on behalf 
of a tax payer by tax-remitter (this is the case of income derived from hired work 
and social security benefits and other social benefits); by tax on income from 
property; taxes paid by self-employed persons, including professionals and 
individual farmers, and by social security and health insurance premiums.  

 To obtain the estimates of income inequality coefficients for selected 
subpopulations, the formulas (3) and (7) were applied, while poverty indicators 
were estimated by means of (12) and (13). Standard errors of the Gini and Zenga 
inequality measures were estimated using the parametric approach based on the 
three-parameter Burr type-III distribution, also called the Dagum model. The 
model is known to be well fitted to empirical income and wage distributions in 
different divisions. First, the maximum likelihood estimates of the Dagum model 
were calculated and then the formula (14) was applied to obtain the variances of 
the  Gini and Zenga indices. The precision of poverty indicators was estimated by 
means of the balanced repeated replication technique BRR (See: formula (16)). It 
is worth mentioning that BRR estimators are typically estimators of design-based 
variances while methods based on ML, and specifically the one based on the 
Dagum model, are model-based. They generalise sample observations using 
predefined  income  distribution  model instead of survey weights.   

The results of the calculations are presented in Tables 1-3 and in Figures 1-6. 
To allow comparing the conditions of households of different sizes and different 
demographic structures, various income equivalence scales are used. The square 
root scale, popular in recent OECD publications, was applied in the paper. It is 
based on division of individual household income by the square root of the 
household size. As a poverty threshold we used  60% of median equivalised 
income value.   

Table 1. Estimates of inequality and poverty indices with their standard errors  
 by family type  

No. Number of 
children 

Inequality coefficient Poverty index 

Gini Zenga Headcount 
ratio 

Poverty 
gap 

Poverty 
severity 

1 0 0.36 
(0.004) 

0.37 
(0.007) 

15.4 
(0.230) 

26.2 
(0.442) 

12.2 
(0.402) 

2 1 0.32 
(0.009) 

0.30 
(0.016) 

13.2 
(0.405) 

29.7 
(0.952) 

16.0 
(0.930) 

3 2 0.33 
(0.014) 

0.31 
(0.021) 

16.9 
(0.597) 

28.4 
(0.912) 

14.2 
(0.911) 
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Table 1. Estimates of inequality and poverty indices with their standard errors  
 by family type (cont.) 

No. Number of 
children 

Inequality coefficient Poverty index 

Gini Zenga Headcount 
ratio 

Poverty 
gap 

Poverty 
severity 

4 3 
0.32 

(0.031) 
0.30 

(0.059) 
27.1 

(1.525) 
27.8 

(1.278) 
13.3 

(1.234) 

5 4 
0.30 

(0.057) 
0.28 

(0.125) 
33.5 

(2.763) 
31.1 

(2.515) 
15.7 

(2.521) 

6 5 … 
0.29 

(0.072) 
0.26 

(0.137) 
39.6 

(4.188) 
29.0 

(2.593) 
15.8 

(2.435) 

7 Total 
0.35 

(0.003) 
0.36 

(0.005) 
15.9 

(0.253) 
27.2 

(0.396) 
13.2 

(0.381) 

Source: Authors’ calculations on the basis on HBS 2009. 
 

 

Table 2.  Estimates of inequality and poverty indices with their standard errors 
  by region 

No. Region 
Inequality coefficient Poverty index 

Gini Zenga Headcount 
ratio Poverty gap Poverty 

severity 

1 Central 
0.39 

(0.006) 
0.43 

(0.011) 
13.9 

(0.419) 
30.0 

(1.137) 
16.3 

(1.228) 

2 Southern 
0.32 

(0.008) 
0.30 

(0.015) 
13.2 

(0.405) 
24.5 

(0.755) 
10.4 

(0.673) 

3 Eastern 
0.35 

(0.008) 
0.36 

(0.014) 
23.5 

(0.630) 
28.6 

(0.737) 
14.3 

(0.676) 

4 North-western 
0.33 

(0.009) 
0.32 

(0.016) 
14.5 

(0.859) 
23.7 

(1.046) 
10.1 

(0.852) 

5 South-western 
0.35 

(0.010) 
0.36 

(0.018) 
15.3 

(0.880) 
28.5 

(0.974) 
14.3 

(0.913) 

6 Northern 
0.34 

(0.009) 
0.35 

(0.016) 
15.7 

(0.689) 
26.7 

(1.166) 
13.0 

(0.913) 

7 Total 
0.35 

(0.003) 
0.36 

(0.005) 
15.9 

(0.253) 
27.2 

(0.396) 
13.2 

(0.381) 

Source: Authors’ calculations on the basis on HBS 2009. 
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Table 3.  Estimates of poverty indices and their standard errors by region and  
  family type 

 
 Region 

Number  
of 

children 

Sample 
size 

Poverty index 
Headcount ratio Poverty gap Poverty severity 

Estimate Standard 
Error Estimate Standard 

Terror 
Estimat

e 
Standard 

error 

1 Central 

0 
1 
2 
3 
4 

5… 

5469 
1393 

962 
216 

39 
22 

18.047 
13.516 
19.465 
33.325 
48.989 
38.354 

0.629 
0.892 
1.238 
4.478 
9.800 
12.793 

27.482 
31.206 
31.002 
34.347 
33.177 
30.144 

0.676 
2.502 
2.518 
3.226 
5.712 

12.016 

13.173 
17.854 
17.927 
19.130 
17.840 
17.045 

0.655 
2.784 
2.564 
3.276 
6.112 

13.231 

2 Southern 

0 
1 
2 
3 
4 

5… 

4871 
1374 

924 
235 

55 
26 

13.510 
13.407 
16.706 
29.368 
29.153 
51.757 

0.633 
1.095 
1.292 
3.447 
4.683 
8.413 

24.624 
26.455 
22.026 
21.598 
26.079 
22.207 

0.958 
1.358 
1.011 
2.850 
4.139 
7.121 

10.033 
12.261 
8.614 
7.384 

12.678 
10.841 

0.794 
1.267 
1.063 
1.968 
4.284 
6.507 

3 Eastern 

0 
1 
2 
3 
4 

5… 

4009 
1276 

914 
293 

76 
35 

16.270 
12.619 
14.765 
22.069 
23.275 
37.941 

0.731 
0.889 
1.050 
1.554 
5.846 
8.772 

27.201 
35.823 
33.173 
28.704 
20.817 
32.748 

1.286 
2.077 
2.165 
3.654 
4.501 
6.853 

14.540 
21.860 
18.960 
15.467 
6.446 

17.063 

1.169 
1.826 
2.130 
3.201 
2.439 
7.159 

4 North-
western 

0 
1 
2 
3 
4 

5… 

3618 
1155 

719 
197 

47 
23 

14.759 
13.004 
17.003 
24.825 
32.767 
38.979 

1.136 
1.063 
1.934 
4.309 
6.989 
7.540 

23.029 
24.543 
23.129 
23.835 
32.015 
13.452 

1.301 
2.004 
1.654 
3.164 
9.682 
3.689 

9.202 
11.538 
9.522 

11.100 
20.310 
3.154 

1.039 
1.834 
1.390 
3.352 
9.774 
2.089 

5 South-
western 

0 
1 
2 
3 
4 

5… 

2640 
752 
418 
109 

32 
5 

16.196 
12.962 
19.401 
30.216 
44.162 
29.683 

0.926 
1.062 
1.518 
6.194 
7.695 

– 

28.338 
33.131 
25.956 
24.314 
29.473 
27.222 

1.225 
3.589 
2.719 
2.995 
4.901 

– 

13.440 
20.641 
12.101 
9.256 

13.911 
12.639 

1.174 
3.696 
2.470 
2.364 
5.686 

– 

6 Northern 

0 
1 
2 
3 
4 

5… 

3378 
996 
720 
223 

48 
33 

13.037 
12.824 
18.372 
22.826 
42.105 
35.697 

0.648 
0.925 
2.048 
2.457 
6.384 
12.660 

25.336 
28.000 
27.459 
32.090 
35.491 
36.954 

1.286 
2.734 
2.103 
2.636 
5.465 
8.481 

12.460 
13.766 
13.194 
16.275 
18.427 
25.483 

1.424 
2.185 
1.841 
3.107 
5.683 
9.988 

Source: Authors’ calculations on the basis on HBS 2009. 
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   Figure 1. Poverty characteristics of families with different number of children 
   Source: Authors’ calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 2. Inequality characteristics of families with different number of children 

  Source: Authors’ calculations.  
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   Figure 3. At- Risk-of-Poverty Rates (ARPR) by family type and region 
   Source: Authors’ calculations. 
 

 
   Figure 4. Coefficients of variation for ARPRs by family type and region 
   Source: Authors’ calculations. 
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   Figure 5. Coefficients of variation for Poverty Gaps by family type and region 
   Source: Authors’ calculations. 

 

 
   Figure 6. Coefficients of variation for Poverty Severity indices by family type  
                    and region 
Source: Authors’ calculations. 
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Tables 1 and 2 comprise estimates of inequality and poverty indices by family 
type and by region, separately. Diversification of household income, expressed by 
the Gini and Zenga coefficients (relatively stable since 2003), can be considered 
high in comparison with other European countries. The value of the Gini index 
for the total household was 0.35 while the Zenga index estimate was even higher 
(0.36). It is interesting to observe that the number of children is a factor clearly 
differentiating the level of income inequality and poverty of households. The 
higher the number of children, the higher  the level of poverty indices (especially 
ARPR), and generally the lower is the level of income inequality. The latter is 
expressed, among others, by the fact that the poorest families with many children 
live mainly on social benefits, so their equivalised incomes are relatively similar. 
Families with five or more children present at-risk-of- poverty rate close to 40%, 
with simultaneously low level of the Gini index (0.29). On the other hand, 
discrepancies between regions are much smaller, with the Eastern region still 
having the worst position in terms of income (ARPR=23.5%, G=0.35, Z=0.36). 

The detailed estimation results for the division of the entire population by 
family type (number of children), and at the same time by region, are presented in 
Table 3. The estimated values of three basic poverty measures for subpopulations, 
headcount ratio (ARPR), poverty gap index and poverty severity index, are 
accompanied by their standard errors estimated by means of balanced repeated 
estimation technique BRR. The calculations were done using WesVar  package.  

All the results presented in Tables 1-3 are supported by their estimated 
standard errors. Moreover, Figures 4-6 show the coefficients of variation (CV) for 
poverty coefficients outlined in Table 3. Analyzing the results of the calculations 
given above, one can easily notice that the precision of poverty indicators is 
unsatisfactory, especially when the division of households by family type and 
simultaneously by region is considered (See: Table 3 and Figures 4-6). The 
standard errors are relatively small only for the first household type, i.e. families 
without children, and usually account for  about 5% of the corresponding 
estimates. For the remaining family types the efficiency of estimation is poor as 
coefficients of variation exceed 30% in many cases.  

Thus, we have come to the conclusion that sample sizes of the subpopulations 
are apparently too small to provide reliable direct estimates. When 
a subpopulation is too small to yield direct estimates with adequate precision, it is 
regarded as a small area. Some indirect estimation methods based on borrowing 
strength in time and in space have been developed to overcome small area 
estimation problems (Rao, 2003). It is now generally accepted that when indirect 
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estimation is to be used, it should be based on explicit small areas models (See: 
§4). To improve the precision of head-count-ratio estimation for family types in 
regions, a model-based approach using the basic area level model (17) was 
applied. First, a standard linear regression model was constructed using some 
auxiliary sources of data that come from Polish Public Statistics and 
administrative registers. Regional per capita income GDP and the number of 
children NC played the role of explanatory variables in the model: 

Model 
parameter 

Coefficient 
value Standard error t-statistic p-value 

Intercept (α0) 0.000865 0.050108 0.017259 0.986334 

GDP (α1) 0.001067 0.000477 2.239633 0.031971 

NC (α2) 0.056487 0.005636 10.02267 1.53E-11 

For the specified model, the value of determination coefficient (R2) is 0.762, 
the value of corrected R2 is equal to 0.747, the F statistics is F(2.33)=52.735 
p<0.00000, and standard estimation error is equal to 0.05775.  

The results of EBLUP estimation of ARPRs are summarized in Table 4. As it 
can be easily noticed, the model-based approach induced significant refinement 
for almost all subpopulations. Mean squared errors of EBLUP estimates are 
smaller than the corresponding standard deviations of direct estimates. In the last 
column we show the reduction of CV which exceeds 60% in some cases, yet on 
average it is equal to 21.54% . 

Because the correlations between poverty gap (or poverty severity) and the 
same auxiliary variables as for the model of headcount ratio are relatively weak, 
we do not include the models for these cases. However, a preliminary correlation 
analysis for other explanatory variables, including the  Gini and Zenga 
coefficients, has been carried out.  It reveals a relatively strong correlation 
between the poverty and inequality measures that was found to be 0.46 for Gini 
and poverty gap and 0.43 for Gini and poverty severity  (for the  Zenga measure 
the correlation  coefficients were 0.52 for poverty gap and 0.48 for poverty 
severity). It can be assumed that also other poverty related variables, e.g. 
unemployment rate, may be included in such computations. A more detailed 
analysis of such cases goes beyond the scope of the  paper yet it may be 
performed  in the future. 
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Table. 4. ARPR estimation results using direct and model-based approach 

 Region 
Number 

of 
children 

Sample 
size 

Direct estimation EBLUP estimation 
CV Red. 

[%] Estimate Standard 
error Estimate 

Root mean 
squared 

error 

1 Central 

0 
1 
2 
3 
4 

5… 

5469 
1393 

962 
216 

39 
22 

18.047 
13.516 
19.465 
33.325 
48.989 
38.354 

0.629 
0.892 
1.238 
4.478 
9.800 
12.793 

17.926 
13.834 
19.901 
30.071 
34.564 
37.416 

0.626 
0.877 
1.197 
3.085 
3.895 
 4.210 

0.1 
3.9  
5.4  

23.7 
43.7  
66.3  

2 Southern 

0 
1 
2 
3 
4 

5… 

4871 
1374 

924 
235 

55 
26 

13.510 
13.407 
16.706 
29.368 
29.153 
51.757 

0.633 
1.095 
1.292 
3.447 
4.683 
8.413 

13.447 
13.649 
17.190 
27.438 
29.739 
37.250 

0.627 
1.059 
1.233 
2.598 
3.063 
3.740 

0.6  
5.0  
7.3  

19.3  
35.9  
38.2  

3 Eastern 

0 
1 
2 
3 
4 

5… 

4009 
1276 

914 
293 

76 
35 

16.270 
12.619 
14.765 
22.069 
23.275 
37.941 

0.731 
0.889 
1.050 
1.554 
5.846 
8.772 

15.996 
12.719 
15.105 
22.313 
26.895 
33.555 

0.722 
0.872 
1.021 
1.466 
3.362 
3.837 

      -0.5  
2.7  
4.9  
6.7  

50.2  
50.5  

4 North-
western 

0 
1 
2 
3 
4 

5… 

3618 
1155 

719 
197 

47 
23 

14.759 
13.004 
17.003 
24.825 
32.767 
38.979 

1.136 
1.063 
1.934 
4.309 
6.989 
7.540 

14.447 
13.263 
17.870 
25.158 
30.577 
35.436 

1.098 
1.030 
1.743 
2.886 
3.441 
3.666 

1.2  
5.0  

14.2  
33.9  
47.2  
46.5  

5 South-
western 

0 
1 
2 
3 
4 

5… 

2640 
752 
418 
109 

32 
5 

16.196 
12.962 
19.401 
30.216 
44.162 
29.683 

0.926 
1.062 
1.518 
6.194 
7.695 

– 

15.906 
13.246 
19.654 
26.696 
32.696 
34.364 

0.906 
1.029 
1.423 
3.245 
3.510 
3.841 

0.4  
5.2  
7.5  

40.9  
38.4  

-  

6 Northern 

0 
1 
2 
3 
4 

5… 

3378 
996 
720 
223 

48 
33 

13.037 
12.824 
18.372 
22.826 
42.105 
35.697 

0.648 
0.925 
2.048 
2.457 
6.384 
12.660 

12.962 
12.988 
18.786 
23.425 
32.281 
34.064 

0.641 
0.903 
1.826 
2.105 
3.379 
3.927 

0.5  
3.6  

12.8  
16.5  
31.0  
67.5  

Source: Authors’ calculations on the basis of HBS 2009 and CSO Local Data Bank.  
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Figure 7. EBLUP (REML) estimates versus direct estimates 

6. Conclusions 

Efficient estimation of income distribution parameters, especially inequality 
and poverty characteristics and their standard errors, can be a serious problem for 
small domains and should be analyzed in detail. The EBLUP estimators for 
headcount ratios applied in the paper have proved to be more efficient than the 
corresponding direct estimators, as a result of “borrowing strength” from other 
subpopulations. The EBLUP estimation procedure, based on a general linear 
mixed model, has an additional advantage of taking into account the between-area 
variation beyond that explained by the auxiliary variables included in a classical 
regression model. The estimates of inequality and poverty measures by 
subpopulations presented in the paper can provide economists and social policy 
makers with valuable information that can help them to improve the decision-
making process and bring them to adequate economic allocations. Understanding 
the domain-specific profiles may prove crucial in developing appropriate polices 
on most efficient reduction of the global poverty. In the future, it would also be 
interesting to consider more advanced cases of small area models, including 
poverty gap and poverty severity ratio models, that can account for differences 
between domains of interest more precisely.  
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