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Abstract

A generalized-theta-graph is a graph consisting of a pair of end vertices
joined by k (k ≥ 3) internally disjoint paths. We denote the family of all
the n-vertex generalized-theta-graphs with k paths between end vertices by
Θn

k . In this paper, we determine the sharp lower bound and the sharp upper
bound for the total number of matchings of generalized-theta-graphs in Θn

k .
In addition, we characterize the graphs in this class of graphs with respect
to the mentioned bounds.
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1. Introduction

A matching of a graph G = (V (G), E(G)) is a subset M ⊆ E(G) for which no
two distinct edges of M share a common vertex. A k-matching is a matching
consisting of k edges. The number of k-matchings of G is denoted by m(G, k).
It is convenient to set m(G, 0) = 1. We denote the number of matchings of a

graph G by tm(G) and define as
∑⌊n/2⌋

k=0 m(G, k), where n is the number of the
vertices of G. This invariant is also called the Hosoya index in the literature. It
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is of interest in combinatorial chemistry. It is applied for studying some physico-
chemical properties such as entropy and boiling point. This invariant has been
extensively studied in some prescribed classes of graphs. Some of the results are
as follows.

If G is an n-vertex unicyclic graph then tm(G) ≤ f(n + 1) + f(n − 1) with
equality holding if and only if G ∼= Cn, where f(n) denotes the nth Fibonacci

number [8, 2]. In [10] the maximal and the minimal n-vertex graphs with a given
clique number with respect to the number of matchings have been characterized.
It is shown in [1] that the sharp upper bound for the number of matchings of
n-vertex bicyclic graphs is f(n+1)+f(n−1)+2f(n−3) and the extremal graph
with respect to this bound has been characterized. In [4] the sharp upper bound
and sharp lower bound for the number of matchings of chain hexagonal cacti has
been found and the extremal chain hexagonal cacti have been characterized. If
G is an n-vertex connected tricyclic graph then tm(G) ≥ 4n− 6 [3]; in the same
reference the n-vertex connected tricyclic graphs whose number of matchings
are 4n − 6 have been characterized. In [7] the minimal, second minimal, and
third minimal number of matchings for fully loaded unicyclic graphs have been
found and the fully loaded unicyclic graphs with respect to the bounds have been
characterized.

We denote the family of all the n-vertex generalized-theta-graphs with k
paths between end vertices by Θn

k . In this paper, we determine the sharp lower
bound and the sharp upper bound for the number of matchings of generalized-
theta-graphs in Θn

k . In addition, we characterize the generalized-theta-graphs in
Θn

k with respect to the mentioned bounds. The rest of the paper is organized as
follows. After some preliminaries in Section 2, we present some results in Section
3 for decreasing or increasing the number of matchings of the graph while the
graph is remaining in Θn

k . In Section 4, we determine the sharp lower bound
and the sharp upper bound of the number of matchings of the generalized-theta-
graphs in Θn

k . In addition, we characterize the generalized-theta-graphs in Θn
k

with respect to the mentioned bounds in the same section.

2. Preliminaries

In this section, we introduce some preliminaries that we are using throughout
the paper. Let G = (V (G), E(G)) be a simple connected graph with the vertex
set V (G) and the edge set E(G). Let u and v be two adjacent vertices of G; we
denote the edge joining these vertices by uv. For any v ∈ V (G), we denote the
neighbors of v by NG(v) = {u|uv ∈ E(G)}. dG(v) = |NG(v)| is the degree of v in
G. We denote the path on n vertices by Pn. A multiset is defined by assuming
that for a set A an element occurs a finite number of times. This number is called
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the occurrence number and is denoted by OCA(.). The sum of two multisets A
and B is denoted by A ⊎ B and

OCA⊎B(.) = OCA(.) +OCB(.).

u v 

.

s1+1
P

s2+1
P

sk+1
P

..{
s1,s2,…,sk }G=

n 

Figure 1. A generalized-theta-graph.

For example, suppose that A = {1, 1, 2, 3, 1, 2} and B = {1, 1, 2} then A ⊎ B =
{1, 1, 1, 1, 1, 2, 2, 2, 3}. The interested reader is referred to [9] for further details
about this topic.

A generalized-theta-graph θn{s1,s2,...,sk} is an n-vertex graph consisting of a

pair of end vertices joined by k (k ≥ 3) internally disjoint paths of lengths
s1, . . . , sk ≥ 1 (see Figure 1), the set depicted in the subscript is a multiset.
Obviously, a generalized-theta-graph can be characterized by its order and the

lengths of its internally disjoint paths. By P
(

θn{s1,s2,...,sk}

)

, we mean the set of

the internally disjoint paths of θn{s1,s2,...,sk}. By Θn
k , we denote the family of all

n-vertex generalized-theta-graphs consisting of k paths. Let G = (V (G), E(G))
and G′ = (V (G′), E(G′)) be two graphs such that V (G) ∩ V (G′) = ∅. Suppose
that v1, v2, . . . , vk ∈ V (G) and v′1, v

′
2, . . . , v

′
k ∈ V (G′) (k ≥ 1). By G ⊲ v1 =

v′1, v2 = v′2, . . . , vk = v′k⊳G′, we mean the graph obtained from identifying vi and
v′i for i = 1, 2, . . . , k. Suppose that P = v1v2 . . . vk−1vk is a path, we denote the
internal vertices of P by V [P ] that means V [P ] = {v2, . . . , vk−1}.

We use the following results throughout the paper.

Lemma 1 [6]. If v is a vertex and e = uv is an edge of G, then

tm(G) = tm(G− e) + tm(G− {u, v}),
tm(G) = tm(G− v) +

∑

x∈NG(v) tm(G− {v, x}).

Lemma 2 [5]. If G is a graph with components G1, G2, G3, . . . , Gk then

tm(G) =
∏k

i=1 tm(Gi).
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Lemma 3 [11]. Let n = 4s+r be a positive integer number, 0 ≤ r ≤ 3 and s ≥ 1.
(1) If r ∈ {0, 1}, then

f(1)f(n+ 1) > f(3)f(n− 1) > · · · > f(2s+ 1)f(2s+ r + 1)

> f(2s)f(2s+ r + 2) > f(2s− 2)f(2s+ r + 4) > · · ·

> f(4)f(n− 2) > f(2)f(n).

(2) If r ∈ {2, 3}, then

f(1)f(n+ 1) > f(3)f(n− 1) > · · · > f(2s+ 1)f(2s+ r + 1)

> f(2s+ 2)f(2s+ r) > f(2s)f(2s+ r + 2) > · · ·

> f(4)f(n− 2) > f(2)f(n).

3. Transformations

In this section, we present some results for increasing or decreasing the number of
matchings of generalized-theta-graphs in Θn

k . In fact, we present some procedures
by which a given graph in Θn

k can be transformed to another one in Θn
k with larger

or smaller number of matchings. We call them the increasing transformation or
the decreasing transformation, respectively.

Let u and v be two adjacent vertices of a graph H. For constructing a simple
graph from identifying these vertices on two non-adjacent vertices of C4 or C5

we have just one choice. If we use the cycles Cr (r ≥ 6) then the number
of non-isomorphism constructed simple graphs is more than one. The following
proposition determines which one has the largest number of matchings and which
one has the smallest number of matchings.

Proposition 4. Let H be a simple graph and Cr = w0w1 . . . wr−1w0 be a cycle

of length r (r ≥ 6), where V (H) ∩ V (Cr) = ∅. Suppose that u and v are two

adjacent vertices of H. If Gs := H ⊲ u = w0, v = ws ⊳ Cr where 2 ≤ s ≤ r − 2,
then

(1) tm(Gs) ≤ tm(G3) with equality holding if and only if s = 3 or r − s = 3,

(2) tm(G2) ≤ tm(Gs) with equality holding if and only if s = 2 or r − s = 2.

Proof. We can assume, without loss of generality, that dH(u) ≥ dH(v). Suppose
that NH(u) = {ui|i = 1, 2, . . . , p} and NH(v) − {u} = {vj |j = 1, 2, . . . , q} where
u1 = v. At first we prove the proposition under the condition dH(v) = 1, there-
fore, NH(v) = {u}. Let us denote the vertices obtained from identifying u on w0

and v on ws by u′ and v′, respectively. At first by recursively using the first part
of Lemma 1 and deleting the edges in the set {u′ui|i = 1, . . . , p}, we have
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tm(Gs) = tm(Gs − u′u1) + tm(Gs − {u′, u1})

= tm(Gs − {u′u1, u
′u2}) + tm(Gs − {u′u1, u

′, u2}) + tm(Gs − {u′, u1})

= · · ·

= tm

(

Gs −
⋃p

i=1
{u′ui}

)

+
∑p

i=1
tm(Gs − {u′, ui})

= tm(H − {u, v})tm(Cr)

+
∑p

i=2
tm(H − {u, v, ui})tm(Pr−1)

+ tm(H − {u, v})tm(Ps−1)tm(Pr−s−1).

Therefore,

tm(Gs) = tm(H − {u, v})(f(r + 1) + f(r − 1))

+
∑p

i=2
tm(H − {u, v, ui})f(r)

+ tm(H − {u, v})f(s)f(r − s).

The first two terms of the right hand side of the above equation are fixed and
only the last one can be varied, by variation of the value of s. Note that the
second term does not exist if dH(u) < 2. Therefore, by Lemma 3, the function
tm(Gs) takes its maximum value for s = 3 or r− s = 3 and it takes its minimum
value for s = 2 or r − s = 2. It proves the assertion for this case.

Now, suppose that dH(v) > 1. By using a similar method and recursively
deleting the edges in the set {u′u1, . . . , u

′up} and then recursively deleting the
edges in the set {v′v1, . . . , v

′vq} we have the following relations.

tm(Gs) = tm(Gs − u′u1) + tm(Gs − {u′, u1})

= tm(Gs − {u′u1, u
′u2}) + tm(Gs − {u′u1, u

′, u2}) + tm(Gs − {u′, u1}) = · · ·

= tm

(

Gs −
⋃p

i=1
{u′ui}

)

+
∑p

i=2
tm(Gs − {u′, ui}) + tm(Gs − {u′, u1})

= · · ·

= tm

(

Gs −
⋃p

i=1

⋃q

j=1
{u′ui, v

′vj}
)

+
∑q

j=1
tm(Gs −

⋃p

i=1
{u′ui, v

′, vj})

+
∑p

i=2
tm

(

Gs −
⋃q

j=1

vj 6=ui

{u′, ui, v
′vj}

)

+
∑p

i=2

∑q

j=1

vj 6=ui

tm (Gs − {u′, ui, v
′, vj}) + tm(Gs − {u′, u1})

= tm(H − {u, v})tm(Cr)

+
(

∑q

j=1
tm(H − {u, v, vj}) +

∑p

i=2
tm(H − {u, v, ui})

)

tm(Pr−1)

+
∑p

i=2

∑q

j=1

vj 6=ui

tm(H − {u, v, ui, vj})tm(Ps−1)tm(Pr−s−1)

+ tm(H − {u, v})tm(Ps−1)tm(Pr−s−1).
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Therefore, we have the following equation.

tm(Gs) = tm(H − {u, v})(f(r + 1) + f(r − 1))

+
∑q

j=1
tm(H − {u, v, vj})f(r) +

∑p

i=2
tm(H − {u, v, ui})f(r)

+
∑p

i=2

∑q

j=1

vj 6=ui

tm(H − {u, v, ui, vj})f(s)f(r − s)

+ tm(H − {u, v})f(s)f(r − s).

We only need to consider the last two terms of the right hand side of the above
equation because the other terms are fixed, by variation of the value of s. Note
that the third and fourth terms do not exist if dH(u) < 2. We conclude by Lemma
3 that the function tm(Gs) takes its maximum value if we set s := 3 or r− s := 3
and takes its minimum value if we set s := 2 or r− s := 2. That means, we prove
the assertion for this case too.

By the following proposition we determine the extremal graphs obtained from
identifying two non-adjacent vertices of a graph on two distinct vertices of a
cycle.

Proposition 5. Let H be a simple graph and Cr = w0w1 . . . wr−1w0 be a cycle

of length r (r ≥ 4), where V (H) ∩ V (Cr) = ∅. Let u and v be two non-adjacent

and non-isolated vertices of H. Suppose that Gs := H ⊲ u = w0, v = ws ⊳ Cr

where 1 ≤ s ≤ r − 1.

(1) If H ∼= P3, then tm(Gs) = f(r + 3) for all s = 1, . . . , r − 1.

(2) If H ≇ P3 and 4 ≤ r ≤ 5, then tm(Gs) ≤ tm(G1) with equality holding if and

only if s = 1 or s = r − 1.

(3) If H ≇ P3, r ≥ 6, and s /∈ {1, r − 1}, then tm(Gs) ≤ tm(G3) < tm(G1) =
tm(Gr−1) with equality holding if and only if s = 3 or s = r − 3.

(4) If H ≇ P3 and r ≥ 4, then tm(G2) ≤ tm(Gs) with equality holding if and

only if s = 2 or r − s = 2.

Proof. If H ∼= P3 then u and v are the end vertices of H. Let us denote the
internal vertex ofH by w. It follows that tm(Gs) = tm(Gs−w)+tm(Gs−{w, u})+
tm(Gs−{w, v}) = tm(Cr)+ tm(Pr−1)+ tm(Pr−1) = f(r− 1)+ f(r+1)+2f(r) =
f(r + 3).

Now, suppose that H ≇ P3 and dH(u) = p (p ≥ 1) and dH(v) = q (q ≥ 1).
Assume that NH(u) = {ui|i = 1, . . . , p} and NH(v) = {vj |j = 1, . . . , q}. Let us
denote the vertices obtained from identifying u on w0 and v on ws by u′ and
v′, respectively. The following relations follow by recursively deleting the edges
in {u′u1, . . . , u

′up} at the first step and then recursively deleting the edges in
{v′v1, . . . , v

′vq} at the second step.
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tm(Gs) = tm(Gs − u′u1) + tm(Gs − {u′, u1})

= tm(Gs − {u′u1, u
′u2}) + tm(Gs − {u′u1, u

′, u2})

+ tm(Gs − {u′, u1}) = · · ·

= tm

(

Gs −
⋃p

i=1
{u′ui}

)

+
∑p

i=1
tm(Gs − {u′, ui})

= · · ·

= tm

(

Gs −
⋃p

i=1

⋃q

j=1
{u′ui, v

′vj}
)

+
∑q

j=1
tm

(

Gs −
⋃p

i=1
{u′ui, v

′, vj}
)

+
∑p

i=1
tm

(

Gs −
⋃q

j=1

vj 6=ui

{u′, ui, v
′vj}

)

+
∑p

i=1

∑q

j=1

vj 6=ui

tm(Gs − {u′, ui, v
′, vj})

= tm(H − {u, v})tm(Cr)

+
(

∑q

j=1
tm(H − {u, v, vj}) +

∑p

i=1
tm(H − {u, v, ui})

)

tm(Pr−1)

+
∑p

i=1

∑q

j=1

vj 6=ui

tm(H − {u, v, ui, vj})tm(Ps−1)tm(Pr−s−1).

Therefore,

tm(Gs) = tm(H − {u, v})(f(r + 1) + f(r − 1)) + (
∑q

j=1
tm(H − {u, v, vj})

+
∑p

i=1
tm(H − {u, v, ui}))f(r)

+
∑p

i=1

∑q

j=1

vj 6=ui

tm(H − {u, v, ui, vj})f(s)f(r − s).

Analysis similar to that in the proof of the preceding proposition proves the
assertion.

The following theorem presents a transformation for the increasing number of
matchings of a generalized-theta-graph in Θn

k .

Theorem 6. Suppose that k ≥ 3 and G ∼= θn{s1,s2,...,sk} is a generalized-theta-

graph in Θn
k .

(1) If 1 /∈ {s1, s2, . . . , sk}, then tm

(

θn
⊎k
m=1,m 6=i,j

{sm}⊎{1,si+sj−1}

)

> tm(G), for

all 1 ≤ i < j ≤ k.

(2) If 1 ∈ {s1, s2, . . . , sk} and for some 1 ≤ i < j ≤ k, si, sj /∈ {1, 3} and

si + sj > 5, then tm

(

θn
⊎k
m=1,m 6=i,j

{sm}⊎{3,si+sj−3}

)

> tm(G).
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Proof. Suppose that u and v are the end vertices of G. Assume that k ≥ 4 and
P ′ and P ′′ are two arbitrary paths of P(G) of lengths si and sj , respectively,
such that 1 /∈ {s1, s2}. Let H = G − (V [P ′] ∪ V [P ′′]). Suppose that P1 =
x0x1 . . . xsi and P2 = y0y1 . . . ysj are two paths that are isomorphic with P ′ and
P ′′ respectively, such that {x0, x1, . . . , xsi} ∩ {y0, y1, . . . , ysj} = ∅. Obviously,
P1⊲x0 = y0, xsi = ysj ⊳P2 is a cycle of length si+ sj . Let us denote the vertices
obtained from identifying x0 on y0 and xsi on ysj by w and z, respectively.
Therefore, G ∼= H ⊲ u = w, v = z ⊳C. Since u and v are non-isolated vertices of
H, by using of Propositions 4 and 5 we complete the proof of this case.
Now assume that k = 3 and G ∼= θn{s1,s2,s3}. Suppose that P is a shortest path

in P(G) of length s for some s ∈ {s1, s2, s3}. Let H ∼= Ps+1 whose end vertices
are denoted by w and z. Obviously, H ′ := G− V [P ] is a cycle and G ∼= H ⊲w =
u, z = v ⊳H ′. Therefore, if s = 1 by Proposition 4 and if s > 1 by Proposition 5
the assertion follows for this case too.

A transformation for decreasing the number of matchings of generalized-theta-
graphs in Θn

k is summarized by the following theorem. It can be proved by
Propositions 4 and 5 and a similar method shown in the proof of the previous
theorem.

Theorem 7. Suppose that k ≥ 3 and G ∼= θn{s1,s2,...,sk} is a generalized-theta-graph

in Θn
k . If 1 ≤ i < j ≤ k and 2 /∈ {si, sj}, then tm

(

θn
⊎k
m=1,m 6=i,j

{sm}⊎{2,si+sj−2}

)

<

tm(G).

4. Characterizing the Extremal Generalized-theta-graphs in Θn
k

In this section, we determine the sharp upper bound and the sharp lower bound
for the number of matchings of generalized-theta-graphs in Θn

k . In addition,
the generalized-theta-graphs with respect to the bounds are characterized. By
the following lemma, we calculate the number of matchings of generalized-theta-
graphs in Θn

k .

Lemma 8. Let G = θn{s1,s2,...,sk} be a generalized-theta-graph in Θn
k ,

(1) If 1 /∈ {s1, . . . , sk}, then

tm(G) =
∏k

i=1 f(si) + 2
∑k

t=1 f(st − 1)
∏k

i=1,i 6=t f(si)

+2
∑k

i=1,j<i f(si − 1)f(sj − 1)
∏k

t=1,t 6=i,j f(st)

+
∑k

t=1 f(st − 2)
∏k

i=1,i 6=t f(si).

(2) If 1 ∈ {s1, . . . , sk}, then
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tm(G) = 2
∏k−1

i=1 f(si) + 2
∑k−1

t=1 f(st − 1)
∏k−1

i=1,i 6=t f(si)

+2
∑k−1

i=1,j<i f(si − 1)f(sj − 1)
∏k−1

t=1,t 6=i,j f(st)

+
∑k−1

t=1 f(st − 2)
∏k−1

i=1,i 6=t f(si).

n-2k+4P

.

..

v u 

{1,3,…,3,n-2k+3}
      

n

Figure 2. The extremal n-vertex generalized-theta-graph

with the maximum number of matchings.

Proof. Let P i (for i = 1, . . . , k) denote the path of length si and u and v be two
end vertices of θn{s1,s2,...,sk}. We denote the vertices adjacent to u and v in P i by

ui,1 and vi,1, respectively. The second part of Lemma 1 and deleting the vertices
u and v, we have the following.

tm(G) = tm(G− u) +
∑k

t=1
tm(G− {u, ut,1})

= tm(G− {u, v}) +
∑k

t=1
tm(G− {u, v, vt,1})

+
∑k

t=1
tm(G− {u, v, ut,1}) +

∑k

t=1

∑k

j=1

j 6=t

tm(G− {u, v, ut,1, vj,1})

+
∑k

t=1
tm(G− {u, v, ut,1, vt,1})

=
∏k

i=1
tm(Psi−1) +

∑k

t=1

(

tm(Pst−2)
∏k

i=1

i 6=t

tm(Psi−1)

)

+
∑k

t=1

(

tm(Pst−2)
∏k

i=1

i 6=t

tm(Psi−1)

)

+ 2
∑k

t=1

j<t

(

tm(Pst−2)tm(Psj−2)
∏k

i=1

i 6=t,j

tm(Psi−1)

)

+
∑k

t=1

(

tm(Pst−3)
∏k

i=1

i 6=t

tm(Psi−1)

)

=
∏k

i=1
f(si) + 2

∑k

t=1
f(st − 1)

∏k

i=1

i 6=t

f(si)
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+ 2
∑k

t=1

j<t

f(st − 1)f(sj − 1)
∏k

i=1

i 6=t,j

f(si) +

k
∑

t=1

(f(st − 2))
∏k

i=1

i 6=t

f(si).

Similar arguments apply to the other case of the lemma.

The following theorem determines the sharp upper bound for the number of
matchings of the generalized-theta-graphs in Θn

k . The bound is stated in terms of
n (the number of vertices of the graph) and k (the number of internally disjoint
paths of the graph). It also shows that θn{1,3,...,3,n−2k+3} (see Figure 2) is the unique
extremal generalized-theta-graph in Θn

k with maximum number of matchings.

Theorem 9. If G is an arbitrary generalized-theta-graph in Θn
k and n > 2k− 2,

then

tm(G) ≤ tm

(

θn{1,3,...,3,n−2k+3}

)

=
(

2k−1 + (k − 2)2k−2 + (k − 2)(k − 3)2k−3 + (k − 2)2k−3
)

f(n− 2k + 3)

+
(

2k−1 + (k − 2)2k−2
)

f(n− 2k + 2) + 2k−2f(n− 2k + 1),

with equality holding if and only if G ∼= θn{1,3,...,3,n−2k+3}.

Proof. By using recursively Theorem 6 and Lemma 8 the assertion follows.

.

..

n-k+1P{
2,2,…,2,n-k }       

n 

u v 

Figure 3. The extremal n-vertex generalized-theta-graph

with the minimum number of matchings.

The following theorem determines the sharp lower bound in terms of n (the
number of vertices of a graph) and k (the number of internally disjoint paths
of a graph). It characterizes the smallest generalized-theta-graph in Θn

k with
respect to the number of matchings. It shows that θn{2,2,...,2,n−k} is the unique

generalized-theta-graph in Θn
k with minimum number of matchings see (Figure

3).
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Theorem 10. If G is an arbitrary generalized-theta-graph in Θn
k and n ≥ k+2,

then

tm(G) ≥ tm(θn{2,2,...,2,n−k})

= (k2 − k + 1)f(n− k) + (k + 1)f(n− k − 1) + f(n− k − 2),

with equality holding if and only if G ∼= θn{2,2,...,2,n−k}.

Proof. By using recursively Theorem 7 and Lemma 8 the assertion follows.
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