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On the Poisson-transmuted exponential distribution and its 
application to frequency of claim in actuarial science 

Shamsul Rijal Muhammad Sabri1, Ademola Abiodun Adetunji2 

Abstract 

This study proposes a new discrete distribution in the mixed Poisson paradigm to obtain 
a distribution that provides a better fit to skewed and dispersed count observation with 
excess zero. The cubic transmutation map is used to extend the exponential distribution, and 
the obtained continuous distribution is assumed for the parameter of the Poisson 
distribution. Various moment-based properties of the new distribution are obtained. The 
Nelder-Mead algorithm provides the fastest convergence iteration under the maximum 
likelihood estimation technique. The shapes of the proposed new discrete distribution are 
similar to those of the mixing distribution. Frequencies of insurance claims from different 
countries are used to assess the performance of the new proposition (and its zero-inflated 
form). Results show that the new distribution outperforms other competing ones in most 
cases. It is also revealed that the natural form of the new distribution outperforms its zero-
inflated version in many cases despite having observations with excess zero counts. 
Key words: mixed Poisson-exponential distribution, skewed count data, dispersed 
observation, zero-inflated model, claim frequency. 

1.  Introduction 

Distributions that were well regarded in the past have been improved recently, 
especially with the advent of software and programming languages that make 
mathematical computations easier. The situation has provided an enabling platform for 
introducing more complex distributions that better-fit observations.  

In compounding baseline distributions, different techniques have been developed. 
Among them are: quadratic transmutation (Shaw & Buckley, 2007); beta-extended 
generalized (Alexander et al., 2012); exponentiated generalized (Yousof et al., 2015); 
transmuted exponentiated generalized (Shehata et al., 2021); alpha-power 
transformation (Mahdavi & Kundu, 2017); and various forms of cubic rank 
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transmutations (Al-kadim, 2018; Aslam et al., 2018; Granzotto et al., 2017; Rahman et 
al., 2019). 

The classical Poisson distribution is popular among distributions for discrete 
observations. The distribution assumes equidispersion (equality of mean and variance). 
In many cases, count data are overdispersed (Nikoloulopoulos & Karlis, 2008), 
especially the frequency of claims in actuary science (Adcock et al., 2015; Adetunji & 
Sabri, 2021; Omari et al., 2018) with attending excess zero counts. Assuming the 
Poisson for such observation may lead to model misspecification. This has led to the 
development of several techniques to model skewed and overdispersed count data, such 
as the negative binomial. The negative binomial distributions come from the mixed 
Poisson paradigm when the gamma distribution is assumed for the parameter of the 
Poisson (Greenwood & Yule, 1920). Several other continuous distributions with 
positive supports have been assumed for the Poisson parameter (Al-Awadhi & Ghitany, 
2001; Bhati et al., 2015, 2017; Das et al., 2018; Gómez-Déniz & Calderín-Ojeda, 2016; 
Mahmoudi & Zakerzadeh, 2010). 

If a discrete random variable 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ሻ and 𝜆~𝜋ሺ𝜆ሻ where 𝜋ሺ𝜆ሻ is the 
probability distribution function (PDF) with positive supports, a mixed Poisson 
distribution (with 𝜋ሺ𝜆ሻ as the mixing distribution) is obtained when the unconditional 
distribution for X is expressed from equation (1). 

𝑃௫ ൌ  𝑓ሺ𝑥|𝜆ሻ
ஶ
 𝜋ሺ𝜆ሻ 𝑑𝜆         (1) 

With a scale parameter θ, the distribution function (CDF) of a random variable 𝜆 
with the classical exponential distribution is defined in equation (2) as: 

𝐺ሺ𝜆ሻ ൌ 1 െ 𝑒ିఏఒ          (2) 

Leveraging on the skewness and unimodality properties of transmuted exponential 
distribution (which also characterize observations in claim frequency (Karlis & 
Xekalaki, 2005)), this research extends the classical exponential distribution using the 
cubic transmutation map (Al-kadim, 2018). If the baseline CDF is as given in equation 
(2) and 𝜌 is the transmutation parameter, the CDF of the cubic rank transmutation map 
due to (Al-kadim, 2018) is defined in equation (3) as: 

𝜋ሺ𝜆ሻ ൌ ሺ1  𝜌ሻ𝐺ሺ𝜆ሻ െ 2𝜌൫𝐺ሺ𝜆ሻ൯
ଶ
 𝜌൫𝐺ሺ𝜆ሻ൯

ଷ
, 𝜆  0, |𝜌|  1    (3) 

The classical exponential distribution serves as baseline distribution in diverse 
fields of study. In probability theory and applications, extended exponential 
distribution has enjoyed patronage (Yang et al., 2021). This spans different fields of 
study, including environmental, economic, reliability, and industrial (Aguilar et al., 
2019; Rasekhi et al., 2017). 
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2.  Materials and Methods 

Cubic Rank Transmuted Exponential Distribution (CRTED) 
The distribution is obtained when the transmutation map in equation (3) is used to 

extend the exponential distribution given in equation (2). This gives the Cubic Rant 
Transmuted Exponential Distribution (CRTED) with the CDF and PDF given 
in equations (4) and (5) as: 

𝐹ሺ𝜆ሻ ൌ 1 െ 𝑒ିఏఒ  𝜌𝑒ିଶఏఒ െ 𝜌𝑒ିଷఏఒ        (4) 
𝑓ሺ𝜆ሻ ൌ 𝜃𝑒ିఏఒ൫1 െ 2𝜌𝑒ିఏఒ  3𝜌𝑒ିଶఏఒ൯       (5) 

 
The corresponding survival and hazard rate functions are respectively given 

in equation (6) and (7) as: 
𝑆ሺ𝜆ሻ ൌ 𝑒ିఏఒ െ 𝜌𝑒ିଶఏఒ  𝜌𝑒ିଷఏఒ        (6) 

ℎሺ𝜆ሻ ൌ
ఏ൫ଵିଶఘషഇഊାଷఘషమഇഊ൯

ଵିఘషഇഊାఘషమഇഊ
          (7) 

 

 
Figure 1:  Shapes of the PDF CRTED 

 
Figure 1 shows the shapes of the PDF of the CRTED for different values of 𝜃 and 

𝜌. The figure shows that the PDF is a monotonically decreasing function. 

 

rth Moment of the CRTED 

Proposition 1: If a random variable λ has a CRTED, the rth moment is defined 
in equation (8) as:  

𝐸ሺ𝜆ሻ ൌ ቀ1 െ
𝓅

ଶೝ


𝓅

ଷೝ
ቁ
!

ఏೝ
                   (8) 
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Proof: 

𝐸ሺ𝜆ሻ ൌ න 𝜆𝑓ሺ𝜆ሻ

ஶ



𝑑𝜆 ൌ න 𝜆
ஶ



൫𝜃𝑒ିఏఒ െ 2𝜌𝜃𝑒ିଶఏఒ  3𝜌𝜃𝑒ିଷఏఒ൯𝑑𝜆 

ൌ 𝜃න 𝜆𝑒ିఏఒ
ஶ



𝑑𝜆 െ 2𝜌𝜃න 𝜆𝑒ିଶఏఒ
ஶ



𝑑𝜆  3𝜌𝜃න 𝜆𝑒ିଷఏఒ
ஶ



𝑑𝜆 

 ൌ
𝑟!
𝜃

െ
𝜌𝑟!
ሺ2𝜃ሻ


𝜌𝑟!
ሺ3𝜃ሻ

ൌ ቀ1 െ
𝜌
2

𝜌
3
ቁ
𝑟!
𝜃

 

Moment Generating Function of the CRTED 
Proposition 2: If a random variable λ has a CRTED, the MGF is defined in equation (9) as: 

𝐸൫𝑒௧ఒ൯ ൌ
ఏ

ఏି௧
െ

ଶఘఏ

ଶఏି௧


ଷఘఏ

ଷఏି௧
                    (9) 

Proof: 

 𝐸൫𝑒௧ఒ൯ ൌ න 𝑒௧ఒ
ஶ



൫𝜃𝑒ିఏఒ െ 2𝜌𝜃𝑒ିଶఏఒ  3𝜌𝜃𝑒ିଷఏఒ൯ 𝑑𝜆 

ൌ න 𝜃𝑒ିሺఏି௧ሻఒ െ 2𝜌𝜃𝑒ିሺଶఏି௧ሻఒ  3𝜌𝜃𝑒ିሺଷఏି௧ሻఒ
ஶ



𝑑𝜆 

ൌ 𝜃න 𝑒ିሺఏି௧ሻఒ
ஶ



𝑑𝜆 െ 2𝜌𝜃න 𝑒ିሺଶఏି௧ሻఒ
ஶ



𝑑𝜆  3𝜌𝜃න 𝑒ିሺଷఏି௧ሻఒ
ஶ



𝑑𝜆 

ൌ
𝜃

𝜃 െ 𝑡
െ

2𝓅𝜃
2𝜃 െ 𝑡


3𝓅𝜃

3𝜃 െ 𝑡
 

3.  Poisson Crted 

PMF of the Poisson CRTED 
Proposition 3: If a discrete random variable 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ሻ and 𝜆~𝐶𝑅𝑇𝐸𝐷ሺ𝜌,𝜃ሻ 
then the PMF of X has a Poisson-CRTED if its PMF is defined in equation (10) as: 

𝑃௫ ൌ
ఏ

ሺଵାఏሻೣశభ
െ

ଶఘఏ

ሺଵାଶఏሻೣశభ


ଷఘఏ

ሺଵାଷఏሻೣశభ
                   (10) 

Proof 

Since 𝑓ሺ𝑥|𝜆ሻ ൌ
ఒೣషഊ

௫!
,  𝜋ሺ𝜆ሻ ൌ 𝜃𝑒ିఏఒ൫1 െ 2𝜌𝑒ିఏఒ  3𝜌𝑒ିଶఏఒ൯ 

 𝑃௫ ൌ  𝑓ሺ𝑥|𝜆ሻ
ஶ
 𝜋ሺ𝜆ሻ 𝑑𝜆  

 ൌ 
ఒೣషഊ

௫!
.

ஶ
 𝜃𝑒ିఏఒ൫1 െ 2𝜌𝑒ିఏఒ  3𝜌𝑒ିଶఏఒ൯𝑑𝜆 

 ൌ ఏ

௫!
 𝜆௫𝑒ିሺଵାఏሻఒ൫1 െ 2𝜌𝑒ିఏఒ  3𝜌𝑒ିଶఏఒ൯𝑑𝜆
ஶ
  

 ൌ ఏ

௫!
 ቀ

ଵ

ሺଵାఏሻೣశభ
𝑢௫𝑒ି௨ െ

ଶఘ

ሺଵାଶఏሻೣశభ
𝑢௫𝑒ି௨ 

ଷఘ

ሺଵାଷఏሻೣశభ
𝑢௫𝑒ି௨ቁ 𝑑𝑢

ஶ
  

 ൌ ఏ

ሺଵାఏሻೣశభ
െ

ଶఘఏ

ሺଵାଶఏሻೣశభ


ଷఘఏ

ሺଵାଷఏሻೣశభ
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Shapes of the PMF of the Poisson CRTED in Figure 2 show that the distribution is 
unimodal with the ability to model positively skewed observation with excess zero 
counts. 
 

 
Figure 2:  Shapes of the PMF of the Poisson CRTED 

 

Mathematical Properties of the Poisson CRTED 
3.1.  Probability Generating Function: The PGF of a random variable X with the 
Poisson-CRTED is obtained in equation (11). 

𝑃௫ሺ𝑧ሻ ൌ න 𝑒ఒሺ௭ିଵሻ 𝜋ሺ𝜆ሻ𝑑𝜆

ஶ



 

ൌ න 𝑒ఒሺ௭ିଵሻ𝜃𝑒ିఏఒ൫1 െ 2𝜌𝑒ିఏఒ  3𝜌𝑒ିଶఏఒ൯𝑑𝜆

ஶ



 

ൌ 𝜃න൫𝑒ିሺଵି௭ାఏሻఒ െ 2𝜌𝑒ିሺଵି௭ାଶఏሻఒ  3𝜌𝑒ିሺଵି௭ାଷఏሻఒ൯𝑑𝜆

ஶ



 

Therefore, 
𝑃௫ሺ𝑧ሻ ൌ

ఏ

ଵାఏି௭
െ

ଶఘఏ

ଵାଶఏି௭


ଷఘఏ

ଵାଷఏି௭
         (11) 

3.2.  Moment Generating Function: The MGF is obtained in equation (12) by 
replacing z with 𝑒௧ in (11). 

𝑀ሺ𝑡ሻ ൌ
ఏ

ଵାఏି
െ

ଶఘఏ

ଵାଶఏି


ଷఘఏ

ଵାଷఏି
         (12) 
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3.3.  Mean and Variance: The mean and variance of the Poisson-CRTED are 
respectively obtained in equations (13) and (14) as: 

𝐸ሺ𝑋ሻ ൌ
ିఘ

ఏ
           (13) 

𝑉𝑎𝑟ሺ𝑋ሻ ൌ
ଷାଶఘିఘమିఘఏାଷఏ

ଷఏమ
         (14) 

The Coefficient of Variation and the Dispersion Index are given in equations (15) 
and (16). 

𝐶𝑉ሺ𝑋ሻ ൌ
ඥଷାଶఘିఘమିఘఏାଷఏ

ିఘ
         (15) 

𝐷𝐼ሺ𝑋ሻ ൌ
ଷାଶ𝓅ି𝓅మି𝓅ఏାଷఏ

ఏሺି𝓅ሻ
         (16) 

3.4.  Skewness and Kurtosis: The first four raw moments for a random variable with 
the Poisson-CRTED are presented in equations (17) to (20). 

𝐸ሺ𝑋ሻ ൌ
ିఘ

ఏ
                (17) 

𝐸ሺ𝑋ଶሻ ൌ
ଷିହఘାଵ଼ఏିଷఘఏ

ଵ଼ఏమ
            (18) 

𝐸ሺ𝑋ଷሻ ൌ
ଶଵିଵଽఘାሺଶଵିଷఘሻఏାሺଷିఘሻఏమ

ଷఏయ
        (19) 

𝐸ሺ𝑋ସሻ ൌ
ଵଶଽିହఘାሺହସିଽఘሻఏయାሺହିଵହఘሻఏమାሺଵଽସସିଵଵఘሻఏ

ହସఏర
   (20) 

The skewness and kurtosis for the Poisson CRTED are given in equations (21) and 
(22) as: 

𝑆ሺ𝑋ሻ ൌ
ଶሺଶଵାଷଷఘାଷఘమିఘయାሺଷଶସାଵ଼ఘିଽఘమሻఏାሺଵ଼ିଵ଼ఘሻఏమሻ

ሺଷାଶఘିఘమାሺଷିఘሻఏሻ
య
మ

                  (21) 

𝐾ሺ𝑋ሻ ൌ
ଵଶଽሺଵାఏሻሺଽାଽఏାఏమሻିଷఘరାଵଶఘయሺଵିଷఏሻାଶସఘమሺଶିଷఏିఏమሻା଼ఘሺଶଵିଶఏయିଽଽఏమାଵ଼ଽఏሻ

ሺఘమାሺఏିଶሻఘିଷఏିଷሻమ
  

   (22) 

Tables 1–3 show simulated Skewness, Kurtosis, and Dispersion Index for selected 
parameters of the Poisson CRTED  

Table 1:  Skewness for some parameters of the Poisson-CRTED 

Specification 𝜃 ൌ 0.1 𝜃 ൌ 2.0 𝜃 ൌ 10 

𝜌 ൌ െ0.9 1.920 2.056 3.300 

𝜌 ൌ െ0.5 1.938 2.162 3.433 

𝜌 ൌ 0.0 2.002 2.309 3.618 

𝜌 ൌ 0.5 2.108 2.478 3.827 

𝜌 ൌ 0.9 2.222 2.632 4.016 
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Table 2:  Kurtosis for some parameters of the Poisson-CRTED 

Specification 𝜃 ൌ 0.1 𝜃 ൌ 2.0 𝜃 ൌ 10 

𝜌 ൌ െ0.9 8.928 8.908 15.366 
𝜌 ൌ െ0.5 8.877 9.479 16.476 
𝜌 ൌ 0.0 9.009 10.333 18.091 
𝜌 ൌ 0.5 9.360 11.387 20.028 
𝜌 ൌ 0.9 9.813 12.415 21.879 

Table 3:  Dispersion Index for some parameters of the Poisson-CRTED 

Specification 𝜃 ൌ 0.1 𝜃 ൌ 2.0 𝜃 ൌ 10 

𝜌 ൌ െ0.9 9.065 1.403 1.081 
𝜌 ൌ െ0.5 9.910 1.446 1.089 
𝜌 ൌ 0.0 11.000 1.500 1.100 
𝜌 ൌ 0.5 12.136 1.557 1.111 
𝜌 ൌ 0.9 13.088 1.604 1.121 

 
Remarks: 

i. For fixed 𝜌, both skewness and kurtosis increase as 𝜃 increases. 
ii. For fixed 𝜌, the dispersion index decreases as 𝜃 increases. 

iii. For fixed 𝜃, both skewness and kurtosis increase as 𝜌 increases. 
iv. For fixed 𝜃, the dispersion index slowly increases as 𝜌 increases. 

Maximum Likelihood Estimation of the Poisson-CRTED 
Assuming 𝑥ଵ, 𝑥ଶ, … , 𝑥 are a random sample of size n from the Poisson-CRTED, 

the log-likelihood function of the distribution is obtained in equation (23) as: 

ℒ ൌෑ𝑃ሺ௫ሻ



ୀଵ

ൌෑ൬
𝜃

ሺ1  𝜃ሻ௫ାଵ
െ

2𝜌𝜃
ሺ1  2𝜃ሻ௫ାଵ


3𝜌𝜃

ሺ1  3𝜃ሻ௫ାଵ
൰



ୀଵ

 

ℓ ൌ 𝑙𝑜𝑔 ℒ ൌ ∑ 𝑙𝑜𝑔 ቀ
ఏ

ሺଵାఏሻೣశభ
െ

ଶఘఏ

ሺଵାଶఏሻೣశభ


ଷఘఏ

ሺଵାଷఏሻೣశభ
ቁ

ୀଵ       (23) 

Equation (23) gives a non-linear model that can be solved numerically with 
different algorithms from the optimr (Nash et al., 2019) from the R language (R-Core 
Team, 2020).  

4.  Zero-Inflated Poisson-Crted 

Proposition 4: If a discrete random variable X has a Poisson-CRTED with PMF 
denoted by 𝑃௫, if the inflation parameter is denoted with 𝜏, the PMF of the zero-inflated 
Poisson-CRTED is given in equation (24). 

𝑃௫ூ ൌ ൜
𝜏  ሺ1 െ 𝜏ሻ𝑃, 𝑥 ൌ 0

ሺ1 െ 𝜏ሻ𝑃௫, 𝑥 ൌ 1,2,3, …
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This is obtained as: 

𝑃௫ூ ൌ ቐ
𝜏  ሺ1 െ 𝜏ሻ ቀ

ఏ

ሺଵାఏሻ
െ

ଶఘఏ

ሺଵାଶఏሻ


ଷఘఏ

ሺଵାଷఏሻ
ቁ , 𝑥 ൌ 0

ሺ1 െ 𝜏ሻ ቀ
ఏ

ሺଵାఏሻೣశభ
െ

ଶఘఏ

ሺଵାଶఏሻೣశభ


ଷఘఏ

ሺଵାଷఏሻೣశభ
ቁ , 𝑥 ൌ 1,2,3, …

   

(24) 
Proof 

Since the PMF of the Poisson CRTED is given as: 𝑃௫ ൌ
ఏ

ሺଵାఏሻೣశభ
െ

ଶఘఏ

ሺଵାଶఏሻೣశభ


ଷఘఏ

ሺଵାଷఏሻೣశభ
 and 𝑃 ൌ

ఏ

ሺଵାఏሻ
െ

ଶఘఏ

ሺଵାଶఏሻ


ଷఘఏ

ሺଵାଷఏሻ
, hence the result. 

Mathematical Properties of the Zero-Inflated Poisson CRTED 

The PGF of the Zero-Inflated Poisson CRTED denoted by 𝑃௫ூሺ𝑧ሻ is obtained using: 

𝑃௫ூሺ𝑧ሻ ൌ ሺ1 െ 𝜏ሻ𝑃௫ሺ𝑧ሻ where 𝑃௫ሺ𝑧ሻ is the PGF of the Poisson CRTED in equation (11). 
Hence, the PGF of the ZI-Poisson CRTED is given in equation (25) as:  

𝑃௫ூሺ𝑧ሻ ൌ ሺ1 െ 𝜏ሻ ቀ
ఏ

ଵାఏି௭
െ

ଶఘఏ

ଵାଶఏି௭


ଷఘఏ

ଵାଷఏି௭
ቁ      (25) 

The MGF is therefore expressed in equation (26) as: 

𝑀
ூሺ𝑡ሻ ൌ ሺ1 െ 𝜏ሻ ቀ

ఏ

ଵାఏି
െ

ଶఘఏ

ଵାଶఏି


ଷఘఏ

ଵାଷఏି
ቁ      (26) 

If the rth moment of the Poisson CRTED is denoted by 𝐸ሺ𝑋ሻ, then the rth moment 
of the ZI-Poisson CRTED is defined as: 
𝑚 ൌ 𝐸ሺ𝑋ூ

 ሻ ൌ ሺ1 െ 𝜏ሻ𝐸ሺ𝑋ሻ 

Hence, the first four moments of the ZI-Poisson CRTED are given in equations 
(27) – (30). 

𝑚ଵ ൌ ሺ1 െ 𝜏ሻ
ିఘ

ఏ
                 (27) 

𝑚ଶ ൌ ሺ1 െ 𝜏ሻ
ଷିହఘାଵ଼ఏିଷఘఏ

ଵ଼ఏమ
              (28) 

𝑚ଷ ൌ ሺ1 െ 𝜏ሻ
ଶଵିଵଽఘାሺଶଵିଷఘሻఏାሺଷିఘሻఏమ

ଷఏయ
         (29) 

𝑚ସ ൌ ሺ1 െ 𝜏ሻ
ଵଶଽିହఘାሺହସିଽఘሻఏయାሺହିଵହఘሻఏమାሺଵଽସସିଵଵఘሻఏ

ହସఏర
     (30) 

MLE of the Parameters of the ZI-Poisson CRTED 
If a random variable X is assumed to follow the ZI-Poisson CRTED with its PMF 

𝑃௫ indexed with ሺ𝜃,𝜌ሻ, and 𝜏 as the zero-inflation parameter, then the likelihood 
function is defined as: 

ℒሺ𝜏,Θሻ ൌෑሺ𝜏  ሺ1 െ 𝜏ሻ𝑃ሻ
బ

ෑ൫ሺ1 െ 𝜏ሻ𝑃ሺ𝑥  0ሻ൯
భ
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where 𝑛 is the frequency of zero counts in the dataset; 𝑛ଵ is the frequency of non-zero 
counts; 𝑛 ൌ ሺ𝑛  𝑛ଵሻ, 𝑃 is the realization of at 𝑥 ൌ 0. The log-likelihood function is 
obtained as follows: 

ℓ ൌ 𝑛 lnሺ𝜏  ሺ1 െ 𝜏ሻ𝑃ሻ  𝑛ଵ lnሺ1 െ 𝜏ሻ  ቌ lnሺ𝑃௫ሻ
భ

ቍ 

ൌ 𝑛 lnቆ𝜏  ሺ1 െ 𝜏ሻ ቀ
ఏ

ሺଵାఏሻ
െ

ଶఘఏ
ሺଵାଶఏሻ


ଷఘఏ

ሺଵାଷఏሻ
ቁቇ  𝑛ଵ lnሺ1 െ 𝜏ሻ  ∑ lnቆቀ

ఏ
ሺଵାఏሻೣశభ

െభ

ଶఘఏ
ሺଵାଶఏሻೣశభ


ଷఘఏ

ሺଵାଷఏሻೣశభ
ቁቇ  

𝜕ℓ
𝜕𝜏

ൌ
𝑛ሺ1 െ 𝑃ሻ

𝜏  ሺ1 െ 𝜏ሻ𝑃
െ

𝑛ଵ
ሺ1 െ 𝜏ሻ

 

�̂� ൌ
𝑛
𝑛ଵ
െ
𝑛ଵ
𝑛
൬

𝑃
1 െ 𝑃

൰ 

The MLE for parameters ሺ𝜏,𝜃,𝜌ሻ is obtained numerically by solving డℓ
డఛ
ൌ 0,  

డℓ

డఏ
ൌ 0 and డℓ

డఘ
ൌ 0. Among competing algorithms for optimizations that come with the 

optimr packages  (Nash et al., 2019) in R language (R-Core Team, 2020), the Nelder-
Mead provides the fastest iterations for convergence and the least log-likelihood values. 

Competing Distributions  
The new propositions are assessed by comparing their performances with the 

(i) Poisson, (ii) Zero Inflated Poisson (ZIP), (iii) Negative Binomial (Neg. Bin.), and 
(iv) Zero Inflated Negative Binomial (ZI-Neg. Bin.) distributions.  

5.  Simulation Studies 

The new proposition is assessed in this study by simulating count observations with 
similar characteristics to the claim frequency in actuaries. The simulated data are based 
on the assumption that a policyholder may not report more than 4 claims in a reference 
period (usually a year). The algorithm utilized for the simulation is: 
i. Specify the proportion of zero in each sample (P0 = 0.5, 0.7, 0.9) 
ii. Simulate a random sample of size n (n = 50, 250, 500, and 1000) 
iii. Obtain parameter estimates and log-likelihood for each assumed distribution. 

Table 4:  Results for simulated data when P0 = 0.50 

Sample Size Distribution Parameter Estimates –LL 

n = 50 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.341; 𝜌ො ൌ െ0.771 
𝜃 ൌ 20.060; 𝜌ො ൌ 5.867; �̂� ൌ െ716.5 
𝜃 ൌ 0.840 
𝜃 ൌ 1.247; �̂� ൌ 0.327 
𝜃 ൌ 1.543; 𝜌ො ൌ 0.647 
𝜃 ൌ 0.00004; 𝜌ො ൌ 0.357; �̂� ൌ െ117.2 

62.259 
65.594 
65.213 
61.232 
63.034 
63.188 
65.079 
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Table 4:  Results for simulated data when P0 = 0.50  (cont.) 

Sample Size Distribution Parameter Estimates –LL 

n = 250 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.209; 𝜌ො ൌ െ0.484 
𝜃 ൌ 1.256; 𝜌ො ൌ 0.696; �̂� ൌ 0.372 
𝜃 ൌ 0.892 
𝜃 ൌ 1.379; �̂� ൌ 0.353 
𝜃 ൌ 1.357; 𝜌ො ൌ 0.603 
𝜃 ൌ 0.763; 𝜌ො ൌ 0.518; �̂� ൌ 0.377 

323.713 
387.764 
339.839 
324.602 
326.427 
387.993 

n = 500 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.330; 𝜌ො ൌ െ0.647 
𝜃 ൌ 1.338; 𝜌ො ൌ െ0.006; �̂� ൌ 0.677 
𝜃 ൌ 0.832 
𝜃 ൌ 1.244; �̂� ൌ 0.331 
𝜃 ൌ 1.414; 𝜌ො ൌ 0.630 
𝜃 ൌ 1.072; 𝜌ො ൌ 0.588; �̂� ൌ 0.681 

628.953 
718.784 
653.206 
631.018 
629.484 
718.719 

n = 1000 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.377; 𝜌ො ൌ െ1.220 
𝜃 ൌ 1.365; 𝜌ො ൌ െ0.852; �̂� ൌ 0.838 
𝜃 ൌ 0.873 
𝜃 ൌ 1.192; �̂� ൌ 0.268 
𝜃 ൌ 1.785; 𝜌ො ൌ 0.672 
𝜃 ൌ 1.562; 𝜌ො ൌ 0.651; �̂� ൌ 0.838 

1284.447 
1404.054 
1322.324 
1293.749 
1285.411 
1403.110 

 

Table 5:  Results for simulated data when P0 = 0.70 

Sample Size Distribution Parameter Estimates –LL 

n = 50 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.891; 𝜌ො ൌ 0.788 
𝜃 ൌ 5.929; 𝜌ො ൌ 5.435; �̂� ൌ െ25.544 
𝜃 ൌ 0.460 
𝜃 ൌ 0.926; �̂� ൌ 0.503 
𝜃 ൌ 0.760; 𝜌ො ൌ 0.623 
𝜃 ൌ 0.0003; 𝜌ො ൌ 0.449; �̂� ൌ െ10.40 

43.395 
43.421 
47.622 
45.397 
45.425 
46.220 

n = 250 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.896; 𝜌ො ൌ 0.314 
𝜃 ൌ 2.039; 𝜌ො ൌ 2.445; �̂� ൌ െ0.047 
𝜃 ൌ 0.500 
𝜃 ൌ 0.912; �̂� ൌ 0.452 
𝜃 ൌ 0.911; 𝜌ො ൌ 0.646 
𝜃 ൌ 0.362; 𝜌ො ൌ 0.552; �̂� ൌ െ0.032 

236.621 
287.128 
248.799 
239.519 
238.655 
287.579 

n = 500 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.910; 𝜌ො ൌ 0.574 
𝜃 ൌ 1.969; 𝜌ො ൌ 1.559; �̂� ൌ 0.560 
𝜃 ൌ 0.474 
𝜃 ൌ 0.919; �̂� ൌ 0.484 
𝜃 ൌ 0.822; 𝜌ො ൌ 0.634 
𝜃 ൌ 0.539; 𝜌ො ൌ 0.587; �̂� ൌ 0.564 

461.388 
541.627 
483.392 
462.576 
462.559 
542.152 

n = 1000 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.879; 𝜌ො ൌ 0.776 
𝜃 ൌ 1.907; 𝜌ො ൌ 1.246; �̂� ൌ 0.791 
𝜃 ൌ 0.464 
𝜃 ൌ 0.938; �̂� ൌ 0.506 
𝜃 ൌ 0.755; 𝜌ො ൌ 0.619 
𝜃 ൌ 0.617; 𝜌ො ൌ 0.597; �̂� ൌ 0.792 

910.515 
1021.272 

958.230 
912.204 
913.020 

1022.125 
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Table 6:  Results for simulated data when P0 = 0.90 

Sample Size Distribution Parameter Estimates –LL 

n = 50 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 3.055; 𝜌ො ൌ 3.282 
𝜃 ൌ 11.610; 𝜌ො ൌ 5.759; �̂� ൌ െ34.25 
𝜃 ൌ 0.160 
𝜃 ൌ 1.027; �̂� ൌ 0.844 
𝜃 ൌ 0.144; 𝜌ො ൌ 0.473 
𝜃 ൌ 0.00005; 𝜌ො ൌ 0.392; �̂� ൌ െ14.41 

21.126 
25.230 
24.740 
21.039 
21.880 
26.255 

n = 250 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.811; 𝜌ො ൌ 4.072 
𝜃 ൌ 4.097; 𝜌ො ൌ 5.615; �̂� ൌ െ11.987 
𝜃 ൌ 0.208 
𝜃 ൌ 1.493; �̂� ൌ 0.861 
𝜃 ൌ 0.106; 𝜌ො ൌ 0.338 
𝜃 ൌ 0.00001; 𝜌ො ൌ 0.303; �̂� ൌ െ69.32 

122.289 
125.321 
156.709 
121.234 
122.435 
126.856 

n = 500 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 1.922; 𝜌ො ൌ 4.033 
𝜃 ൌ 3.752; 𝜌ො ൌ 5.471; �̂� ൌ െ5.372 
𝜃 ൌ 0.200 
𝜃 ൌ 1.440; �̂� ൌ 0.861 
𝜃 ൌ 0.108; 𝜌ො ൌ 0.350 
𝜃 ൌ 0.022; 𝜌ො ൌ 0.321; �̂� ൌ െ2.541 

238.213 
261.363 
302.900 
236.515 
240.191 
266.676 

n = 1000 

PCRTED 
ZI-PCRTED 
Poisson 
ZI-Poisson 
Neg. Bin. 
ZI-Neg. Bin. 

𝜃 ൌ 2.061; 𝜌ො ൌ 3.918 
𝜃 ൌ 2.500; 𝜌ො ൌ 4.501; �̂� ൌ 0.311 
𝜃 ൌ 0.193 
𝜃 ൌ 1.372; �̂� ൌ 0.859 
𝜃 ൌ 0.112; 𝜌ො ൌ 0.367 
𝜃 ൌ 0.066; 𝜌ො ൌ 0.351; �̂� ൌ 0.325 

462.265 
543.589 
587.124 
464.867 
473.291 
541.587 

 
When 50% of simulated data is zero, Table 4 reveals that the new proposition 

(PCRTED) provides the best fit in most cases across different sample sizes. The  
ZI-Poisson has a relatively better fit for small samples. It is also observed that the natural 
forms of the PCRTED and Neg. Bin. provide better fits than their respective zero-
inflated forms. 

Table 5 shows various statistics when the simulated data have a 70% proportion of 
zero counts. The ZI-Poisson has a relatively better fit for small samples. It is also 
observed that the natural forms of the PCRTED and Neg. Bin. provide better fits than 
their respective zero-inflated forms. 

Table 5 shows various statistics when the simulated data have 70% proportion of 
zero counts. The PCRTED, ZI-Poisson, and Neg. Bin. have relatively better fits than 
other competing distributions.  

When 90% of the simulated dataset are zero counts, the ZI-Poisson better fits 
smaller samples, while the PCRTED best fits larger samples, as shown in Table 6. 
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Generally, the –LL statistics increase as the sample size increases for a different 
proportion of zero counts, while it reduces as the proportion of zero counts increases. 

6.  Applications 

Four sets of claim frequency from different countries are assessed for model 
comparisons in the study. The first dataset represents claim frequency from automobile 
injuries from the General Insurance Association of Singapore in 1993 (Frees, 2010; 
Frees & Valdez, 2008). The second observation is the frequency of third-party claims 
for Australian vehicle owners (De Jong & Heller, 2008). The third dataset is the 
insurance claim from Belgium in 1993 (Denuit, 1997; Zamani & Ismail, 2014). The last 
set of observations considered in the study represents the claim frequency of 10,814 
policyholders for the automobile portfolio in a Turkish insurance company between 
2012 and 2014 (Meytrianti et al., 2019). 

All datasets considered are positively skewed and dispersed with varying 
proportions of zero counts that often characterize the frequency of claims in actuarial 
science, as shown in Table 7. This is suggestive that the classical Poisson distribution 
may not provide an adequate fit. 

Table 7:  Descriptive Statistics of the Claim Frequency 

Dataset Dispersion Index Skewness Kurtosis % of Zero 
Dataset I 1.09 4.27 20.88 93.49 
Dataset II 1.06 4.07 18.50 93.19 
Dataset III 1.09 3.52 14.59 90.33 
Dataset IV 1.26 2.56 7.71 79.01 

7.  Results and Discussion 

The results from analyzing the four datasets assuming the new proposition (and 
zero-inflated form) and the competing distributions are presented in Tables 8 to 11. 

Table 8:  Parameter estimates for claim frequency from Singapore (dataset I) 

Obser.    Freq. PCRTED ZI-PCRTED Poisson ZI-Poisson Neg. Bin. ZI-Neg. Bin. 
0 6996 6996.26 7000.79 6977.80 6995.92 6996.71 7006.80 
1 455 452.95 449.63 487.75 452.76 452.52 444.59 
2 28 31.42 31.25 17.05 32.69 31.38 28.85 
3 4 2.20 1.30 0.40 1.57 2.22 2.49  

𝜃 13.52 58.41 0.07 0.14 0.87 0.01  
�̂� 0.33 5.68 

 
0.52 0.93 0.87  

𝜌ො 
 

-75.60 
   

-73.71 
–LL 1931.40 1939.36 1941.18 1933.17 1932.38 1938.20 
Chi-Square 1.05 5.98 41.96 4.43 1.79 1.80 
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From Table 8, the new proposition (PCRTED) provides the best fit judging by the 
smallest –LL and chi-square statistics values. It is also observed that the PCRTED and 
Neg. Bin. provide better fit to the datasets when compared with their respective zero-
inflated forms. 
 

Table 9:  Parameter estimates for claim frequency from Australia (dataset II) 

Obser.   Freq. PCRTED ZI-PCRTED Poisson ZI-Poisson Neg. Bin. ZI-Neg. Bin. 

0 63232 63232.31 63227.36 63091.61 63230.49 63230.60 63317.89 
1 4333 4330.09 4321.38 4593.07 4325.83 4330.57 4252.49 
2 271 275.14 298.19 167.19 286.59 276.48 261.98 
3 18 17.29 8.91 4.06 12.66 17.22 21.45 
4 2 1.09 0.15 0.07 0.42 1.06 1.97  

𝜃 14.62 85.73 0.07 0.13 1.16 0.01  
�̂� -0.38 5.79 

 
0.45 0.94 0.88  

𝜌ො 
 

-179.55 
   

-76.06 
–LL 18048.63 18081.29 18101.50 18052.20 18049.68 18105.58 
Chi-Square 0.75 34.56 177.66 9.07 0.98 2.51 

 
 

Table 9 shows that PCRTED is the best fit for the dataset. The negative binomial 
distribution follows this, while the Poisson distribution does not fit well. 
 
 

Table 10:  Parameter estimates for claim frequency from Belgium (dataset III) 

Obser.   Freq. PCRTED ZI-PCRTED Poisson ZI-Poisson Neg. Bin. ZI-Neg. Bin. 

0 57178 57180.35 57196.18 56949.76 57177.48 57188.34 57249.63 
1 5617 5594.29 5584.82 6019.59 5584.80 5581.31 5558.90 
2 446 480.24 497.42 318.14 504.87 485.28 438.37 
3 50 40.40 20.12 11.21 30.43 40.47 45.91 
4 8 3.42 0.46 0.30 1.38 3.30 5.40  

𝜃 10.52 63.36 0.11 0.18 1.28 0.01  
�̂� -0.67 5.78 

 
0.42 0.92 0.84  

𝜌ො 
 

-179.11 
   

-71.13 
–LL 22063.75 22123.32 22150.54 22075.30 22064.31 22136.57 
Chi-Square 1.97 174.23 413.84 51.55 12.33 2.44 

 
The PCRTED also best fits the third dataset with the least value of –LL (22063.75) 

and the chi-square statistic (1.97) from Table 10. The performance of the PCRTED is 
significantly better than its zero-inflated form (ZI-PCRTED).  
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Table 11:  Parameter estimates for claim frequency from Turkey (dataset IV) 

Obser.      Freq. PCRTED ZI-PCRTED Poisson ZI-Poisson Neg. Bin. ZI-Neg. Bin. 

0 8544 8544.62 8544.30 8292.42 8544.19 8543.47 8561.78 
1 1796 1793.77 1765.70 2201.64 1759.23 1795.62 1807.66 
2 370 375.96 428.09 292.27 430.75 375.71 331.89 
3 81 78.77 69.38 25.87 70.31 78.50 81.03 
4 23 16.50 6.07 1.72 8.61 16.39 22.23  

𝜃 3.77 16.19 0.27 0.49 1.01 0.01  
�̂� -0.01 5.67 

 
0.46 0.79 0.63  

𝜌ො 
 

-76.17 
   

-82.43 
–LL 7028.72 7066.88 7153.16 7038.91 7029.71 7057.06 
Chi-Square 2.72 57.60 484.41 35.02 2.84 4.51 

 
With the lowest –LL (7028.72) and chi-square (2.72), the PCRTED best fits the 

fourth dataset. Both PCRTED and Neg. Bin. provide a better fit for the dataset than 
their zero-inflated versions. 

8.  Conclusion 
This study proposed a new continuous lifetime distribution with positive support 

using a one-parameter cubic transmutation map to extend the exponential distribution. 
The new distribution is assumed for the Poisson parameter in the mixed Poisson 
paradigm. A new mixed Poisson distribution (the Poisson Cubic Rank Transmuted 
Exponential Distribution, PCRTED) is proposed along with its zero-inflated version. 
Various moment-based mathematical properties of the PCRTED are obtained. The 
shapes of the new discrete distribution proposed are similar to that of the continuous 
mixing distribution. 

With a focus on the frequency of claims in insurance, datasets with varying 
proportions of zero counts are simulated at different sample sizes. The performance of 
the new proposition is compared with the classical Poisson and negative binomial 
distributions (with their zero-inflated forms). The real-life application of the new 
proposition is assessed on claim frequency from different countries. Results show that 
the new proposition better fits various datasets than competing distributions using both 
–LL and chi-square goodness of fit statistics as the selection criteria. It is also found that 
the natural form of the new distribution outperforms its zero-inflated version in many 
cases despite having observations with higher-than-expected frequencies of zero 
counts. 
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