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Abstract 
 

In this paper exponential distribution is implemented as a demand distri-
bution in newsvendor model with two different and conflicting goals. The 
first goal is the standard objective of maximization of the expected profit. The 
second one is to maximize the probability of exceeding the expected profit, 
called survival probability. Using exponential distribution as the demand dis-
tribution allows us to obtain the exact solutions. Also for this distribution we 
can study the monotonicity of survival probability with respect to various 
model parameters analytically. Additional results are obtained when various 
sets of the parameters are considered. Finally, the bicriteria index which com-
bines these conflicting objectives is optimized which gives the compromise 
solution. Moreover, in order to illustrate theoretical results, we present nu-
merical examples and graphs of auxiliary functions. 

 

Keywords: stochastic demand, newsvendor problem, bicriteria optimization. 
 
1 Introduction 
 

There is a great variety of stochastic models in the inventory theory. We refer to 
the papers of Plewa (2010), Prusa and Hruska (2011), Zipkin (2000) and the ref-
erences therein. The fundamental inventory stochastic model is the newsvendor 
problem denoted by NVP. A survey of this topic has been given recently by Quin 
et al. (2011). In the basic model, the aim is to determine the order quantity which 
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maximizes the expected profit. Some authors applied alternate or multiple crite-
ria (Choi, 2012; Gaspars-Wieloch, 2015, 2016; Rubio-Herrero, 2015; Ye and 
Sun; 2016, Kamburowski, 2014). For instance, instead of the maximization of 
the expected profit, the maximization of the probability of exceeding the target 
profit can be used. This is called the survival probability and the corresponding 
objective is called satisficing or aspiration-level objective. The aspiration-level 
objective in NVP was first discussed by Kabak and Shiff (1978). Since then the 
problem was widely studied by Lau (1980) and Li et al. (1991). Recently the 
NVP has been extended by introducing the bicriteria decision problem. In the 
extended model the newsvendor incorporates two conflicting goals into the ob-
jective function. The first goal is the classic maximization of the expected profit 
and the second one is the satisficing-level objective. The only decision variable 
is the order quantity needed to satisfy uncertain demand. Parlar and Weng (2003) 
consider a bicriteria NVP with a moving target which is the expected profit. In 
this case two conflicting goals are taken into account together since there is no 
solution which maximizes both constraints simultaneously. The bicriteria index 
combines both results by assigning appropriate weights which are numbers be-
tween 0 and 1 which sum up to 1. Parlar and Weng (2003) obtained the ap-
proximate result which is then applied to the case of normally distributed de-
mand. Arcelus et al. (2012) continued this research for uniform distribution 
which allows to derive precise analytic results.  

It should be noted here that both normal and uniform distributions belong to 
the class of maximum entropy probability distributions. This class is widely used 
in practice and in many papers these distributions are applied to model the un-
known random demand (see for instance Eren and Maglaras, 2006). The classi-
cal entropy maximizing distributions are listed by Perakis and Roels (2008). For 
more details, we refer also to Eren and Maglaras (2015) and Lim and Shantiku-
mar (2007). The normal distribution is the maximum-entropy distribution on the 
whole real line with fixed mean and variance. On the other hand, the uniform 
distribution is a good choice if we only know that the demand has positive mean 
and support on a finite interval. Yet another distribution which approximates the 
unknown demand well is the exponential distribution. This is the maximum en-
tropy distribution in the class of continuous distributions with fixed finite mean 
and support on the positive half-axis ሾ0, ∞) (Andersen, 1970; Harrenoes, 2001).  

However, when the coefficient of variation of the demand is large, then using 
the normal distribution leads to excessive orders and large financial losses may 
occur, as it was observed by Gallego et al. (2007). For this reason, for products 
with a large coefficient of variation, they recommended to use another classes of 
distributions including the exponential distribution. 



 M. Bieniek 
 

 

22 

Another argument to study exponentially distributed demand is to make the 
model simpler and mathematically tractable. This distribution belongs to the 
gamma and Weibull family of distributions, which are relatively easy to work 
with and they often provide good approximation to the actual demand distribu-
tion when data are highly variable. The exponential distribution is used in prac-
tice to represent interarrival times of customers to a system (times between two 
independent events) that occur at a constant rate, as well as the time to failure of 
a piece of equipment. One more feature of the exponential distribution is that its 
failure rate is constant. More reasonable customer demand distributions such as 
uniform, normal, gamma and Weibull distributions (Lariviere, 2006) belong to 
the class of distributions with increasing failure rate. 

All the above mentioned arguments justify the use of the exponential distri-
bution as distribution of the demand in the bicriteria newsvendor problem. The 
exponentially distributed demand with maximization of the probability of ex-
ceeding the target profit was studied by Li et al. (1991). The difference between 
our paper and theirs is that they consider a constant profit goal and a two-
product newsvendor, and they do not obtain so many analytical results as we do. 

We use the known notions defined in the above mentioned papers but the use 
of the exponential distribution allows us to obtain precise results and to investi-
gate the obtained solutions more in detail. We can study analytically the 
monotonicity of the survival probability with varying parameters of the model. 
The mathematical computations are almost elementary, but we get some addi-
tional results for specific combinations of these parameters. It is worth noting 
here that for the general case an analogous analysis cannot be performed because 
the equations involved are cubic.  

The rest of the paper is organized as follows. Section 2 provides the basic no-
tation and formulation of the single criterion models and the bicriteria news-
vendor problem. Next, in Section 3 we study analytically the variability of sur-
vival probability with respect to the model parameters. We also present example 
graphs of the considered functions to illustrate the nature of the solutions. More-
over, we provide a numerical example to illustrate the key properties of the ele-
ments of the bicriteria problem. In Section 4 we combine both objectives in one 
measure called bicriteria index. The solutions can be obtained numerically as 
well, which is illustrated by a numerical example. The last section concludes the 
paper. 
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2  Definition of the bicriteria newsvendor problem 
 

In this section we recall the bicriteria problem in the newsvendor model and de-
rive the optimality conditions for exponentially distributed demand. First we 
consider the model with the expected profit maximization as the objective. We 
recall the known results and apply them in the case when the demand is expo-
nentially distributed.  

In the newsvendor model we consider a retailer who wants to acquire ܳ units 
of a given product to satisfy exponentially distributed demand. First we intro-
duce the following notation. Define: 
 •  0 to be the selling price for unit (unit revenue); 
• ܿ  0 to be the purchasing cost per unit; 
ݏ •  0 to be the unit shortage costs; 
 ;to be the unit salvage value (unit price of disposing any excess inventory) ݒ •
• ݂(. ) and ܨ(. ) to be the probability density function and the cumulative dis-

tribution function of the demand with mean µ. 
The standard assumption is ݒ ൏ ܿ ൏  .
In our case the demand is exponentially distributed with the density: ݂(ݔ) ൌൌ ,ఒ௫ି݁ߣ ݔ  0, and the cumulative distribution function (ݔ)ܨ ൌ 1 െ ݁ିఒ௫, ݔ  0, where ߣ  0 is the parameter of this distribution. Then the mean demand 

is µ ൌ ଵఒ. Define ߨ(ܳ, ,ܳ)ߨ  :to be the retailer’s profit function given by (ݔ (ݔ ൌ ൜ ݔ  ܳ)ݒ െ (ݔ െ ܿܳ, ݔ ݂݅  ܳܳ െ ݔ)ݏ െ ܳ) െ ܿܳ, ݔ ݂݅  ܳ, 
where ܳ is the order quantity and ݔ is the realized demand. Then the expected 
profit ܧ(ܳ) is given by: ܧ(ܳ) ൌ ) െ ܿ)µ െ (ܿ െ ܳ)(ݒ െ µ) െ )  ݏ െ (ݒ න(ݔ െ ∞,ݔ݀(ݔ)݂(ܳ

ொ  

(Acelus, 2012), which in the exponential case simplifies to: ܧ(ܳ) ൌ ߣ1 ) െ (ݒ െ (ܿ െ ܳ(ݒ െ ߣ1 )  ݏ െ  .ఒொି݁(ݒ
Note that (0)ܧ ൌ െߣ/ݏ and ܧ(∞) ൌ െ∞. In the expected profit newsvendor 
model the aim is to maximize ܧ(ܳ). Thus in this case the condition: ܧ′(ܳ) ൌ െ(ܿ െ (ݒ  )  ݏ െ ఒொି݁(ݒ ൌ 0 
determines the order quantity maximizing the expected profit, which is given by:                                                         ܳாכ ൌ ߣ1 ln   ݏ െ ܿݒ െ ݒ .                                              (1) 

The feasibility of this solution is proved by the fact that for the second derivative 
we have: ܧ′′(ܳ) ൌ െ)ߣ  ݏ െ ఒொି݁(ݒ ൏ 0, 
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which implies that the function ܧ(ܳ) is concave. The shape of the function of ܧ(ܳ) for the parameters (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003,15,16,30,50) is shown in Fig-
ure 1 below.  
 

 
Figure 1. Expected profit function for (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 50)  
 

In the other approach to the newsvendor model the probability of exceeding 
the expected profit is maximized instead of the expected profit itself. Let ܪ(ܳ) 
be the probability of this event, namely: ܪ(ܳ) ൌ ܲ൫ߨ(ܳ)   ,൯(ܳ)ܧ
which is called the survival probability. Its optimization with respect to ܳ in the 
exponential case will be performed in the next section. Let ܳுכ  be the optimal 
order quantity which maximizes ܪ(ܳ). In the bicriteria newsvendor model both 
conditions mentioned above are considered together, although these objectives 
are conflicting with each other. Hence a new measure should be introduced 
which treats both constraints simultaneously. For this purpose the bicriteria in-
dex ܻ(ܳ) is defined as: ܻ(ܳ) ൌ ௪ாכ (ܳ)ܧ  ଵି௪ுכ  .(ܳ)ܪ
Here כܧ ൌ כாܳ)ܧ ) and כܪ ൌ כுܳ)ܪ ). Note also that both כܧ and כܪ are constants 
in the bicriteria function. The weight 0  ݓ  1 measures the relative impor-
tance of ܧ(ܳ) and ܪ(ܳ). If ݓ increases, the risk-aversion decreases and ݓ ൌ 1 
reflects risk-neutrality. Our aim is to find the order quantity which maximizes 
the bicriteria index which can be considered as a compromise solution to the bic-
riteria problem. 
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3  Optimization of the survival probability for the exponential  
distribution 

 

Next we give the results for the satisficing-level objective which involves the 
maximization of survival probability also in the case of exponentially distributed 
demand. From Parlar and Weng (2003) we know that the survival probability ܪ(ܳ) can be written as: ܪ(ܳ) ൌ න మ(ொ)ݔ݀(ݔ)݂

భ(ொ) , 
where for exponentially distributed demand with parameter λ the limit functions ܦଵ(ܳ) and ܦଶ(ܳ) are given by ܦଵ(ܳ) ൌ max ሼ0, ݇(ܳ)ሽ with: ݇(ܳ) ൌ (ܿ െ ܳ(ݒ  (ܳ)ܧ െ ݒ ൌ ߣ1 ൬1 െ   ݏ െ ݒ െ ݒ ݁ିఒொ൰ 

and: ܦଶ(ܳ) ൌ (ା௦ି)ொିா(ொ)௦ ൌ ଵୱ ൬(  ݏ െ ܳ(ݒ െ ି௩ఒ  ା௦ି௩ఒ ݁ିఒொ൰. 

To calculate the survival probability it is necessary to analyse the behaviour of 
the limit functions which is done in the next subsection. 
 
3.1  The analysis of the limit functions 
 
First we recall some properties of the limit functions such as their monotonicity 
or their zeroes. The expressions presented below are easily obtained from Parlar 
and Weng (2003), but we need them for the exponential distribution in the fol-
lowing study. 

Note that: ݇(0) ൌ െ )ߣݏ െ (ݒ ൏ 0 

and: ݇ ′(ܳ) ൌ   ݏ െ ݒ െ ݒ ݁ିఒொ  0. 
Moreover, for the second derivative of the function ݇ we have: ݇′′(ܳ) ൌ െߣ   ݏ െ ݒ െ ݒ ݁ିఒொ ൏ 0, 
which implies that ܦଵ(ܳ) is concave and increasing. Let ܳ be such that ݇(ܳ) ൌ 0. Then: ܳ ൌ ߣ1 ln   ݏ െ ݒ െ ݒ , 
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which implies that ܦଵ(ܳ) is equal to 0 in the interval (0, ܳ). Moreover, the 
lower limit function tends to ଵఒ as ܳ ՜ ∞. 

Next for the upper limit we have: ܦଶ(0) ൌ ଵఒ, ܦଶ′ (ܳ) ൌ ା௦ି௩௦ ൫1 െ ݁ିఒொ൯  ′ଶܦ ,0 ′(ܳ) ൌ ߣ   ݏ െ ݏݒ ݁ିఒொ  0 

and the upper limit ܦଶ(ܳ) tends to infinity as ܳ ՜ ∞. Therefore, the upper limit 
function is a convex increasing function of ܳ. Taking into account that: ܦଶ′ (ܳ) െ ′ଵܦ (ܳ) ൌ 0 
for ܳ ൌ ܳ, we infer that, rather surprisingly, on the interval ሾܳ,∞) the differ-
ence ܦଶ(ܳ) െ  .ଵ(ܳ) is minimized also at ܳܦ

Examples of graphs of the limit functions ܦଵ(ܳ) and ܦଶ(ܳ) are presented below. 
 

 
 

Figure 2. Limit functions  ܦଵ(ܳ) and ܦଶ(ܳ) for (λ, v, c , p, s) = (0.003, 15, 16, 30, 50)  
 

From the expressions for the limit functions we observe in Figure 2 that the 
graph of the upper limit always lies under the graph of the lower one. Moreover, 
the minimum distance between these limits occurs for the point identical with  
a zero of ݇(ܳ), which is the function corresponding to the lower limit. 

Using these facts in the next subsection we solve the problem of optimization 
of the survival probability function ܪ(ܳ). 
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3.2  Optimization of survival probability (ࡽ)ࡴ 
 
First we investigate the variability of the survival probability function when the 
demand is exponentially distributed. It is known that (0)ܪ ൌ 1 െ ݁ିଵ and ܪ(∞) ൌ ݁ିଵ. We stress the fact that while for uniformly distributed demand the 
minimum distance between the limit functions corresponds to the minimum 
probability ܪ(ܳ), this is not the case for the normal or the exponentially distrib-
uted demand. However, for the exponential distribution under some conditions 
on the parameters of the model, the order quantity which minimizes the distance 
between the limit functions is simultaneously the quantity which optimizes the 
survival probability function ܪ(ܳ). The following theorem provides satisfactory 
conditions which assure the existence of the maximum of ܪ(ܳ). 
 

Theorem 1 
If the demand distribution in the NVP is an exponential distribution with pa-
rameter ߣ, then the following statements hold. 
a. If for some parameters , ,ݏ ߣ and some ݒ  0, we have:                                                    ܽ(ܳ) ൏ ܾ(ܳ), ܳ ݎ݂  ܳ,                                        (2) 

where ܽ(ܳ) ൌ ݁ିఒ(మ(ொ)ିభ(ொ)) and ܾ(ܳ) ൌ ௦ି௩ షഊೂଵିషഊೂ, then condition (1) is 

satisfied for any ߣ  0. 
b. If (2) holds, then the survival probability function ܪ(ܳ) attains the maximum 

value at:                                                      ܳுכ ൌ ߣ1 ln   ݏ െ ݒ െ ݒ                                                   (3) 

and the maximal survival probability is given by the formula: כܪ ൌ 1 െ ൬  െ ݒ െ ݒ  ൰ି௩ା௦௦ݏ
 

Proof of Theorem 1. For simplicity let ܽ ൌ  െ  Then the expressions for the .ݒ
limit functions simplify to: ݇(ܳ) ൌ ߣ1 ൬1 െ ܽ  ܽݏ ݁ିఒொ൰ 

and: ܦଶ(ܳ) ൌ 1s ቆ(ܽ  ܳ(ݏ െ ߣܽ  ܽ  ߣݏ ݁ିఒொቇ. 
Note that ܽ  0 and both the limit functions and the survival probability do not 
depend directly on the parameters  and ݒ but only on their difference. Then we 
calculate: ܪ′(ܳ) ൌ ݁ିఒொቀା௦௦ ାଵቁ݁ି(ା௦)మ௦ షഊೂ െ ݏܽ ݁ିఒொ1 െ ݁ିఒொ 
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and we infer that the sign of the derivative does not depend on the parameter of 
the exponential distribution which proves (a). 

Moreover, the variability of the function ܪ(ܳ) is as follows. First, it is in-
creasing on the interval (0, ܳ) since the lower limit ܦଵ(ܳ) is equal to 0 on (0, ܳ) and the upper limit ܦଶ(ܳ) is increasing on this interval. It suffices to 
note that condition (2) is equivalent to the statement that ܪ(ܳ) is decreasing on (ܳ,∞). Combining these facts, we get statements (b) and (c) of the theorem. 

We illustrate the results of Theorem 1 with example graphs. In Figure 3 we 
present the graph of ܪ(ܳ) for the case when the vector of the model parameters 
is (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 50), and then the survival probability is 
decreasing for all ܳ  ܳ. To illustrate the possibility of non-monotonicity of 
the survival probability for ܳ  ܳ, consider the following set of the model pa-
rameters (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 1). The graph of ܪ(ܳ) for this case 
is shown in Figure 4. 
 

 
 

Figure 3. Survival probability for (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 50) 
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Figure 4. Survival probability for (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 1) 
 

We conclude this subsection with a short discussion of Theorem 1. 
First, the answer to the question whether condition (2) is satisfied or not does 

not depend on the parameter ߣ of the demand distribution. The value of maximal 
probability כܪ does not depend on ߣ either.  

Second, if condition (2) is satisfied, then comparing equations (1) and (3) we 
see that the order quantity ܳுכ  optimizing the survival probability is strictly 
smaller than ܳாכ  which optimizes the expected profit. 

Third, in the special case when  െ ݒ ൌ כwe get the optimal solution ܳு ,ݏ ൌ ଵఒ ln 2 and the maximal survival probability כܪ ൌ 0.75, so these quantities 
do not depend on the model parameters. Indeed, in this case the derivative ܪ′(ܳ) 
is negative for any ܳ  ܳ. To prove this statement, in the expression for ܪ(ܳ) 
we substitute ݁ିఒொ ൌ where 0 ,ݖ ൏ ݖ ൏ ଵଶ, and define an auxiliary function: ݃(ݖ) ൌ ܪ ൬െ ߣ1 log ൰ݖ ൌ ݁ିଶ௭ିଵെݖଶ݁ଵିଶ௭. 
The function ݃(ݖ) is increasing which is shown in Figure 5. Moreover െ ଵఒ log  ݖ
is a decreasing function of ݖ which implies that the survival probability ܪ(ܳ) is 
decreasing. 
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Figure 5. Auxiliary function ݃(ݖ)  
 

In the next subsection we investigate the monotonicity of the survival prob-
ability with respect to changes in the values of parameters.  
 
3.3  Sensitivity analysis 
 
The optimal order quantity in the expected profit model is different from the op-
timal order quantity in the aspiration-level model. In this section we study the 
sensitivity of the survival probability and the order quantity maximizing it with 
respect to the changes of the selling price, salvage value and shortage cost. For 
general distributions this appears to be a rather challenging problem, but for ex-
ponential distributions a full analytical study can be performed. The results are 
presented in the following theorem. 
 

Theorem 2 
Let ܣ be the set of triples (, ,ݏ -which satisfy condition (2). For the exponen (ݒ
tially distributed demand and any parameters (, ,ݏ  the ܣ belonging to the set (ݒ
following statements hold. 
a. ܳுכ  is a decreasing function of selling price , an increasing function of 

shortage cost ݏ, and an increasing function of salvage value ݒ. 
b.  כܪ is a decreasing function of , an increasing function of ݏ and an increas-

ing function of ݒ. 
c. ܳாכ  increases if  increases, increases as ݏ increases, increases if ݒ increases 

and decreases as ܿ increases. 
d. כܧ is an increasing function of , a decreasing function of ݏ, an increasing 

function of ݒ and a decreasing function of ܿ. 
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Proof of Theorem 1. For simplicity we write the expressions in terms of ܽ ൌ  െ כܪ  :Then .ݒ ൌ 1 െ ቀ ܽܽ  ቁା௦௦ݏ  

and: ܳுכ ൌ ߣ1 ln ܽ  ܽݏ . 
Let ݔ ൌ ௦ା௦ with the values from the interval (0,1). The function (ݔ)ܪ ൌ 1 െ
 .increases from 0 to 1, which proves claim (b) ݔ is increasing as ݔ1(ݔ−1) −
Statements (a), (c) and (d) are straightforward. 

Now, we illustrate Theorem 2 with a numerical example. The values of the 
optimal solution in the classic newsvendor model and the aspiration-level model 
are calculated separately, taking into account the varying parameters ݒ, ܿ,  one at a time. The parameter of the exponential distribution which modelled ,ݏ and 
the random demand is assumed to be ߣ ൌ 0.003. We solve the problem for ݒ ൌ 11, 14, 15, ܿ ൌ 16, 17,  ,18 ൌ 25, 30, 35 and ݏ ൌ 20, 50, 80. The base data 
values are (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 50). 
 

Table 1: Sensitivity analysis for varying parameters ݒ , ܿ ,  ݏ and 
 

Parameter כࡱࡽ כࡴࡽ  ݒ כࡱ כࡴ  ൌ 11 874.89 429.889 0.831 292.219 

14 1165.503 472.355 0.846 2335.662 

15 1391.462 488.779 0.851 3275.204 ܿ ൌ 16 1391.462 488.779 0.851 3275.204 

17 1160.413 488.779 0.851 2012.507 

 924.225 0.851 488.779 1025.258 18 ൌ 25 1364.782 597.253 0.884 1635.218 

30 1391.462 488.779 0.851 3275.204 

ݏ 4917.168 0.827 417.588 1416.165 35 ൌ 20 1185.116 282.433 0.851 3481.551 

50 1391.462 488.779 0.918 3275.204 

80 1517.959 615.276 0.943 3148.708 
 

From Table 1 we conclude that the order quantity maximizing the survival 
probability increases from 429.9 to 488.8 as the salvage value increases from 11 
to 15, which confirms statement (a) of Theorem 2. Next, as the unit shortage cost 
increases from 20 to 80, the order quantity with satisficing-level objective also 
increases, from 282.4 to 615.3. But if the selling price increases from 25 to 35 
this order quantity decreases from 597.2 to 416.6. A similar analysis can be per-
formed for the remaining quantities. 
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4 Optimal bicriteria index 
 
In this section we give the solution to the optimization of the bicriteria index as 
well as some numerical examples for various values of weight ݓ. Since the 
function ܻ(ܳ) is continuous on the interval (ܳுכ , ܳாכ ), it attains its maximum 
value. The derivative of the bicriteria index is equal to:  ܻᇱ(ܳ) ൌ כܧݓ (ܳ)ᇱܧ   (1 െ כܪ(ݓ  .(ܳ)ᇱܪ
In order to optimize ܻ(ܳ) it suffices to find ܳ such that ܻᇱ(ܳ) ൌ 0 and then to 
prove that ܻԢԢ(ܳ) ൏ 0 for all  ܳ  ܳுכ . If this is the case, then we get a unique ܳכ  
which maximizes the bicriteria index and satisfies the inequality ܳுכ  ܳכ  ܳாכ ; 
we write ܻכ ൌ ܻ(ܳכ ). Note that if the second derivative satisfies ܪᇱᇱ(ܳ)  0, 
then the second derivative ܻԢԢ(ܳ) is negative for weights ݓ such that: ݓ  (ܳ)ᇱᇱܪכܧ(ܳ)ᇱᇱܪכܧ െ   (ܳ)ᇱᇱܧכܪ
for all ܳ  ܳுכ . 

In the following subsection a numerical example is given using the same base 
values of the parameters as in the previous example. 
 
4.1 Sensitivity analysis 
 

This subsection is dedicated to show the results of a numerical example. Note 
that the value of ܳכ  is found here numerically. We examine the sensitivity of the 
optimal solution with respect to weight ݓ. The base values are also (ߣ, ,ݒ ܿ , , (ݏ ൌ (0.003, 15, 16, 30, 50). For these parameters to ensure the nega-
tivity of ܻᇱᇱ(ܳ) the weight ݓ has to be greater than 0.5. For ݓ  0.5 we take ܳכ ൌ ܳுכ . 

 
Table 2: Sensitivity analysis for various values of weight ݓ 

כࡱࡽ ࢝  כࡴࡽ  כࢅࡽ  488.779 488.779 1391.462 0.0 כࢅ  ൌ ܳுכ  1.0 0.1 1391.462 488.779 488.779 ൌ ܳுכ  0.885 0.2 1391.462 488.779 488.779 ൌ ܳுכ  0.77 0.3 1391.462 488.779 488.779 ൌ ܳுכ  0.665 0.4 1391.462 488.779 488.779 ൌ ܳுכ  0.54 0.5 1391.462 488.779 488.779 0.425 0.6 1391.462 488.779 1339.517 0.783 0.7 1391.462 488.779 1359.011 0.837 0.8 1391.462 488.779 1372.915 0.891 0.9 1391.462 488.779 1383.344 0.946 1.0 1391.462 488.779 1391.462 = ܳாכ  1.0 
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We observe that as weight ݓ increases, both the optimal order quantity 
maximizing the bicriteria index and the bicriteria index itself increase. In this 
case greater values of ݓ correspond to the customer who is less risk-averse and 
therefore the expected profit model has an increasing influence on the bicriteria 
model. Hence the optimal value ܳכ  is closer to the optimal order quantity ܳாכ  of 
the expected profit model. 
 
5  Conclusions 
 

The paper is devoted to the bicriteria optimization in the newsvendor problem. 
One has to find the optimal order quantity which fulfils two goals. One objective 
is the classic optimization of the expected profit while the second one deals with 
the maximization of the probability of exceeding the expected profit. The as-
sumed criteria are conflicting and there do not exist any solutions which opti-
mize both criteria simultaneously. 

We solve the bicriteria newsvendor problem with the exponential distribution 
as the distribution of the random demand. This distribution is widely used in 
many areas and in some situations it approximates the stochastic demand very 
well. The motivations for using this kind of distribution are explained in the in-
troduction. The advantage of modelling the demand by an exponentially distrib-
uted random variable is the possibility of analytic derivation of exact solutions to 
the problem under some weak assumptions on the parameters of the model. In 
the paper of Arcelus et al. (2012) uniform distribution is studied which allows to 
find precise solutions of the optimization problem. The authors use the notions 
introduced by Parlar and Weng (2003) for the general distribution. They suggest 
to consider the problem with other demand distributions, which increases our 
knowledge about the bicriteria problem. Note that the solution of the bicriteria 
newsvendor problem presented in Parlar and Weng (2003) gives only an ap-
proximated optimal order quantity of the aspiration-level objective. In our case 
the order quantity maximizing the probability considered is given explicitly. Ad-
ditionally, we derive the monotonicity of the solution with respect to the parame-
ters of the model analytically. Even though the mathematics used is basic, we get 
some interesting results with various sets of the model parameters. It appears 
that the existence of a solution does not depend on the parameter of the demand 
distribution. To illustrate the general problem, the graphs of the expected profit, 
the probability of exceeding the expected profit and the limit functions are pre-
sented. Moreover, the numerical examples concerning the sensitivity of the model 
parameters are also given. The values of the optimal order quantities maximizing the 
bicriteria index are obtained numerically with Mathematica software. 
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