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On the existence of invariant measures for piecewiée convex
transformations

by P. Kasprowskil (Katowice)

Abstract. A class of transformations of the interval [0, 1] which do not satisfy Ulam’s
condition is shown to have an absolutely continuous invariant measure.

1. In 1960 S. M. Ulam [9] posed the problem of the existence of an
absolutely continuous invariant measure for a transformation t: [0,1] —
- [0, 1] satisfying the condition:

1) ) > 1 if t(x) = x.

In general, the answer to this problem is negative. In fact, the transfor-
mation

o ( %-n, 0<x< 35,
T la-n, sex<t,

satisfies (1) and it can be shown that 7 does not have any finite absolutely
continuous invariant measure (see [6]).
However, if we replace condition (1) by a more restrictive one:

3) inf |7’ (x)} > 1,
then there exists an absolutely continuous invariant measure for piecewise
C2-transformations satisfying condition (3), [2], [7].

In this paper we shall show that there exists an absolutely continuous
invariant measure for a certain class of transformations of the closed unit

interval [0, 1] into itself which do not satisfy Ulam’s condition (1). Our
Theorem is a generalization of some results due to A. Lasota [5].

2. Let {[a, b ]}y, be an at most countable sequence of closed
intervals such that

a; =0, 0<ak<b,,$ l, ;(b,,-a,‘)= l,

and (a;,b)N(a,b) =@ for k # i.
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Let ¢ [a;, b] — [0, 1] be a sequence of convex functions, ie. let

ox(ax+(1-a)y) < ap. (x)+(1-a) 9, ()

for x,ye[a,b] and 0 < a < 1.
We define a transformation 1 by

T(x) = @x(x) for g < x < b,.

The transformation * is defined almost everywhere on [0, 1]. We have the
following

THEOREM. If the transformation t satisfies the additional conditions:
(@) @ula) =0
(b) ¢1(0) =

(c) ¢} is concave,

@
”Z ,,(o

then there exists an absolutely continuous probability measure invariant under t.
3. Let

1
l is integrable,

n, o

b = (pl (bl)y a
k=2 ‘Pk(ak)
Va(x) = {(p,"‘(x) for 0 < x < ¢, (b;—0),
b, for ¢, (b,—0) < x < 1.

Under the assumptions of our Theorem we have the following lemmas:
LEMMA 1. The function

1
—¥i
is integrable on [0, 1].
Proof. Let 0 < d < b,; then
e l@ il [,
1 (‘Pl (x))
o > (¢] 2. —dx > ———dx
Cile@f- § Sm=r®> | e
¢ Piler' () ° 1
= dx = | ——d
oo T = Ty

and
1 < 1
I-¥i(x) 1=y

This completes the proof of Lemma 1.

<o ford<x<1.
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LemMMa 2. The function y is convex in [0,b] and satisfies the following
inequalities:

1+ W) (x)
2

(1) Vi (1 () < Jor x€[0,b],

el Ame res NP0
1+¢)
Proof. Let xe[0, b]; then

(i1)

1
i (er' (%)’

Since the functions ¢} and ¢;' are concave, we have

4 Vi) =

V<1

+y 1 !
5) wa(" )= <
2 ! L
(,,;((p;l(";’y)) ¢;(‘°‘2(")+¢‘2(y))
3 2
= o (o T@)+ ¢4 (01 L ()
1 1

S e @) 2oty C HHAD)

because for each x,y > 0

From (4), (5) and the Bernstein—Doetsch Theorem it follows that v
is convex.

Proof of inequality (i). Since Y is increasing in [0,5] and
¥;(x) < x, we have

(W1 (1 K)Y = Wi (U1 WA () < Y (Y] (),
Vi (1 (9) = 5 Vi )W) (s +1 < g VLW, ()ds+1 = H(Wh)2x—1)+1.

Proof of inequality (ii). This is a consequence of the following
inequality:

— 2 ]
P24 oy for xefO, 1].
1+x )

This completes the proof of Lemma 2.
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Now denote by P, the Frobenius-Perron operator corresponding to
17, i.e., write

(6) P f(x) = ; S (U () ().

It is well known that any fixed point of the operator P, represents the
density of an invariant measure under Tt.

LEMMA 3. For any decreasing non-negative f the function P, f
decreasing; furthermore, the operator P, satisfies the following inequalities:

(1) Pr)x)<1lx, m=1,2,..,
(ii) P.((P71) l[bl.ll) < ao/b, .

Proof. The first statement follows trivially from equation (6). A proof
of inequality (i) is given in [1] and [5].

Proof of inequality (ii):

1 1
P, ((P'z" 1) llbl.ll)(x) < Pt(7 1[b1.1]>(x) <P b_ liy,, 1])(")

1
S TPl ) = Z Vi (x) < Z ¥ (0) =
b, by «= b, =2 b

1

This completes the proof of Lemma 3.

Proof of the Theorem. Let P?1 = f,, a = max(a,, 1). We shall
prove by induction that for every ne N u {0}

2a
%) S
S =)
For n = 0 inequality (7) holds since
2a 2a
— = = 1.
bi(1-y1) = b
Now, for n such that
2a
< P
hS Gra—e

we have from Lemmas 2, 3

a
Sor1 =P fy =P filiop)+ P ol € P:f;-lto,bll"'b*o
1

< LWV Lo n+fH (W)Y llb 1]+ = faW V) Lo +5— bl
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2y a 2, ‘
< 1 < 1
T EAA R b1<1_1+woz+ )

2
,i@iﬂ_ﬂ}higﬂﬂ;i>
b, \ 11—y} by \ 1-()
_ 2 i@+ +) 2
by (1-y)) 1+y, T b (1-yy)

From (7) it follows that the sequence

1 "]
Pk
{" kzl f} =1

is weakly relatively compact in I! for 0 < f < 1. Thus, by the Kakutani-
Yosida ergodic theorem there exists the limit

and P, f, = f,. Consequently, by the definition of P,,du = f,dx is an abso-
lutely continuous invariant measure, and this completes the proof.

4. From the proof of our Theorem it follows easily that the density
fo of the invariant measure is dominated by the integrable function
2a/b, (1—y). In general, f, is not bounded by a constant (cf. [5], [8)).

ExaMPLE. Consider the transformation

3

o) {x+§x3/2 for 0 < x €
T(x) =
ix—% for 3 3 < X<

1
3
1

It is easy to see that t satisfies the conditions of our Theorem. In this
case we have

1 1

oi-1 Jx
Therefore, from our results it follows that t admits an invariant probability
measure u such that

L <6(/1+/7 () +1) (from (7)),

where 77! denotes the inverse function to t restricted to the interval (0, ).



184 P. Kasprowski

References

[1] M. Jabtonski, On intariant measures for piecewise convex transformations, Ann. Polon.
Math. 32(1976), p. 207-214.

[2] A. A. Kosjakin and E. A. Sandler, Ergodic properties of a certain class of piecewise
smooth transformations of a segment, Izv. Vyss. UGebn. Zaved. Matematika 118 (1972),
p- 32-40.

[3]1 K. Krzyzewski and W. Szlenk, On invariant measures for expending differentiable
mappings, Studia Math. 33 (1969), p. 83-92.

[4] A. Lasota, Invariant measures and functional equations, Aequationes Math. 9 (1973),
p. 193-200. '

[5] — On the existence of invariant measures for Markov processes, Ann. Polon. Math.
28 (1973), p. 207-211.

[6] — A solution of Ulam's conjecture on the existence of invariant measures and its
applications, in: Dynamical Systems, vol. 2 (1976), p. 47 —55.

[7] — and J.A. Yorke, On the existence of invariant measures for piecewise monotonic
transformations, Trans. Amer. Math. Soc. 186 (1973), p. 481-488.

[8] A. Rényi, Represemiation for real numbers and their ergodic propertizs, Acta. Math.
Acad. Sci. Hungary 8 (1957), p. 477—493.

{9] S. M. Ulam, A4 collection of mathematical problems, Interscience Tracts in Pure Appl.
Math. 8 Interscience, New York 1960.

[10] M. S. Waterman, Some ergodic properties of multidimensional F-expansion, Z. Wahrschein-
lichkeitstheorie Verw. Gebiete 16 (1970), p. 77-103.

Recu par la Rédaction le 20. 3. 1978



