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On the tangency of sets in generalized metric spaces

by W. WaALszewskr (Eédz)

Abstract. The present paper gives a certain definition of tangency of order %
of arbitrary sets lying in a space having a wealker structure than the metric one. Some
conditions are given for the symmetry and transitivity of tangency relation intro-
duced. The connection between the generalization under consideration and the pre-
viously known concept of tangency in metric spaces is illustrated.

In the investigation of non-linear sets lying in linear spaces we use
the method of local aproximation of those sets by some linear sets. And
so, the consideration of the interval of a stright line instead of the small
are of a curve or clse of a piece of a hyperplane instead of a piece of a hyper-
surface is a frequently used method of simplification of more complicated
question. Evidently, an aproximating lincar set and an aproximated
set do not play the same part. More generally, one often investigates
the sets of points lying in some space by way of aproximation by more
regular sets. Such a manner of study seems natural. There is a separate
question: what can we, treat as regular sets, i. e. sets that we may use
for describing some properties of other sets? It is evident that we can
speak about linearization only in this case where the lincar structurc
of the space is given. 8. Golagb and Z. Moszner in paper [2] found the
definition of the tangency relation of ares in general metric spaces. They
say that an arc 4 is tangent to an arc B at the point p iff p is a common
beginning of A and B, and the ratio of the distance from any point x
of the set 4 to the set B and of the distance from 2 to p tends to zero
if z tends to p. The authors of the above mentioned paper proved a very
interesting theorem concerning of the tangency relation: if we assume
that an are 4 is Archimedean at the point p and tangent to B at that
point, then the set B is tangent to A at p. The nature of the definition
given by S. Golab and Z. Moszner has suggested a way of generalizing
the concept of tangency by considering arbitrary sets instead of simple
arcs. Such a generalization is due to Sods [5], and we also find it in an
earlier note [G] of the present author. In that nofc we assume that the
point p is a cluster point of the sets 4 and B instead of assuming that p
is a comon beginning of the arcs A and B. In the note [G] a condition is
formulated which is a surrogate of the Archimedean condition and next,
in [7] we give some generalization of that condition. A detailed exami-
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nation of the relationship between the above mentioned conditions is
due to A. Chadzyidska in [1]. In the present paper we shall give a certain
generalization of the previous concepts of the tangency of sets. We shall
consider as a spacc an arbitrary set furnished with a structure more
general than a metric and we shall investigate the concept of the tangency
of sets which in some special cases coincides with the concept of tangency
of sets in the metric space, dealt with in [2], [5] and [7].

1. Preliminaries. A system (¥, 1), where F is any set and [ is a real
non-negative function defined on the Cartesian product E,x E,, B,
being the set of all non-empty subsets of F, will be called a space. Such
a space may be treated as a certain generalization of the metric space,
because the function I allows the introduction of the function I, by the
formula

1) Lz, y) =1({z}, {y) for x,yc k.

Making the appropriate supposition concerning the function I, we obtain
the metries I, on the set .

For an arbitrary space (%, 1) we may define, in the same way as.in
a metrie space; the notion of a ball and the notion of a sphere. By the
ball (sphere) of redius » about a point x we shall mean the set B;(x, r)
(8(z, 1)) of all points y of B such that the number defined by formula
(1) is smaller than (equal to) ». Often we shall omit the subscript 7 and
write B(z, r) and S(z,r) instead of B,(wx, ) and S§,(«, r), respectively.
As for a metric space, we may introduce the notion of distance of non-
empty subsets of F, setting for any 4 and B belonging to E,

(2) {[(A; B) =inf{ly(», v); ve A and ye B}.

We notice that the distance I(4; B) is, in general, different from the
number I(4, B). So, having a space (¥, 1) we may define on the set ¥
2 new space, associating with any pair (4, B) of non-empty subsets of
E the number I(4; B). The number I[({p}; 4) will also be denoted by
Lp, A). .

The space (E,l) induces on the set E the topology 7, defined as
follows. We consider 4 < F as an open set in the topology 7, iff for
any point p of A there exists a number » > 0 such that the ball B(p, r)
is contained in 4. By 4 we shall denote the closure of the set 4 in the
topology 77,. We prove that

1.1. For any point peE and for every set 4 < B if l(p, 4) = 0, then
pe A.

The following conditions are equivalent:

(1.L1.1)  For any point pe B and for every se¢t Ac E if ped, then
Up, 4) = 0;
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(1.1.2)  For any point p € E and for any number r > 0 there cxists a neigh-
bourhood U < B(p,r) in the topology F;

Proof. First, we assume that I(p, 4) = 0. Let U be an arbitrary
neighbourhood of the point p in the topology Z;. Then there exists an
r > 0 such that B(p,r) is contained in U. From the definition of the
number I(p, 4) according to (2) as the infimum of all numbers I,(p, x),
where z¢ 4, it follows that there exists an ae 4 such that 1,(p, a) < 7.
Then ae B(p, r). Thus the set AN U is non-empty and p e 4.

Now we assume (1.1.1) and suppose that there exist a point p, of B
and a number 7, > 0 such that for any neighbourhood U of point p, the
set U—B(p,,7,) is non-empty. Setting A = E— B(py,r,) we obtain
UnA #@. Thus p,e 4. Hence it follows that there exists an ae 4 such
that 1y(po, @) <7,. Then ae ANB(p,,r,), which is impossible. Thus
condition (1.1.2) is fulfilled. Now we assume (1.1.2) and take any pe 4.
Let r > 0. Then there exists a neighbourhood 7 of » open in .7, included
in B(p,r). This yields ANT # O. Therefore ae ANB(p,r) for some
point 4. Hence it follows that I(p, 4) < ly(p, a) < r. And, I(p, 4) = 0.

As a corollary we obtain

1.2. For every set A = E the equality

(3) A ={p; peE and l(p, 4) = 0}

holds if and only if the space (E, 1) satisfies condition (1.1.2).
For any sett 4 < I and for every number ¢ > 0 by 4; (or shortly:

A,) we shall denote the set {J B(p,r). The set A, will be called the
Ped
r-neighbourhood of 4 in the space (F,1). From this definition it follows

that 4, = 4,» when 0 < r <<’ but the set 4, need not contain the set 4.

2. Tangeney of order % in the space (E, 7). Let k¥ be an arbitrary
positive real, p ¢ B, and let both a and b be any non-negative real functions
defined in a certain right-hand side neighbourhood of 0 such that

> 0.

(4) a(r)y——0, b(v)
r—ot r—~0+

The pair (4, B) of subsets of & will be called (a, b)-clustered at the point

p in the space (E, 1) if 0 is a cluster point of the set @ of all real numbers

7 > 0 such that the sets

(5) ANnS (.p1 r)a(r) and Bn IS(_’P, T)b(r)
are non-empty.

Here S(p, 7)q( 15 an a(r)-neighbourhood of the set §(p,7)in the space
(E, 1) and similarly S(p, 7)y(,y. Denote by L5 the characteristic function
(relative to the set of all real numbers) of the set @ just defined, i. e. the
function defined by the formulas 1, p(1) = 1 for re¢ @ and Ly 5(r) = 0
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in the opposite case. From this definition it immediately follows that
2.1. The pair (A, B) of subsels of I is (a, b)-clustered at the point p

in the space (E, 1) if and only if

(6) ]ilninf(l—lj,ab_u,.(‘i‘)) = 0-

r—>0t

We shall say that the set A is (a, b)-tangent of order % to the set B at
the point p in the space considered, which we shall write in the form
(4, B)e Ty(a, b, k, p), iff the pair (4, B) is (a, b)-clustered at the point
p in (E,1) and

>0.

1
(7) “k Z(A ﬁS(P! ")a(r)) B nS(p, T)b(r))
T ps0t
Suppose that (6) holds. For any > 0 we shall denote by lyu.p:(7)
the supremum of all numbers of the form

1
5 U408, thays BOS(B5 o)

where 0 < ¢t<{7. From the above it follows that the function l,,, 45 is
defined on the set of all positive real numbers and (7) is satisfied if and
only if

(8) lpabABk('r) — 0.
.m0t

We may now define the funetion 1,4z, setting

l (7) = l-:pabABk("") for » > 0: if (6) hOldS;
peraBE 1 for > 0, in the opposite case.
The following simple statement gives a convenient necessary and

sufficient condition for the tangency of sets under consideration.

2.2. The set A is (a, b)-tangent fo the set B of order Lk at the point p if
and only if

( 9) lpabABk (7')
r->0+

Proof. Suppose that (4, B)eT,(a, b, k, p). Hence it follows (6). In
this case lyy.ipr(”) = lgpusr(#) for r > 0 and (8) holds. So we obtain (9).
If (4, B)¢T,(a,b, &, p), then we may consider two cases. In the first
(6) is not satisfied. Then l,p4p () =1 for # > 0. In the second case
(6) is fulfilled. But in that case (8) can not hold. Hence we also infer that
(9) does not hold.

Now we shall assume a certain restriction concerning the space
(Z,1). We shall prove that

>0,
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2.3. If 1, satisfies the triangle inequality, i. e. jor x, y, ze B we have
(10) (2, 2) < lo(xy y) + lo(y, 2),y

then the condition (A, B)e Ty(a, b, k, p), where a and b are functions ful-

filling (4), yields pe ANB.
Proof. According to the first part of 1.1 it suffices to prove that

(11) 1(p, 4) = Up, B) = 0.

Let 0 < & < 1. From (4) and the assumption that 0 is a cluster set of all
r > 0 such that the sets (5) are non-empty it follows that there exists an
> 0 such that

(12) r<ef2, a@r)<el2, b(r)<el2,

and the points # and y belonging, respectively, to the sets 4N8(p, 1)y,
and BNS8(p, r)yy. Then there exist points a', y'e S(p, r) such that

lLxyr) < a(r) and Iy, y) <b(r).
By the triangle inequality and (12) we obtain
Lp, 4) <lo(p, @) < Ly(py )+l (@, 2) < rtar) <e.

Similarly, I(p, B) < e, which yields (11).

As a corollary we obtain

2.4. If the real functions a and b satisfy condilion (1) and the function
l satisfies the triangle inequality, 1. e.

(13) 14, )< U4, B)+U(B, ) for 4, B, CecE,,
then from (4, B)e Ty(a, b, k, p) it follows that pe ANB.

3. Some questions related to the symmetry and transitivity of the
relation T,(a, b, k, p). The function ! is, in general, not symmetrie, i. e.
the equality I(4, B) = I(B, 4) need not hold for all 4, Be IJ,. Moreover,
the function a need not be equal to b. From these two causes it follows
that relation T,(a, b, &, p) must be symmetric. But we may consider
a class % contained in F,; and ask about the conditions under which this
relation is symmetric in ¥. Related to this question is the problem of
formulating of necessary and sufficient condition concerning the set B
under which for an arbitrary A4 of € if A is (a, b)-tangent of order % to B
at the point p, then B is (a, b)-tangent of order & to A at p. Before formu-
lating that condition we introduce some notations. By sgn we shall denote
the real function defined by the formula

i/t for t = 0,

sgnt =
° 0 for ¢ = 0.
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Denote by I

na

(14), sgnlim sup by, ¢ gz (*) —sgnlimsup g p.a. (1),
r—0+ r—g T

ok,¢ (B) the infimum of the set of all reals of the form

where the set A is varying in the set €.
3.1. The following two conditions are equivalent:
(3.1.1) For any Ae ¥ if A is (a, b)-tangent of order k to B at p, then B is
(a, b)-tangent of order & to A at p;
(3.1.2) lpavr, e (B) = 0.

Proof. Let us suppose that (3.1.1) is fulfilled. F'rom 2.2 it follows that
for every set Ae¥ if

(15) limsup e um (1) = 0,
)T

then

(16) limsupl,ppa(r) = 0.
r—>0T

From (15) it follows (16) if and only if number (14) is non-negative. Hence
we obtain (3.1.2). Conversely, from (3.1.2) it follows that number (14)
is non-negative for any Ae¥. Then for cvery Ae@ identity (15) yields
(16). Therefore (3.1.1) is satisfied.

We now give some conditions which are sufficient for the transitivity
of the relation T)(a,d, k, p). First, we prove the following lemma:

3.2. If in the space (E, 1) the triangle inequality is satisfied and nomns
negative real functions b and b, fulfil the following condition:

(3.2.1) There exists 6 > 0 such that
(17) sgn(l(By, 4) (B, 4)) > sgn(by(r)—=b(»),
(18) sgn(l(4, B)—1(4, By)) < sgn(b, (r) —b(r)),
where Ae Iy, @ # B < By © 8(P, Maxqpp, vy @08 0 <1 < 6
then :
(3.2.2)  For any A, B, C, if (4, B)e Ty(a, b, k, p), (B, C)e Ty(d,, ¢, &, p),
and 0 is a cluster point of the set of all numbers v > 0 such that

the sets ANS(D,7)epy and CNS(p, )y are non-empty, then
(4, 0)e Ty(a, ¢, &, p).

Proof. Let us suppose that in (F, 1) the triangle inequality is satisfied
and (3.2.1) holds. Let (4, B)e T\(a, b, k, p), (B, C)e Ty(b,, ¢, k, p). From
these suppositions it follows that (7) holds and

1
(19) r—kl(BﬁS(Pa Mgy COS(D, T)opm)

> ()
r—0t
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1
= F(Z(AﬁS(p, Pawys BOS(D, Pyny) +UBNS(p, Poyyr CNS (D, 7’)c(r)))-
We have ¢(r) - 0 when # — 07, From the triangle inequality we obtuin
1
(21) 7 (UANS@, gy COB(@, 1))

1
T(Z(A”S(P: P)atrys BOS(Dy 7)piny) + BN S (D, 1)y, CNS(p, ”)c(r)))

<
"

and

1
(22)  — (HANS(D, 7y, COS (D, 1))

1
QT(Z(AHS Dy Magys BOS(D, M)yyn) +UBAS(D, )y, s COS(py 7 o(r)))

Let 6 > 0 be a number such that inequalitics (17) and (18) are satisfied
when 0 < # < 6 and B is a non-empty subset of B,, B; being contained
in  8(P) Muuzpe), byeye L 0a(7) = b(r), we have BnS(p, 1)y <
< BNS(p, )y - Setting in (17) the set BNS(p, 1)y, instead of B and
the set BN S(p, )y, instead of B,, we obtain from (21)

1
(23) F Z(‘4 N8(p, 'r)a(r)’ CnS(p, Ir)v(r)) s (F).

Similarly in the case of b, (r) < b(7), using (18) and (22), we obtain the
same inequality (23). Hence it follows that the set A4 is (a, ¢)-tangent
of order & to C at the point p. This ends the proof.

Now we shall define a function I, which will be useful in formulating
a sufficient condition of transitivity of the relation T,(a, b, %, p). Let a be
any non-negative real function defined on some right-hand side neighbour-
hood of the number 0, and let 4 be an arbitrary subset of K and r > 0.
Put

(24) L4, ay7) = buqaa (1),

where 1,44 () has the same meaning as in Section 2. In other words,
the number 1,(4, a, r) is the supremum of all values of the characteristic
function of the set ANS(p, r)yy. We have 1,(4,a,7) =1 if and only
if this set is non-empty.

3 — Annales Poloniel Mathematici XXVITL3
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An important case in Lemma 3.2 is that of b, = a. We prove that
3.3. If in the space (B, 1) the triangle inequality is satisfied and the
real functions a and b fulfil the following conditions:

(3.3.1) There exists 6 > 0 such that
sgn(l(4, B)—1(4, B,)) < sgn(a(r)—b(r))
< Sgn(z(Bn A4)—1(B, A))a

when A, Be By B < By © S(D, Myaxiap), spys 0 < 7 < 83

(3.3.2)  For any sets 4, B, if the set A is (a, b)-tangent of order & to the
set B at the point p, then 1,(4, b, r) <1,(B, b, r);

then the relation T,(a, b, k, p) is transitive.

Proof. Let (A, B), (B, C)¢ Ty(a, b, k, p). From the definition of the
relation T,(a, b, k, p) it follows that for any »n > 0 there exists a positive
r < n such that sets (5) are non-empty. Then we have 1,(B, b, r) = 1.
Hence, by (3.3.2), we obtain 1,(C, b, ) = 1. In other words, the set
0N 8(p, 1)y 1s non-empty. From Lemma 3.2 it follows that (4, C) belongs
to Ty(a, b, k, p).

4, Some special cases. The most important cases are obtained when
we consider the concept of tangency in a metric space or else, more gen-
erally, in a pseudometric one. Let (F, ¢) be a bounded metric (or else
pseudometric) space. In the investigation touching the tangency of sets
the assumption that the space is bounded makes no essential restriction.
The metric ¢ induces some functions g; such that (E, g;) is a space in the
meaning of Section 1. Namely, we may define the function p, by the
formula

(25) 0o(4, B) = sup{o(®, B); v A} for 4, Be E,,

where ¢(x, B) is the distance from the point x to the set B, i.e. o(x, B)
is the infimum of g (w, y) for ¥« B. It is evident that the function g, satisfies
the triangle inequality and that g,(4, B) = 0 if and only if the non-empty
set 4 i3 contained in the closure of B. The function g, defined above
leads to the function g, defined as follows:

(26) 0:(4, B) = max{gy(4, B), go(B, 4)} for 4, Be ¥,.

This function is a psecudometric of the set E, of all non-empty subsets
of E. If we restrict the function to the set of all closed non-empty sets of
the metrie space (E, p), we obtain a metric space, the so-called Hausdorff
metric’ space of closed sets.
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By diam,d we shall denote the diameter of the set 4 in the metric
space (&, p). We define the function p; for ¢ = 2, ..., 6 by the formulas:

(27) e:(4, B) = inf{diam,({zf}UB); z¢ A},
(28) 03(4, B) = max{g,(4, B), g.(B, 4)},
(29) e«(4, B) = min{e,(4, B), g.(B, 4)},
(30) 05(4, B) = diam, (4 UB),

(31) 0¢(4, B) = inf{o(x; B); we.d}.

Let us remark that if ¢ is any non-negative real function of seven variables,
then we may define the function g, as follows:

(32) e.(4, B) = ‘P(Qo(Aa B), 0,(4, B), ..., 90(4: B))

for any 4, Be By. If the real function ¢ in formula (32) is monotonous
and subadditive with respect to cach variable separately, then the function
g, satisfies the triangle inequality.

From definitions (25)-(31) of the functions g, it follows that if the
metric space (F, p) is a Cartesian n-dimensional space with the usual
metric, then for any regular ares 4 and B beginning at the point p we
have

(41) (4, B)eTyla b, k,p) if and omly if (4, B)e T, (a, b, k, p) for
’:,J - O, 1’ saey 6’

where a and b satisfy the condition

atn

b -
>0 or clse ——Ql >0.

7 rsot T ot

The sentence (4.1) is not true in general, i. e. when the sets 4 and B are
not assumed to be regular arcs in the Cartesian space or when the metrie
space (E, o) is not a Cartesian space with the usual metric. It appears
a natural problem to study some of the connections between the relation
Ty, (a, b, k, p) and 'I‘,j(a, b, k, p) for 4,5 = 0,1, ..., 6. This problem is not
considered in the present paper. We note only that the function g, allows
us to describe the concept of tangency in a metrie space treated in papers
(1], [2], [5], [6], [7]- XIn those papers the set A is said to be tangent to
the set B at the point p in the metric space (E, o) iff p is a cluster point
of the set 4 and

o{z; B) ,
o(®, P) z-p
zed

(33)
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It is easy to state that condition (33) is equivalent to the following onec:

1
78111){9(&7; B); xe d and o(x, p) =1} >0.

r—0°

This condition can be written in the form
1
— QU(AnS(p] ‘r), B)———-)O-
7 r_)(]'l'

This, setting a(r) =0 and b(r) =r for r> 0, we may write in the follow-
ing manner:

1
(34) " 0olANS(D, T)agyy BNS (D, 7)) T 0.

Here the sphere S(p, r) is the sphere of the radius » and the centre at p
in the metric space (&, p). According to the notion of sphere defined in
Section 1, this sphere is identical with the sphere 8;(p, #), where I = p,.
Let us remark that the function I, defined by formula (1) for 1 = g,
1 =0,1,..., 6, does not depend on 4, because o;({x}, {y}) = o(x,y) for
any x,yeB,% =0,1,...,6. Condition (34) for the sets 4 and B such
that p is their cluster point states that the set A is (a, b)-tangent of order
1 to the set B at the point p.
As a corollary from Theorem 3.3 we obtain

4.1. If (E,p) is a metric space, then for the space (B, o,) the relation
Ty, (ay b, ey p), where g, is defined by formula (25), a(r) =0 and b(r) = v
for v > 0, is iransitive.
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