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Ditferential inequalities of parabolic type
in the Sobolev space |

by J. CeEABROWSEI (Katowice)

Abstract. In this paper the following inequalities of parabolic type are investi-
gated:
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where {u%(, z)} and {v*(, «)} (k = 1, ..., N) ave defined in [0, T]x R,. The solutions
{u*} and {v*} are assumed to belong to the Sobolev space W3i. The main result of the
paper gives conditions under which the initial inequalities 4% (0, z) < V*(0, ) imply
uk(t, ») < v%(t, ©) in [0, T1x R,. As an application the maximum principle and the
uniqueness of the Cauchy problem are obtained. Subjeoct Classification. Primary
35 19, Secondary 46 38. Key words and phrases, Maximum prineiple. Generalized
solutions. Energy estimates.

1. In this paper we investigate systems of parabolic partial diffe-
rential inequalities of the form

W 10 -
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{2) T = Z %.Af(t, z, 0% oE)+ B¥(t, 2, V, 08  (k =1,...,N),
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where
ug(t, ®) = {u’;l(ty B)yoery u’_{n(t, 2)},  vg(t, ) = {'0:1(#: By ooy '”Zn,(ti @)},
U(t,z) = {ul(ta ) PR '“’N(t: @)}, V(t, ) = {o'(t, @), ..., ”N(t; z)}.

We also discuss the maximum principle and uniqueness of the Cauchy
problem. We use the technique of the proofs and the notation from [1].

Before formulating the main result we introduce some definitions
and notations.
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DerFiNITION 1. A function %(f, ) defined and measurable in an open
domain D in (0, T) X R, is said o belong to the space Wy'(D) if u possesses.
generalized derivatives w; u,, (¢ =1,...,#) (see [3]) such that

f[u(t, 2)2 4 Uy (£, w)2+juzi(t, w)z] dtdr < oo.
D i=1

In [3] it is shown that every function we Wy'((0,T)»(l2| < R))
n

(where |2|* = D #}) has boundary values u(0, z) and w(T, ) belonging
q=al

to L,(|z| < R) in the following sense:

im [ [u(,2)—u(0,®)Pde =0, lim [ [u(,s)—u(T,s)lds = 0.

0 z/<R T g<R
DEFINITION 2. A function % (¢, ) defined and measurable in (0, T') X E,,
is said to belomg to the class B, if there exists a number a« > 0 such that

T
f fu(t, o) e~ dtdy < oco.
0 R,

DEFINITION 3. A gsystem of functions {¥*(t,#)} (¥ =1,...,N) is
said to be a weak solution of the system of differential inequalities (1)
(or (2)) in (0, T) xR, if w*e Wi((0,T)x(ja| <R)) (b =1,...,N) for
all R> 0 and {»*} (k =1,..., N) satisfies

T 1 T
@) [ [[otul+ D) ok Ak, v, uF ub)|dtan < [ [¢*B(, @, U, uf)dids
0 Ry i=l R,

(k =1,...,N) or
T n T

3) [ [etu+ Dok Ak, @, o ub)|dtdw > [ [¢*B ¢, 0, U, ul)dtdo
i R, {=1 0 R,

for any system of non-negative functions {¢*} (k =1, ..., V) of the class
Wy'((0, T) x R,} with compact supports in @ and vanishing for ¢ = T.
The functions A¥ and B* are assumed to be measurable.

DEFINITION 4. Let a system of functions {B*(t, 2, Z, P)} (k = 1, ..., N}
be defined for (f,#)e (0, T) x R, and for arbitrary Z = (2, ...,2y) and
P = (p4y...,p,) System {B¥} is said fo satisfy condition W with respect
to Z if for every index % the inequalities

% X % (J #k)
imply
Bk(t; z,Z,P) *<\Bk(ty Dy RBoyyoenyBroyy By Bpqry ooy Zyny D)

for all (¢, w)e (0, T) xR, and P.



Differential inequalilies 3

We are now able to formulate and prove the main result:

THEOREM 1. Let the functions A¥(t, x, s, P), B¥(¢, 6, Z, P) (k = 1, ..., N,
1 =1,...,n) be defined and wmeasurable for (t,@)e(0,T) xR, and for
arbitrary se (— oo, +oo), P, Z, and let the functions B satisfy condition W
(see Definition 4) with respect to Z. Suppose further that the inequalities

(4) Z(Pi—ﬁi)[A?(t;m:'g;P)"-A?(t’mrE:P)]

- > a|P—PP—b(jaf+1)(s—3)*
(k=1,...,N),
(5) |4%(t, , 8, P)— A{(t, @, 5, P)| < a1 1P ~P|-+by (Jof* +1)s —3|
(k=1,...,N, i =1,...,n),
(6) [B*(t,®,Z,P)—B",Z, P)]sgn(z—%)

N
<o(lof+1) ) ly—F| +d(ls +1HP—P| ()  (k=1,...,N)

j=1

hold true, where a, b, a,,b,,0 and d are positive constants.
If {v*(t, @)} and (", 2)} (E =1,..., N) satisfy the system of ine-
qualities (1) and (2), respectively (see Definition 3), and the conditions

(7) W0, ) < v*(0,0) (B =1,...,N)
almost everywhere in R,

(W=, eB, (k=1,..,N),
where (u* —o%), = max(u*—o% 0), then

ub(t, 2) <04, @) (&

1,0, N)

almost everywhere itn (0,T) X R,.
Proof. Put

wy(t, @) = [, ) =%, 2)], (k=1,...,N).

By the standard properties of weak derivatives, w,e Wy ((0, T) x (|o| < R))
for all B> 0 (Lemma 4.2, p. 99 [2]). We introduce the functions

2 2
6, 3) = | starexp - < [, 2000,

where the functions { and @ satisfy the following conditions:
te O*(R,),0< t(x) <1 for 2 R,, ((x) =1 for |2| <R,

(*) sgnw denotes 1 if > 0 and —1 if » < 0.
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(@) = o0 for || > R+1, |{,(#)| is bounded by a constant independent of B,

B(t) =1 for 0<t<t—s, B =—— for r—s<I<T,

D(t) =0 for 7ty

where 7 ¢ (0, 1/2x) and a congtant x will be chosén suitably. For convenience
we will write

¢* = n’w, P,
where
. a(lzl*+1)
N = texp( 1—a |

It follows from (7) that

[ 046, 000,07 9(0)|, o0 = 0, [ wylt, @)t ()], dw =0
By Ry,

Hence we conclude that

f f " (u* — ") dtdo = 3 fT f (wh)en® Pdtdw
0 R, Y B,
T

1 0,
== f whntdtds — f f winm, ®dtdn.
Ry

r—2 B, 0
Then letting ¢ — 0 we obtain

T T

® [ fort@r—odtde =3 [z ofn(z, 0 do— [ [wigndide
0 R, Ry, 0 R,

for almost all ve (0, 1/2z). Now, substituting into (3) and (3') the functions

¢* defined above, subtracting (3’) from (3) and using (8), we can easily

verify that

0 3 [wulr 2 n(, 0 a0+ [ [ D (fw)g,[4EE, 0, u¥, ul)—
R,

0 Ry i=1

—Af(t, @, o*, v})]dtdw

Sf f’?zwk[-Bk(ty w, U, '“’;:)'—-Bk(t: s, V, ”Q)Jdtdw‘l‘f fwiﬂmdfdw

0 R, 0 Ep
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for almost all ze (0,1/24). Introducing the functions
W, = max[—A(u‘—'v"), 0] for i #%k

by condition W and assumption (6), we have the following inequa.lity':

10) [ [7w[B*¢, 5, U, uf)—B*¢, @, V, o) ]dde
0 By

T
< f fﬂz'wk[Bk(t; 0y Uy oony WL Ty, wF, WP

0 E,

- Wyyryeoey U+ Wy, uE) — B (L, 0, V, vF)]dide

f f o [o(lal*+1) Yot a(ial+1) x u— o] ded.

F=1

The last inequa,hty together with (4), (5) and (9) gives

T
(1) 3 [wls, oPn(s, o0 do+ [ [ rlal@wa —b(jo]+1) wildtde —
Ep b By

— f f 2% g 0y, [ |(03)] + b ([0 + 1)y ) dt e

<[ [ntwp|o(lel*+1) Zw,+d(|w|=+1) ()l 1@ d -+ f f win e dido.
0 Ry

Juml
Note that
dna’
2,07 gl W |(03),] < —n (20l + ‘ml’
d(jo]* + L) oy |(10,),] < —~l( Wr)ol” -+ —-(lez+l)wfi

By the use of these inequalities it follows from (11) that

b [ oz, oftni, oo+ o [ [ Pl
Ty, o B,

T N
<[/ [(o+5) ot +- Dt +otlaf +007m, >+

J=1

471,@1

+ 2 i 20, + Vb oot | o+ [ [ wtnndtas,
b E,
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and summjng inequalities (12) over k from 0 to & we have

(13) %2 [z, an(z, o do+ 2 f f P l(w. dtdo

k=1 R, om0 0

f f [(b+ + 3]l + 1)

N
+ 28, (Joft + 1)ty Iﬂml+’7m]2w}idtdw-

=1

Notice that w; e E, (see Definition 2), and hence the limit passage B - oo
in inéquality (13) implies

(14) %2 f Wy, @ H (7, 2 do < f f[(b+ +oN) (2P +1) B+

k=)

4%1

428, (jo* 1) 15{1}1,,1+m§r,]2:I widido,

k=1

where

le2+1)

Ht,2) = exp(—a 1=

Now choose u sufficiently large so that

2
r ) Mml \HL I+ 20 (o + 1) H | H,| + HH, <

(15) (b+ +oN (e + 1 E+ 20

for (¢, ®)e (0, 1/2u) X B,,. From (14) and (15) it follows that

N
D' [z, 2 H (v, 2)*dw = 0
k=1 R,
for almost all ve(0,1/2x); hence wy(t,x) =0 (k¢ =1, ..., N) almost
everywhere in (0, 1/2u) X R,. If 1/2u =T, this completes the proof;
otherwise the proof can be completed by a finite number of applications
of the same argument on (1/2u,1/u) X R,, (1/u, 3u) X R,, ete.
As an immediate consequence of Theorem 1 we obtfain the following
corollaries:
COROLLARY 1 (Maximum principle). Let the function A%, B* (k=1,..., N
% =1,...,n) satisfy all the hypotheses of Theorem 1. Assume that

A¥¢, @, my, 0) =0, Bt o, M,00<0 (k=1,....,N; i=1,...,n)
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for almost all (i, z)e(0,T) X R,, where M = (my,...,my) and m,; are
gonstants.
If {(W*@, @)} (k =1,..., N) satisfies the system of inequalities (1) and
the conditions
w0, p)<m, (k=1,...,n)

almost everywhere in R,,

(u*—my) e By (k=1,..,N),
then
v, oy <m, (E=1,...,N)

almost everywhere in (0, T) X R,

Before formulatnig the next corollary, we introduce the following
definition: ;

DEFINITION B. A system of functions {u*(,2)} (k =1,...,N) is
said to be a weak solution of the Cauchy problem

N
(16) uf = Z%Ai‘(t,w, by )y +BF(t, 2, U,ul) (k=1,...,N)
;

i=1
with the initial condition
u*(0,0) =¥*@) (bk=1,...,N)

almost everywhere in (0, T') X R,,, where ¥* are given functions in L% (R,),
if uFe W3((0, T) % (l#| < R)) (k =1, ..., N) for all R> 0 and {u*} satisfies

0 T
f [t ut+ D) ok AL, @, u¥, )| dtde = [ [FBt, 2, U, k) dido
o R, i=1 0 R,
(k=1,..., N)

for any system of functions {¢*} (¢ =1, ..., N) of the class W3((0,T) x R,))
with compact supports in «# and vanishing for ¢ = T.

CoROLLARY 2 (Uniqueness criterion). Suppose that the functions A%,
B*(k=1,...,N, i =1,...,n) satisfy all the assumptions of Theorem 1.

Then the Cauchy problem for the system of partial differential equations.
(1.6) admits in (0, T) x B, at most one solution of class E,.

ExAMPLE. To illustrate Theorem 1, let us consider a system of linear
equations

n n N
! i, i .
uf = i; £ [afi(t, w)uﬁj-i- ak(t, v)u*] + ; b (t, w)u’,},’{-l- ; (e, o)l
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(k =1,..., N) with the coefficients defined and measurable in (0, ') X E, .
Suppose that the coefficients satisfy the conditions

BlEP < D ai(t, )& < falelh  lak(t, @) < A(jaP+ 1),

1,7=1
e, 2) < B(lzP+ 1) of (2, 2)] < O(lw*+1),
g, a) =0 (k#1)

for all £¢ R, and (f, 2)e (0, T) X R,, where 4, B, C and p; are positive
constants. It is easy to verify that the functions

n
A:’tc(t; z, 8, P) = Z“fj(t; w).pj'l"“f(t’ x)s,

i=1
n n
B(t,2,2,P) = Db, @)p;+ D (¢, 5)a
i=1 i=1

satisfy all the assumptions of Theorem 1.

2. In the uniqueness criterion (see Corollary 2) we assumed the
system of functions B* to satisfy condition W and inequality (6). These
assumptions can be replaced by a Lipschitz condition. More precisely,
we have the following theorem:

THEOREM 2. Let the functions A¥ (k =1,..., N, 1 =1, ..., n) satisfy
all the assumptions of Theorem 1. Suppose that the functions B* (8 =1, ..., N)
satisfy the inequalities

[.B"(t,ar,Z,P)—B"(t,az,Z-,Pﬂ

<ollof+1) Y =7+ d(al +1 X [P—P| (& =1,..., N).

j=1

Then the Cauchy problem for the system of partial differential equations
(16) admits in (0, T) x B, at most one solution of class EH,.

Proof. Suppose that U(f, #) and V (¢, w) are two such solutions. It
is obvious that it suffices to prove the inequality

N

D [wy(z, 2l H(z, 2)'dw

k=11,

T n
< [ [IC(lo +1) B+ Co | H,J* + Cy (|0 + 1) H |H,| -+ HH,] D w}dida
[

k=1

for almost all e (0, 1/24), where w;, = u*—o*, H is the function defined
in the proof of Theorem 1, C,, €, and (, are positive constants. To derive
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this estimate we take
o“(t, 2) = [C(@) H(t, ) Fwy(t, 2) D(3)

as the test function, where { and @ are the functions defined in Theorem 1.
Proceeding as in the proof of Theorem 1, we check that

T n

3 [wilz, oz, oldo+ [ [ Y (fw), [4F(E, o, vk, uf)—
Ey, 0 Rpi=1 |
— A%, @, o, vE) At de

= [ [rw[B*¢, @, U, v")—B*(t, 5, V, v%)]dtdo+
0 By

+ [ [winpdids (8 =1,..., )
Rn

for almost all ze (0,1/2y), where n = (H. Now, as in Theorem 1, we:
derive the required estimate.
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