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Abstract. Suitably normalized quasi-conformal mappings z—f(s, w) of the
plane are known to depend analytically on the complex parameter w if their complex
dilatation 2+ u (2, w) is a holomorphic function of w for almost all 2. This leads to
a general majorization principle which has applications to various problems ([2]).

The situation is different if ¢+ f(s, w) are quasi-conformal mappings of a Jordan
domain A onto a Jordan domain A’. It is not difficult to prove that, with w u (2, w)
holomorphic, the function w+— f (2, w) is analytic for every s¢ 4 if and only if wi— f(2, w)
is constant for every s lying on the boundary of A.

The majorization principle can, however, be saved in many cases in which
the mappings f are not necessarily quasi-conformal in the whole plane. The idea is
to approximate f by mappings f, which are quasi-conformal in the plane, apply the
majorization principle to f,, and then proceed to the limit in order to obtain a result
for f.

1. Mappings of Jordan domains. Let A and 4’ be Jordan domains
in the extended plane. We denote the boundary of A by 4 and the clos-
ure by 4, and use similar notation for other sets.

LEMMA 1. Let z+—>f(2, w) be a continuous mapping of A into A’ for
every w lying in the unit dise D. If w—f(z, w) 18 analytic in D for every
zeE < A4, then w—>f(z, w) is analytic also for zeE.

Proof. Assuming that #—F # @, let {¢E—FE and choose points
z,¢B,n =1,2,..., s0 that limz, = {. Then {f(z,, )} is a normal family.
It follows that f({, ) is the uniform limit of analytic functions, and hence
analytic.

LEMMA 2. Let z>f(2, w) be a continuous mapping of A into A’ for every
weD and let LedA. If w—>f(L, w) 18 analylie and there 18 a wyeD 8o that
f(C, wy)edA’, then w—f(L, w) i8 constant.

Proof. If w—f({,w) is not constant, then the image of D under
f(¢&, ) is an open set of the plane. On the other hand, the image lies in A’
and contains the boundary point f({, w,). This is a contradiction.

Assume next that to every weD there corresponds a complex-valued
function zr>pu(2z, ), measurable in A and with jju( , w)|l, < 1. Let 2>



b8 0. Lehto

+>f(2, w) now be a quasi-conformal mapping of A onto A’ which has
the complex dilatation z+>u(2, w) for almost all zeA. Such a mapping
exists always. Furthermore, it admits a homeomorphic extension to the
closure of 4; we use the same notation for the extended mapping.

THEOREM 1. Let wi>u(2, w) be differentiable in D for almost every
zed. If w—f(z, w) 8 analytic in D for every ze A, then w > u(z, w) is holo-
morphic in D for almost every zeA.

Proof. By the Lemmas 1 and 2, w+>f(2, w) is constant for every
ze0A. Hence, with one mapping f( , w) given, all the others are uniquely
determined by their complex dilatation.

There is no loss of generality to assume that A = A’ = D. By a result
of Ahlfors and Bers [1], the functions w+>f,(z, w) and w+f;(z, w) are
differentiable in D for almost every zeA, and f3 = fz,, [ = fu- Because
w> f(2, w) is analytic, it follows that ug(z, w) = (f;(2, w)/f,(2, )}y =0
in D for almost all ze A. Since w+>u (2, w) is differentiable in D, this implies
that w+>u(z, w) is holomorphic in D for almost all ze A.

The converse is not true in general:

THEOREM 2. Let w>u(z, w) be holomorphic in D for almost every z< A.
Then the function w— f(z, w) i8 analytic in D for every ze A if and only if
w>f(z, w) is constant for every ze0A.

Proof. The necessity of the condition follows directly from the
Lemmas 1 and 2. In order to prove the sufficiency, suppose that w+—f(z, w)
is constant for every z¢dA. Again, there is no loss of generality in assuming
that A = A’ = D. Let g denote a quasi-conformal extension of z+>f(z, 0)
to the complement of D. Set h(z,w) = f(z,w) if zeD, h(z,w) = g(2)
if 2 lies outside D. Then z+>k(z, w) is a quasi-conformal mapping of the
plane whose complex dilatation depends holomorphically on % for almost
every z. It follows that w > k(z, w) is analytic for every z ([1], [2]). Conse-
quently, z+>f(z, w) is analytic for every zeD.

There are two natural ways to normalize the mappings f( , w) so
that complex dilatation determines them uniquely. We can require that

(1)  fla,w)=a', f(b,w)=b, acd,a'cA’ bedd, b <dA’,
or that
(2) fle;,w) =¢;, ¢;€04,c;¢04',1=1,2,3,

where the a's, b’s and ¢'s are independent of w. In view of Theorem 2,
it is not surprising that for the function w>f(2, w) to be analytic, con-
dition (1) is more restrictive than (2): Let w > u(z, w) be holomorphic
in D for almost every zed, and z+—f;(z,w), + = 1,2, quasi-conformal
mappings of 4 onto A’ with complex dilatation z+>pu(2z, w) a.e., where f,
satisfies condition (1) and f; condition (2). If w—f,(2, w) is analytic in D,
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then 80 i8 w0 > f,(2, w). Conversely, if w > f,(z, w) is analytic in D for every
ze A, then w— f,(2, w) need not be analytic in D for any zeA4, z +# a.

In order to establish these statements, suppose first that ws f, (2, w)
is analytic in D for every ze¢A. By Theorem 2, there is a conformal self-
mapping ¢ of A’ which is independent of w so that f,( , w) = ¢ofi( , w).
It follows that w+> f,(2, w) is analytic in D for every zeA.

The following example shows that the analyticity of w— f,(2, w)
does not imply that w > f,(z, w) is analytic. Let A4 and A’ be upper half-
planes, ¢, = ¢, =0, ¢, =¢, =1, ¢3 =¢y = oo. If u(z,w) =w, then

2+ wz

fa(z, w) = 1tw

Hence, w+— f,(z, w) is analytic for every 2. On the other hand, if a = a’ = 1,
b =b" = oo, then

fi(z, w)

(1 +) (2 +wz) + i (w —w)
= 1—|’u7[2 - .
From

ofy(z,w)  (1+w)(z—i+w(z+1))
ow (1 — |w|?)?

it follows that w — f,(z, w) is analytic in D only if z = 1.

The following simple example shows that, with w>u(z, w) holo-
morphie, it is very exceptional for w+ f(z, w) to be analytic. Let A and A’
be upper hali-planes and ¢ a quasi-symmetric function with the prop-
erties ¢(0) =0, ¢(1) =1. Let h be a quasi-conformal self-mapping
of A with boundary values ¢. If » denotes the complex dilatation of h,
we set u(z, w) = wyv(2)/|pllo. Let 2+ f(2, w) be the quasi-conformal self-
mapping of 4 which fixes 0,1, oo and has the complex dilatation z+—
—u(2, w). For @ real, we then have f(z, ||,) = ¢(®), while f(@, 0) = =.
We conclude from Theorem 2 that w+> f(2, w) is analytic for every ze4
only if ¢(w) = x. Even this very restrictive condition is not sufficient
(cf. Section 2).

2. Remarks on mappings of the disc. Let 2+ f(z, w) be a quasi-con-
formal self-mapping of the unit disc D which keeps invariant three fixed
boundary points ¢;, ¢ = 1,2,3. We assume that its complex dilatation
Z—>u(?, w) is a holomorphic function of w in D for almost all zeD and
that there is a wyeD such that u(z, w,) = 0 for every 2. Then f(z, w,) = 2.

From the well-known representation formula for f(z,w) in terms
of u(z, w) we obtain easily a quasi-explicit condition for w— f(z, w) to
be analytic. We extend u by setting u(z, w) =0 whenever [z| >1,
and define ¢,(u( ,w)) = pu( ,w), @u.(a( ,w)) =p( ,w)Sp,,(u( ,w)),
n=2,3,..., where § is the Hilbert-transformation.
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Let H denote the Hilbert space consisting of all complex-valued
functions L*-integrable in D, with the inner product

(f, 9) = [[f(2)d(2)dndy.
JJ 76

In H the elements which are holomorphic in D form a closed subspace.
Let O be its orthogonal complement with respect to H. The following
result is then true:

The function w > f(2, w) is holomorphic in D for every zeD if and
only if

1) D w(u(,w)e0

=l

for every weD.

Proof. Let » be the quasi-conformal mapping of the plane which
has complex dilatation », is conformal in [2] > 1, and has the expansion

h(z) = 2+ 3'b,2~" Then ([2])
1
1
(2) by = — E' ffq:;(v)(z)z""‘dmdy, n=1,2,...

Suppose first that > f(z, w) is holomorphic. By Theorem 2, the
fanction z+—>h(z, w), defined by h(z,w) = f(z,w) if zeD, h(z,w) =2
if z lies outside D, is a quasi-conformal mapping of the plane. Hence, by
(2), Y@i(u( ,w) is orthogonal to every power 2. Since 1,z,22,...
is a complete orthogonal system in the subspace of the holomorphic
elements of H, (1) follows.

Assume conversely that (1) holds. Let z+>k(z, w) now be the quasi-
conformal mapping of the plane which has the complex dilatation z+— u(z, w)
and the property h(z, w) —z = 0(1) a8 2 ->o0. From (1) and (2) we deduce
that h(z,w) =2 for |2|>1. Then k( ,w)|Dof( ,w)”! is a conformal
self-mapping of D which keeps three boundary points fixed. Hence f(z, w)
= 2 if 2¢dD, and it follows from Theorem 2 that w— f(z, w) is holomor-
phie. .

Let us assume, in particular, that u(z, w) = a(w)x(z), where a is
a holomorphie funetion in D, a(0) = 0, la(w)| < 1, and » is measurable
in the plane, |ix|l, <1, %(2) = 0 if [2| >1. Then p,(a(w)x) = a(10)"p,(*),
n =1,2,... From the above proof we thus obtain the following result:
The function w f(z, w) is holomorphic in D for every ze¢D if and only if

Fi(x)e0, i=1,2,...
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Condition
(3) D #ix)€0

is not sufficient for w+> f(2, w) to be holomorphic. For let 2 be an arbi-
trary quasi-conformal self-mapping of D which keeps every boundary
point fixed and x its complex dilatation. From the above proof it follows
that (3) holds. On the other hand, it is well known that quasi-conformal
self-mappings of D which keep three boundary points fixed and have
complex dilatation Ix, 0 < { <1, do not necessarily fix every boundary
point. ,

Nor is condition %O sufficient for w+> f(z, w) to be analytic. A simple
counterexample is obtained if we take x(2) = 2. Then %¢0, but @,(x)(?)
= |2|* so that @, ¢ O.

Reich and Strebel have studied systematically Teichmiiller mappings
of D which keep every boundary point invariant (see e.g. [3]).

We conclude this section by giving two examples of mappings f( , w):
D -> D, fixing 0 and 1, which depend analytically on w. If

2
plz, w) = "3
then
f(z’ w) = z|z|".

We see that w— f(2, w) is analytic and, in accordance with Theorem 2
flz,w) =2z if 2zedD.
In the second example we take u(2, w) = w(2/Z)%. Then

f(Z, w) =2 [z]2l2+wz + ((2+wz)2 — 4w Izl4) 1/zl-1'
Again, w— f(z, w) is analytic.

3. Majorant principle. In this section we consider mappings f quasi-
conformal in the domain 4 = {z| [¢| >}, r < 1, conformal in B = {2| |2|
> 1}, and satisfying the condition

1) f(2)—2z =o0(1) as z—>o0.

Let F, denote the class of all such mappings, with the additional prop-
erty that their complex dilatations satisfy the inequality [ul. < %,
k< 1. If r > 0, the mappings belonging to ¥, are not necessarily quasi-
conformal in the whole plane, and it is not easy to directly study how f(2)
depends on u. However, we shall now briefly indicate, without giving
detailed proofs, how the use of suitable approximation leads to a majorant
principle similar to the one holding for mappings quasi-conformal in the
whole plane. -
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Let ¥, be the subclass of ¥, whose functions are restrictions to 4
of quasi-conformal mappings of the plane. Then, for every feF,, there
are mappings f,eF, such that

(2) f(z) = lim f, (),

uniformly on every compact subset of A.

Let F, be the class of all conformal mappings of B with the normal-
ization (1), and ¢ 2 holomorphic functional defined in #,. This means
that ¢(f) = w({y,...,{,), where w is a complex-valued holomorphic
function of the variables {;, each {; being the value of f or of its m-th deri-
vative, m =1, 2, ..., at a fixed point 2; of B or a coefficient of the power
series expansion of f at infinity. If M (k) =suple(f)| in F:, 0< k<1,
then it follows from (2) that
(3) M(k) = suplp(f)I.

feFk

Using (3) and modifying suitably the proof of Theorem I. 3.1 in [2],

we obtain the desired majorant for M (k):

THEOREM 3. For a holomorphic functional in F,,

kM(1)+M(0)
1+EM(0)/M(1)

M(k) <
Suppose that a mapping feF; has the expansion

f(z) =2+ Vb, 2"
in B. As an application of Theorem 3 we choose ¢(f) = b,,. Then M (0)/M(1)
= r**!, Since max |b,| = 1, max|b,| = 2/3 in F,, it follows that

k+r? 2 k41
by < — .
e <3 1+krs
Both estimates are sharp.

15,1 <
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