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Convergence and stability of difference scheme for an
elliptic system of non-linear differential-functional
equations with boundary conditions of Dirichlet type

by BoGustaw Bozek (Cracow)*

Abstract. We consider a system of second order differential-functional equations of elliptic
type with boundary conditions of Dirichlet type. We propose an implicite scheme for this
problem and under certain assumptions we show the convergence and stability of this scheme.

1. Introduction. Let D=[0, X]"<cR", X < +o. We consider the
following system of second order differential-functional equations of elliptic
type

(1Y) fi(x, u(x), (@)e(x), (U)ex(x), u) =0 for xeintD (I=1,..., p)
with boundary conditions of Dirichlet type
(1.2) w(x)=e¢(x) for xedD (I=1,...,p),

where
X=(X)iz=1,.m  U=(Uu=1,..p» (W)= (Ow/Cx)i=1,...ms
(U)sx = (0* u/0x; axj)i,j=l ..... n I=1,...,p).

We will define an implicite difference scheme for problem (1.1), (1.2).

Under certain assumptions concerning the functions f,, 4, (I=1, ..., p)
and the mesh size h we show the convergence and stability of this scheme.

The difference approximation of the mixed derivatives of the solution
and the approximation of the functional argument goes by the method
adopted from [2].

Notations concerning difference operators used here and in [1], [2]
come back to A. Pli§ and seem to be most convenient for our purposes.

2. AssumptiOoNs H. We assume that

(1) The scalar functions f;: Ea(x, y,q,w, z) = fi(x, ¥y, q, w, 2) R
(I=1,...,p), where E:=DxRPxR"xR"2xB(D), X =(X)i=1,ms Y,
= (yﬂ)ll= 1,...p° q= (Qi)i= 1.,...m> w= (wij)i.j= 1,...,m
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B(D):={z =(zy, 23, ..., z,): z;: D = R is a bounded function, (I =1, ..., p)}

are such that

(21) ﬁ(xa Y. q, w, Z)_fl(xa F7 qs W:E)

p n n
=Y =T+ Y Bilai—G)+ Y vu(wi—wi)+xllz—7
=1 i=1 i,j=1
(I=1,..., p) for any two points (x, y, g, w, z), (x, ¥, 4, W, Z2)€E, and ay,, B,
vip ¥ (Lp=1,...,p;i,j=1,...,n) are functions defined for all points
(x, y, 7, q, §, w, W, z, 7)€ D x R** x R*" x R*"* x [B(D)]? and bounded in this
set.
The norm || || in the space B(D) is defined by the formula

(2.2) |zl := max {sup|z,(x)]} for zeB(D).

1<I<p xeD

(2) The functions a,,, By, yuj, # (Lu=1,...,p;i,j=1,..., n) satisfy
the following conditions (for all admissible arguments):

(2.3) o 37} s L< 0, 0 S '1“‘ < J (1 # #),
(24) Bl < T,
(2.5) O0<g<yu— Z 2l
' Wl
(2.6) Yiij = Vijis

(277)  for each pair of indices i, (i #j) the function y,; is either always
non-positive, or always non-negative,

(2.8) bl < K.

(3) There exists a solution u(x) of problem (1.1), (1.2) such that
ueC*(D).

(4) The inequality
(29) L+J(p—1)+K <0

is satisfied.

3. We introduce the uniform net in the cube D. Given a sequence of
indices M =(m,,...,m,), m;=0,1,..., N (i=1, ..., n), we denote by x
the nodal point with the coordinates x™ =(x}', ..., x,™), where x| = mh
i=1,...,n,0<h=X/N and N > 2.

We introduce the following denotations:
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Z.={M osm<N,i=1,..,nj},
(3.1) {M 1<m<N,i=1,..., n},
‘= o<m<N—1,i=1,...,n},

and we introduce specnal symbols for the nodal pomts
—i(M):=(my, ...om_y,m—1,m,y, ..., m) (Mézl)s
iM)y:=(my, .o,m_,mi+1,myy,...,m) (MeZy)
(i=1,...,n).

. For any net function a: Z3M —aMeR the following operators are
defined:

aM = 0.5h™ (@M — g~ M),
(3.3) a Mi_-05h 2(ai(M)+aj(Ml+a—i(M)+a—j(M)_2aM_ai(—j(M))_a-iU(M)))’
atMii — QS h™2(—giM _ giM _ g=itM) _ q=i(M) | 9aM 4 GIGIMY 4 o= i(=j(MD)
MeZ,nZ,;i,j=1,...,n

(3.2

Every function b=(b,,...,b,)eB(D) is approximated by b*
= (b%, ..., by)e B(D), where

(34 b (x): Z xm (x) b,

b for xely,
(3.5) X () = {0 for  x¢l,,

Iy:=xeD: mh<x, <(m+1)h, i=1,...,n},
(3.6) bY:=b,(x") (u=1,...,p; Me2).
In the same way, for every net function ¢: Z3M — c™ e R? we define c*:
(34) ()= e (w=1,...,p)
MeZ

where y,(x) and I, are defined by (3.5).
Analog with the system of differential-functional equations (1.1), (1.2) we
consider the system of difference equations

(3.7 Si(x™, oM oML oMY %) =0 (MeZ, nZ,y; 1=1,...,p)
with the boundary conditions
(38) M=M= (M) for MeZ\(Z,nZy) (I=1,...,p),

whcre vM = (v:{)pl:l ..... P UIMI = (.lei)l'= 1,...,n° UiM” = (UIMU)I',J'=1 ..... n

vm;‘:{v‘—mj for i=jor <0,
" oMY for i#j and y,;; >0
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The operators oM, o M ptMi(I=1,...,p;i,j=1,...,n) and the
function v* are defined by (3.3), (3.4), (3.5), (3.6).

System (3.7) and the boundary conditions (3.8) are generated by system
(1.1) with the boundary conditions (1.2). Let us denote by v and u the
solutions of these problems, respectively. The solution u of problem (1.1), (1.2)
is not, in general, a solution of problem (3.7), (3.8) (with u™:=u(x¥) for
MeZ). So, we can write

(39)  fi(xM, uM, uM UMY u¥y=eM(h) (MeZ, nZ,; 1=1,..., ).

From assumption (1), the regularity of the functions 4, (/ =1, ..., p) and
the definition of u* (see (3.4){3.6)) we have

(3.10) limeM(h) =0 for MeZ,nZ, and [ =1, ..., p.

h—0

Let us write

(3.11) Mi=uM—oM =M., ., (MeZ)
then
(3.12) pMiz g Mi_pMi M= g MU _pMii k= k¥

(u=1,..,p;i,j=1,...,n, MeZ,n2Z,).

Formulas (3.12) are true also for arbitrary net functions for which
equation (3.11) is fulfilled.

4. THEOREM 1. Under assumptions H, if the mesh size h satisfies the
inequality

4.1) g/h—05T >0,

then the difference method (3.7), (3.8) is convergent and we have the following
estimation for the error:

e(h)
4.2 M < - MeZ; 1=1,...,p),
4.2) Iri’l Lrl(p-1)+K (Me p)
where
4.3) e(h):= max [eM(h).
MeZ|nZy
1<i<p

Proof. The sets Z and {1, ..., p! are finite, so there exists AeZ and
keil, ..., p) such that

(4.4) Irf| = max |r}|,
1<i<p
MeZ

where r is the function defined by (3.11).
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We shall show that

s(h)
(43) Irél < T L+J(p—D+K

If AcZ\(Z, " Z,), then r =0, because of the boundary conditions
(1.2) and (3.8). Thus (4.5) holds in this case.

Now we assume that A€ Z, nZ,. On account of (3.9), (3.7), assumption
(2.1) and formulas (3.12) we have

(4.6) e (h) = fi(cM, w, ull, ul', u¥)

=£,0cM uM o uM uM ur)—f(xM, oM, oM oMY v?)

P
= Z +Z Birt" + Z Yiij i M (el
u=1

ij=1

We also have

4.7 Ir*ll = max {sup| ¥ xu(x)r! M) = max maxlr’”’l1 Irdy,
1isp xeD MeZ <isp MeZ

in view of definition (2.2) of the norm || ||.
Now we can write (4.6) in the form

P n n
4.8) et (h) = z am"f*‘ Z Burt"+ Z }’u,-r:“”ﬂfllrfl
=1 i=1 Li=1
MeZ, nZ,;1=1,...,p).
For M = A4 and | = k, from equality (4.8) and definition (4.3) of ¢(h) we
obtain two inequalities:

‘ p

(4.9) Y oy, ri+ Z Buri+ Z Viis T+ 3, |rif} < e(h),
n=1 i,j=1
14

(4.10) Z W, o+ Z ﬁlu ‘+ Z Yig T+ Ird) = —e(h).
u=1 i,j=1

Now we shall examine the two cases:

(i) We assume that ri! > 0. Then we can repeat the argument of the
proof of Theorem 1 in [1] and we obtain the inequality

(4.11) ‘ Z Burd+ z Tare? < 0.

i.j=1
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From (4.10) we have

P P

(4.12) —e(h < Y aritnrf =auri+ Y o, ri+xrf
u=1 u=1
u+k

SLrf+J(p-V)ri+Krf =(L+J(p—D)+K)ri
in view of (4.11), (2.3), (2.8) and (i). From the above and (2.9) we get (4.5).
(i) We assume that rf < 0. Now, we define the net function 7: Z3 M
— M e R?, where
(4.13) M= M=M=,
In this case we have
(4.14) Irdl = | —rif| = 7| = 7,

since 7 > 0. Multiplying inequality (4.9) by —1 we hence obtain

p n n ]
4.15) Z Uy, T + z Bri i + Z 'J’kij’TfU_”kaA = —e(h),
p=1 i=1

ij=1
and we are in the situation of case (i) with 7 instead of r and —, instead
of x,.
This completes the proof of the error estimate (4.2).
The difference method (3.7), (3.8) is convergent, because lime(h) = 0 (see

h—0
(3.10) and (4.3)), in view of the error estimate (4.2). Hence we have limr}¥ =0

for MeZ and leil, ..., p}. hoo
The proof of Theorem 1 is now complete.

5. Along with the difference problem (3.7), (3.8) we consider here the
perturbed difference problem

(5.1) fy(x™, wM, WM wMl wo=pM) MeZ,nZ,;1=1,...,p)

(5.2) wt=oM+0¥(h) (MeZ\(Z,nZy);1=1,...,p).
THEOREM 2. If the assumptions of Theorem 1 are satisfied, then

(5.3) max |vM —-wM < Q(h),

MeZ

1<I<p
where v is the solution of problem (3.7), (3.8), w is the solution of (5.1), (5.2),

—n(h)
54 h):.= 0(h), ,
(54) Q(h max( (h L+J(p_1)+K)
(5.5) 6(h):= max |0M(h),
MeZ\(Z ~Z ) '

1<I<p
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(5.6) n(h):= max |nM(h).
Mezlr\22
1<1sp

Prool. We define the net function r: Z3M —»rMeR?, rM:=pM_—wM
=(¥),=1..., There exist AcZ and ke !l, ..., p} such that |rf| = max |r}|.

MeZ
1siI<p

Now we shall examine the two cases:
(i) We assume that AeZ\(Z, nZ,}). Then

(5.7 max |rM| = |r{| = |6 (W) < 0(h) < Q(h).
MezZ
1<I<p
(i) Now, we assume that AeZ, nZ,. We repeat the argument of the
proof of Theorem 1 (the case AeZ, N Z,) with n(h) instead of £(h) and we
obtain

— h)
. M < d <Q(h.
(5.8) rﬁ?z)(lnl Lii(-17K Q(hy
1=si<p

This ends the proof of Theorem 2.
Remark 1. Theorem 2 yields the corollary: if limn(h) = 0 and lim 6 (h)

h—0 h—0
=0, then limQ (k) = 0. In consequence, limw™ =¥ for each MeZ and
h—0 h—0
lel{l, ..., p}.
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