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Dependence of a differential equation on the first eigenvalue

of a suitable problem

by JAN BOCHENEK (Krakéow)

Abstract. In this paper a new version of the known results on the inverse prob-
lem of Sturm Liouville type is given. The main result of this paper is contained
in Theorem 4, whose advantage is that its assumptions concerns only the first eigen-
value, contrary to the previous theorems, where the assumptions involve the whole
sequence of eigenvalues. The method used in this paper is also new and differ from the
previous methods.

Introduction. The purpose of this paper is to give an alternative
from of the known results on the so-called inverse problem of Sturm
Liouville type (see [1), [3], [4], [7], [8]). This problem mainly consists
in determining the dependence of the differential equation on the set of
its eigenvalues. All the known (so far) results concerning this problem
require the knowledge of the entire set of eigenvalues. This is a disadvan-
tage from the point view of applications.

Let D be a bounded domain in the space E™. We assume that the
boundary éD of D is a surface of class O} (for the definition of a surface
of class C! see [6], p. 148). In the sequel we denote by X = (z,, ..., &,)
point of E™,

In the domain D we shall consider the problem of eigenvalues and
eigenfunctions for the differential equation of the form

(1) Au+[A—tq(X)Ju =0, teR
with the boundary condition
d
(2) .TZ'MXW:O on 8D—I, =0 on I,

n being the interior normal to 6.0 and I' denoting an (m —1) dimensional
part of ¢.D (I" being connected or not). We assume that A is a non-negative
continuous function defined on D. The boundary condition (2) may be
taken in the sense of generalization (cf. [2]).
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1. Dependence of the first eigenvalue of problem (1), (2) on the par-
ameter ?. Let us denote by 4, (?) the first eigenvalue of problem (1), (2) for a
fixed ¢t € B, and let ¢, denote the first eigenfunction of this problem cor-
responding to the eigenvalue A,(t). The eigenvalues and eigenfunctions
of problem (1), (2) will be defined variationally (cf. [6] or [2]). Aec-
cordingly, the fu'st elgenvalue A,(?) of problem (1), (2) is defined as

3)  M(t) =min{ Jteraco+ta()g1ax + [ mx)gras},
PeK aD—-r

where K is the set of functions ¢ of class (7 in D such that |lplr2p) = 1,
¢ = 0 on I' (the definition of functions of class O} is given in [6], II, p.
300); the first eigenfunction ¢, is that at which minimum (3) is attained.
As is known (cf. [5]), from the assumptions on the regularity of the domain
D it follows that the minimum (3) is realized by a function ¢,, which is
-of class C? in D and satisfies equation (1) and the boundary condition (2).
It is also known (cf. [2]) that the function ¢, is uniquely and ¢, preserves
its sign in the domain D.

We shall prove the following

THEOREM 1. If the domain D satisfies the assumptions formulated
in the introduction and if q is a continuous function in the closure D of D,
then the first eigemvalue of problem (1), (2) 4, = A,(%) s a continuous func-
tion and satisfies the Lipschilz condition for t € R.

Proof. Let ¢t € B be a fixed number and let k € B, k # 0. For every
function ¢ € K we have the following equality:

W) [lemde+ 4+ D@+ [ WIS

aD-r

f[grad2q>+zq(1) 214X + th)¢zds+qu p*dX.
éD-r

Putting in equality (4) ¢ = ¢,,,, We get

ME+E) = f[gradztp,+k+tq(x)¢¢2+k]dx+ f h(X) i 48 -+
D

oD
+k [ q(X)g},dX.
Therefore ?
L(E+E) =40 +k [ q(X)ef,dX,
or i

(5) ME+k) =) >k [¢(X)g},dX.
D
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Analogously, from equality (4) we get

(6) A(+k)— A<k [q(X)g}dX.
D

From the assumptions imposed on the function ¢ it follows that
AM >0 VX eD: g(X)|< M.

From this and from inequalities (5) and (6) we have

(7) AL (E+E)—A, (D) < M K|

Inequality (7) is just the assertion of Theorem 1.

THEOREM 2. Under the assumptions of Theorem 1, the function A, = A, (1)
is differentiable almost everywhere and

(8) L) = [¢(X)gidX
D

Jor almost every point t € B.

Proof. The existence of a finite derivative of the function A,(?),
for almost every point ¢ € R, follows from inequality (7) (cf. [9], Chapter

VII). To prove equality (8), observe that, owing to inequalities (5) and
(6) we have

(9) k[ g(X)g} 00X < A (t+F) — AL () <k [q(X)gfdX.
D D

Let k in inequality (9) be a positive number; then

A (t+ ) — Ay (1)
a0 [eet,ax < ATOZRO o foongax.
D k D
If ¥ <0, then
A(t+E)—A (2
an  [amgax< 2EHD g, ax.
D D

From (10) and (11) we get

a2 lim ARG f

k>0t k

g(X)pfdX < lim

k—0—

A(t+k) —2.(1)
. .
D

Inequality (12) yields the assertion of Theorem 2.

THEOREM 3. Under the assumptions of Theorem 1, if there exist num-
bers i, t, € R such that 4,(t,) = A,(t,), then

(13) (te~t) [¢(X)gi,dX > 0.
D
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Proof. According to the definition,

M(t) = [ (grad’e, +u,9(X)gf 1dX+ [ h(X)ef dS,
D ap-r

where g, is the only function which realizes the minimum in (3) for ¢ = #,,
and so

[ [grad?e, +t,q(X) g} 1aX + [ W(X)gf dS > Ay (ts) = Au(t)
D a

D-r
= [[grad’p, +1,q(X)g}1dX + [ h(X)g} ds.
D ap-r
Hence
(1 —11) J'Q(X)‘Pfldx =>0.
D
The proof is complete.

2. The generalization of Ambarzumian’s theorem. We shall now for-
mulate and prove the main result of this paper.

THEOREM 4. If the domain D satisfies the assumplions formulated
in. the introduction, q s a continuous function in the closure D of D and if
there exist real numbers a, f§ such that

(14) 41(0) = Ai(a) = 4,(B),

where a > B > 0, then for every point X € D we have q(X) = 0.
Proof. According to inequality (13) with ¢, = §,%, = 0, we have

—8 [9(X)g}dX >0,
D
and so
(15) J 4 X)gjaX <o.
D

Putting in (13) {, = 8,1, = a, we get

(a—B) [ a(X)gjdX > 0;
D
therefore
(16) [a(X)p3dX > 0.
D

Inequalities (16) and (16) result in:

(17) [4(X)p3aX = 0.
D
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From equality (17) we get
(18) [grad®p,dX + [ R(X)@idS = 1,(8).
D éD-r

By assumption 4,(0) = 4,(f). Since
(19) 11(0) = min| [ grad’paX + [ n(X)gas},
9eK 'p oD-r

it follows from (18) and (19) that the function ¢, realizes the minimum in
(19). On the other hand, the function ¢, is an eigenfunction of problem
(1), (2) with ¢ = 8. As is known (cf. [2] or [5]), the first eigenfunction of
problem (1), (2) is determined uniquely, satisfies equation (1) with ¢ = g
and the boundary condition (2). This means that the function ¢, satisfies
equation (1) with ¢ = 0 and ¢ = B #* 0. Therefore, for every point X e D
we have the equality

(20) Be(X)pp(X) = 0.

Since f # 0 and g,(X) # 0 for the every point X e D, the assertion of
Theorem 4 follows from equality (20).

Remark 1. Theorem 4 is just & new version of Kuzniecov’s theorem
(see [7]) and of the results of papers [3] and [4]. The difference lies in
that the assumptions of Theorem 4 concern the first eigenvalue of prob-
lem (1), (2), whereas the assumptions of previous theorems involve
the whole sequence of eigenvalues of problem (1), (2).

Theorem 4 may be formulated in the following form:

THEOREM 4’. If the domain D satisfies the assumpiions formulated
in the introduction, q s a continuous function in the closure D of D and if the
first eigenvalues of the equations

Au+iuw =0, Au+[A—q(X)Ju =0, Adu+[A—tq(X)]u =0,
t>0 and t =1, with boundary condition (2), are equal, then ¢(X) =0
for every point X € D.

Remark 2. All the results of this paper may be carried to the case
of 3 more general equation of form (1), where the Laplace operator 4
is replaced by any operator L, where

m
0 ou
Lu = 2__ (X 2
w= ||
t,5=1
such that a;(X) = a;(X),4,j =1,...,m, are of class C'(D), and the
quadratic form
m
2 a;(X) & &
ii=1
is positive definite in the domain D.
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