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Zdzislaw Opial in memoriam

Abstract. We consider questions of existence-uniqueness and smooth dependence on
parameters for second order dilferential systems. We illustrate our results for the scalar second
order BVP: x" =f(t, x), x(0) = x4, x(T) = x,.

1. Introduction. Consider the second order differential system
(L.1) x" = A()x +1(t, x),

where x = (x,,...,x,)” and f(t, x) are real n-dimensional column vectors and
A(t) is a real n x n matrix-valued function which is defined and continuous on
[0, T]. We assume also that f(t, x) and the Jacobian matrix of f(t, x} with
respect to x, denoted by F(¢, x) are continuous on a bounded open set € in (t,
x) space containing the set

(1.2) P={t,x):0<t<T x"TP 1 (t)x < R?}.

Here P(t) is a given symmetric positive definite matrix which is defined and
elementwise of class C? on [0, T] and R > 0 is a given real number.

The basic problem which we propose to investigate here is the following:
Suppose there exists a solution X = %(¢) of (1.1) with (¢, X(z))e Q on [0, T]. We
then obtain conditions under which there will exist a solution of (1.1) which
remains in the set

(1.3) P={tx):0<t<T (x—%O)TP 1(t)(x—%(t)) < R?}

and which satisfies certain two-point boundary conditions. Moreover, we are
also able to make certain statements concerning the uniqueness of the solution,
a certain maximum principle, and continuous (in fact, smooth) dependence on
boundary data. In Section 2 below we recall some previous results of [2]
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and then illustrate how one may apply these to obtain a result for the scalar
second order nonlinear equation. The results may be considered as extending
the existence-uniqueness (and estimates for the solutions) for the second order
equation

(1.4) x"'=kx, k>0,
or more generally
(1.5) x"=f( x), fAt,x)>0,

with x(0) = x,, x(T) = x,. We illustrate our results by an example in Section 3.
Although higher dimensional analogues of our results are possible, we shall
concentrate on existence-uniqueness-smooth dependence statements for the
scalar case. We refer to [1], [3]-[10] and the references therein for a further
discussion of additional related results concerning existence-uniqueness and
continuous dependence on boundary data.

2. We suppose that P(r) is a given positive definite symmetric matrix which
is elementwise of class C? on [0, T] and suppose further that x = %(r) is a given
solution of

2.1 x" = fl(t, x)
with (1, X(t))eQ on [0, T]. Consider the quadratic forms
(2.2) e, x) =x"P 1)x, &, x) = o(t, x—X(1))

and let 2, = {(t, x): 0 <t < T, @(t, x) < 6*}. We may then rephrase Theorem
2 of [8] as follows:

THEOREM 2.1. Let P(t) be as above and assume that
(2.3) F(t, )P®)+PO)F(t, x)T—P'()>0, (t,x)eQ, 0<t<T

and assume P, < Q, ¢(0, x,) < 6%, @(T, x,) < 6>. Then the boundary value
problem (BVP)

(2.9) x"=f{t,x), x(0)=x, x(T)=x,

has a solution x = x(t) with @(t, x(t)) < 6% on [0, T].
A similar statement holds for the BVP

(2.5) x"=A@)X +f(t, x), x0)=x, x(T)=x,
provided condition (2.3) is replaced by
(2.6) C(t,x)=F(t, )P()+P(O)F(t, )T —P"(t)+ P () A(1)T
+ AP ()—-3AOP)AT() >0 on Q.

As a consequence we have
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COROLLARY 2.2. Consider the one-parameter system
(2.7) X" = A(t, Yx'+f(t, x, 4),

where A€ A is a given parameter set. Assume that (2.6) holds for all (t, x)e Q and
all A€ A and that A, f are sufficiently smooth functions of all variables. Then the
solution of (2.7) is a differentiable (hence continuous) function of the parameter A.

Proof. We introduce the extended system

(2.8) X = A(t, )X +ft, x, ), x(0) =x,, x(T)=x,,
=0, i0)=i(T)= 1.

Existence and uniqueness of solutions to (2.8) is clear. The differentiability will
follow if one knows that the linearization of (2.8) around some solution yields
a differential equation for which the two-point BVP is uniquely solvable. The
linearized equation for (2.8) is

& = A, HE +£.(t, x, DE+(A,(t, Dx'+£,(t, x, D)7,

29
(29) n' =0.

Thus we have a system of the form (2.5) with

40 f b
(2.10) A—»(O o)’ F—»(O 0),

where b = (4,(t, Hx'+f,(t, x, 4)). If we choose

., (PO
#-(s2)

then condition (2.6) takes the form

A C ob
2.11 = .
(2.11) C (abT —a”) >0

This will be true for an appropriate choice of «. (We may take a,e C*[0, T]
with ay > 0, ag < 0 on [0, T] and then put a = &a,, ¢ > 0 sufficiently small.)
As an application we consider the scalar case.

PROPOSITION 2.3. Let x, & be scalar and consider the two point BVP for the
system

(2.12) x"=f(t, x, O+a,()x' +a,)¢', & =b(t)+b,(t)E
together with the boundary condition
(2.13) x(0)=x,, x(T)=x;, ¢£0)=¢(T)=0.

Assume that for the coupled system (2.12), (2.13) the hypotheses of Theorem 2.1
hold. Then £(t) =0 for all 0<t< T
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Proof. Let &(t), %(t) be a given solution of (2.12), (2.13). We introduce
a parameter 4 which varies near T. Consider the BVP which is defined in terms
of equation (2.12) and the conditions

(2.14) x(0) = x(0), x()=xX(T), £&O)=¢,(4)=0.

Call this solution x(t, 4), &(t, 4). We claim that this solution depends
continuously upon 4. To see this, note that by means of a time transformation
the problem can be restated in such a way that the terminal time becomes
T (instead of 4). The variable A appears as a parameter in the differential
equation and for A = T we obtain the given equation (2.12). For all 4 sufficient-
ly close to T condition (2.6) holds for this system. Hence by Corollary 2.2 the
solutions are continuous in the variables ¢, 4. Now & = &(¢, 4) is a solution of
the BVP

(2.15) §"=b, () +by (1)L,  E(0)=E(4)=0.

Since the eigenvalues of this problem are discrete, we have £(t, 4) =0 for
0<t</andall A < T, with 4 sufficiently close to T. Therefore, by continuity
we have &(¢, T) =0 for all ¢.

Next suppose we are given a scalar equation

(2.16) x"=f(t,x), tef0,T],
We extend (2.16) to the system
(2.17) x"=ft, )+y)E+o()¢', & =a(t)d+p()E".

We shall always impose the boundary conditions £(0) = &(T) = 0 and hence it
is clear by Proposition 2.3 that solutions of (2.17) are of the form (x(t), 0), where
x(t) is a solution of (2.16). We will apply Theorem 2.1 with

P11(2) Plz(t))
2.18 P(t) = ,
(215) ® (Plz(t) P22(0)

where

(2.19) P >0, py(®>0, A@t)=p,,[)ps,(t)—pia(t) > 0.

Since £ is always 0, the conclusion of the theorem is then that the BVP (2.4) is
solvable and the solution satisfies the maximum principle:

P22 (t)

20

(x(£)—X(¢))* assumes its maximum on [0, T]fort =0ort=T.

In the statement of the maximum principle, as it stands, «, 8, y, J, p;; are
functions of r. However, in the subsequent analysis, they will be regarded as
functions of ¢, x. The idea of the theorem is first applied with  being
a sufficiently small neighbourhood of (¢, X(t)) and the a, B, ¥, d, p;; appearing
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in (2.17), (2.19) being actually a(t, %(t)), B(t, X(2)), etc. Existence of the solution in
case X,, X, are not close to x(0), (7T) is then established using intermediate
steps. That is, we solve successively the problem with boundary condition

x(0) = £(0)+%(xo—f(0)), x(T) = )E(T)+%(xl—f('1"))

fori=1,...,N, with N sufficiently large. Inequality (2.20) is also then modified
(now with p,, = p,,(t, x), 4 = A(t, x)) and becomes

221  [x()—x@)] < K-max{M(0)|x(0)—x(0)], M(T)Ix(T)—X(T)},

where

(2.22) % — min {” ;Z(ff’x’;): (t, x)e Q}
and

(2.23) M(t) = max {(%)m; «, x)e.Q}.

Accordingly, one needs to make the following assumption concerning the
boundary values x,, x, (cf. (2.4))

(2.24) (¢, x)eQ whenever 0 <t < T and
Ix— (0] < K-max {M(0)|%(0)—xol, M(T)I#(T) - x,1}.

Henceforth, we shall regard p;; as functions of t, x and oi, B, vy, & as
functions of ¢, x, x'. We have then (p = p;;,- = d/dt)

p(t, x) = p(t, x}+p,(t, x)x',
(2.25)

P(t, X) = Pult, X)+2pe(t, X)X+ Pra(t, X)x2 + pi(t, X)f(t, x).
We now wish to write down C(t, x) (cf. (2.6)). We have

Y (04
() 4-))

0Py, OP 0p,, Bp
AP1+P1AT=( '12 '22)_'_( .12 .12
Bpy2 BP3, 0Py, BPas

(251'712 0p3> +ﬁﬁ12)
022+ PPz 2BPss

r_ {0 0\(P11 P12 00___ 0 = T
APA _(0 ﬂ)(Pn Pzz)(‘s ﬂ) pzz(ﬁ)(a A= paa A,

and
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where 4 = (Z) Hence, we have
C = (Cu clz),
C12 Ca2

C11 = 2(feP11 HVP12) — B 11 +20p1,—30%p,s,
(2.26) C12 =fP12+H VP22 + P12 —P12+0P20+ PP, —0BP1a,
Caz = 2Py~ P2+ 2BPy—3B%pss-
If we impose the condition ¢,, =0, then we have
1

22

where

(2.27) y = (fxP12top ,—Py2+0p,,+BPy,)+ 0P,

Furthermore from the last relation in (2.26) we have

] - L]
(2.28) o= 5‘—(022+P22—23P22+%32P22)-
P2>

From (2.25) we may consider c,, as a quadratic form in X, say ¢, = a,+a,x
+a,%*. We observe from (2.25)2.26) that the coefficient of x? is

2
p
(2.29) a, = —(p, 1)xx_(ﬁ) (P22)xx-
22
Also, some calculation gives

2
(230) a, = —(%) [2(P22)ix— 2B(P12),]

22

2p,
P2z

[—(P12)x+0(P23) +B(P12) ] +26(P5)—2(Py 1 )ix

and

(231) ay= 2fx[pll _(l;:_ﬂil—(@) [(P22)u +(P22) f—2B(P22) +38%P15]

22 D22

—2P2[(B— 1)(p, ), + 8(paz) + 2281+ 26(p 1) —36%P21 — (Py ) — Py S
22
We may choose 6, f§ so that a, = 0 therefore c¢,; > 0in case a, > 0 and a, > 0.
Since a is determined by (2.28), we can guarantee that c,, >0 by an
appropriately chosen a. As a consequence, we conclude local existence and
uniqueness for equation (2.16) under assumption (2.24) (and the above
conditions which guarantee that ¢,; >0, ¢,, >0, ¢;, =0).
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If we denote Q(f)(x') = a,+a,x +a,x'%, where a,, a,, a, are given in
(2.29)42.31) and if we know that Q(f;)}(x)>0 and Q(f,)(x") >0 for f,
= f.(t, x), then from relation (2.31) it follows that a,(f,) > 0, ay(f;) > 0 and
hence for all 0< g <1 we have Q(of, +(1—9)f;)(x") > 0. Therefore any
convex combination of f; and f, will satisfy the hypotheses for local existence
and uniqueness of solutions to the two point BVP provided (2.24) holds, where
X(t) is to be interpreted as a common reference solution for f; and f,. In an
application one may choose f; to be linear, say f, (t, x) = q(t)x (so that X =0 is
a reference solution). Furthermore, a simple continuity argument shows that
we will have a global uniqueness statement — that is; given the BVP (2.4) and
a reference solution x = X(t) such that (2.24) holds (for appropriately chosen
p:;)), it follows that the solution to (2.32) is unique.

3. We wish to illustrate the application of the previous results by means of
an example in this section. We consider the equation

(3.1 x" = a(t)x + b(t)x*

and we take Q,, = {(t, x) 0 <t <1, 0<x< M}, where M > 0 is arbitrary.
Since x = 0 is a solution of (3.1) we wish to find conditions under which (3.1)
has a solution satisfying

(3.2) x(0)=x,, x(1)=x, with x,, x;, =0

and x(t) = 0 on [0, 1]. We choose P(t) = (p;;(t))2x2 With p,,(t) =0 (= p,, (1))
P (t) =po(t)+p,x (p; = const), d =0, and p,,(t) > 0 arbitrary. We have then
from (2.29}42.31) that

a,=0,a,=0

and

ay = (2a(0)po(t)— P () + (@b()po (1) + pya(t))x + 3p,b(t)x2.
Therefore, a, > 0 provided the following conditions hold:
(33)  2a(Opo()—piH) 20,  4b(Hpo(t)+pa(t) > O
3p,b(t) >0, 0<tr<1.

If (3.3) holds with p, >0, b(¢) > 0 on [0, 1], then ¥(t) = M > 0 is an upper
solution of the differential equation for sufficiently large M and hence there
exists a solution x = X(t) of (3.1) satisfying (3.2) for any x,, x, = 0 (cf. [1])
furthermore 0 < X(t) < M on [0, 1]. Existence follows also from a slight
modification of Theorem 2.1. Uniqueness on the other hand, does not seem to
be a consequence of known results in the literature nor does the smooth
dependence on boundary conditions, as far as the authors are aware.
If, for example, the second order linear equation

(3.9) y'+2a(t)y=0



154 L. H. Erbec and H. W. Knobloch

is disconjugate on [0, 1], p,(¢) may be taken to be a positive solution of (3.4).
Hence, with b(t) > 0 then it follows that (3.3) holds since one may take p, > 0
sufficiently small. In particular, (3.4) is disconjugate on [0, 1] if

jl'a+(t)dt <2, a,(t)=max{0,a(t)}
0

(cf. [5], p. 346). One may further generalize this example to equations of the
form

(3.5 x"+a(t)x+q(t, x) =

with appropriate assumptions on ¢(t, x).

References

[1] S. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value
Problems, Academic Press, New York 1974.

[2] L. H. Erbe and H. W. Knobloch, Boundary value problems for systems of second order
differential equations, Proc. Royal Soc. Edin. 101A (1985), 61-76.

[3] R. Gaines, Continuous dependence for two-point boundary value problems, Pacific J. Math.
28 (1969), 327-336.

[4]1 —. Differentiability with respect to boundary values for nonlinear ordinary differential
equations, SIAM J. Appl. Math. 20 (1971), 754-762.

[5] P. Hartman, Ordinary Differential Equations, Wiley, New York 1964.

[6] S.Ingram, Continuous dependence on parameters and boundary data for nonlinear two-point
boundary value problems, Pacific J. Math. 41 (1972), 395-408.

[7] G. Klaasen, Dependence of solutions on boundary conditions for second order ordinary
differential equations, J. Diff. Equs. 7 (1970), 24-33.

[8] H. W. Knobloch, Boundary value problems for systems of nonlinear differ ennal equations,
Proc. Equadiff. 1V, 1977, Lecture Notes in Mathematics, No. 703, Springer, 197 204.

[9] A. Lasota and Z. Opial, Sur la dépendance continue des solutions des équations
différentielles ordinaires de leurs seconds membres et des conditions aux limites, Ann. Polon.
Math. 19 (1967), 13-36.

[10] S. S¢dziwy, Dependence of solutions on boundary data for a system of two ordinary
differential equations, J. Diff. Equs. 9 (1971), 381-389.

DEPARTMENT OF MATHEMATICS. UNIVERSITY OF ALBERTA
EDMONTON, ALBERTA, CANADA

MATHEMATISCHES INSTITUT DER UNIVERSITAT
AM HUBLAND
WURZBURG, FEDERAL REPUBLIC OF GERMANY

Rec¢u par la Rédaction le 26.04.1988



