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On the existence of solutions
of some non-linear Dirichlet problems

by Jan Beczek (Olsztyn)

Abstract. In this paper we study (he existence and multiplicity of solutions of non-linear
elliptic equations of the form

Au+iu—ulu” ' =g in Q,
u=0 on Q.
Here, 2 is a smooth and bounded domain, N > 2 and 2eR. We shall prove the existence
problem in case ~€eR and the uniqueness problem in case 7 < /,. Assuming that p > 1
for N<d4or |l <p<N/N—4) in case N > 4.
Introduction. A non-linear elliptic problem of the form
Au+fu)=¢g in Q,
u=0 on &Q,

()

where Q is a smooth and bounded domain, f: R — R, has been studied by many
authors. For example, this problem for asymptotically linear f has been
studied by Ambrosetti and Prodi [1], Dancer [5], Berger and Podolak [4],
Thews [12], Lazer and McKenna [8] and others.

Plastock [11] has proved existence and uniqueness cof solutions of
problem (1) for N =3 and f (1) =t —¢°.

Berestycki and Bahri [2] have shown that problem (1) has infinitely
many distinct solutions in case N = 2,

N+2+ /9N*—4N+4
4N -4
<(N+1)/N-=1) and geL,(Q).

fOy=cP~t, 1<p<

We shall consider the [ollowing non-linear Dirichlet problem
Au+iu—uP 'u=g in Q,
u=0 on 0Q,

2)
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where Q denotes a bounded domain in RY with smooth boundary #Q, 4
denotes the Laplace operator, g €L, () and - €R.

Additionally we assume that p>1 for N<4 or 1 <p < N/N-4) lor
N >4

The following spaces will be used:

L,(Q). p=1 — Lebesgue spaces with norms |ull, = (| |ul?dx)"",
o
W, (), W,,(82) — Sobolev spaces with norms,

llullmp = ( 3 UD*ullgp)"'", llalliz = ( 3 1ID*ullt;)"'? respectively.

la €m lz| =1

Let E = {ueW,,(Q); u=0 on {Q}. It is known that if dQ is a smooth
manifold, then E ¢ W,,(Q), E = C3(Q) in W,,(Q), E is the Hilbert space

with the scalar product (u, v); = | Audvdx and the problem
Q

Au=f n Q,
u=0 on Q

has exactly one solution in E for each fe L,(Q).

I. For each uekE, let us define the elements Lu, Tu as follows:
(1.1) (Lu, w),, = fuwdx, (Tu, w);, = [[ul"~ ' uwdx
2 0

for every we W,,(Q).
Linivia L1 If u€eE, then Lu, Tu€E.

Proof. Let ucE. Since the imbeddings W,,(®) < L,(Q) and
W5,(2) © Lyyyn-4,(€2) are continuous, we have

|“'“de| < lullo2 [Wlloz < cllulloz lIwlli2 < ¢y (Iwll;2
o
and

[ {11~ wwdx] < ([l ullos lIwllor < 21wl

[0}
for every we W,,(Q). This means that these functions are linear continuous
functionals defined on the Hilbert space W,,(Q). The Riesz theorem implies
that Lu, Tue W,,(Q). It follows from the definition of the generalized
derivative that —ALu =u and —_17u = ju|" 'u, where u, |[ulP " 'uel,(Q).
Therelore. Lu, TueE. =

Thus we can define the operators [.. T: E - E. Now we shall prove

some properties of L and T.

LemMa 1.2. The operator L is linear and compact.
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Proof. It is obvious that L is linear. Let us consider a bounded
sequence u,, in E. Since the imbedding E < L,(€) is compact, there exists a
subsequence i, such that u, woy o uon Ly(Q). Hence ||Luy, — Lullg

< ¢l —ullo2 =75 0. This means that Lu, ~=- Lu in E and that the

operator L is compact. m
Lemva 1.3. The map T is continuous and compact.

Proof. Let u,—->u in E. The continuity of the imbedding
Wy2(Q) © Lyyyx- 4 (Q) implies that u, ——> v in Lyy,y- 4 (). The map ¢ —
] 'v from Lyyn-4)(2) to L,(2) is continuous, so that |u,P”'u, —
ulP~ ' u in Ly(Q). Hence ||Tu,— Tillg < c||[und?™ " te—ul”~ " ul|g, —= O. This
proves the continuity of T.

Now let ju,) be a bounded sequence in E. From the compactness of the

imbedding W,,(2) < L,,(2) we conclude that there exists a subsequence

Wy, such that u, ———> v in L,,(£). The continuity of the map w —|w|"" Tw

implies that |uul”™ ", > Ic|”" v in L,(8). Hence
| Tit — Tollg < C“'unklp_ N — et l’”oz P 0
Consequently, T 1s a compact. =
Let A: £ — E be a map defined by

A=1-/L+T.
We shall prove some properties of the map A.
Lemma 14, The map A is odd.

Proof A(—u)=(—uw)—AL(—uw+T(—u)= —u+srlu—Tu= —(u—2sLu+
+Ti) =Au. =

Tueorem 1.5. The map A is proper.

Proof A(—u) = (—u)—AL(—uw)+ T(—u) = —u+Alu—Tu = —(u—Alu+
+ Ti) = Au.

Let u,] be any sequence of elements of X, so that {Au,! < Y. Since Y is
compact, there exists a subsequence |Au,.), denoted by [Au,| for brevity.
such that Ay, -—— v in Y. Let us assume that there exists a subsequence
\Ukm: Of the sequence u,) such that ||lu,llz < c for each me N. Then the

compactness of the operators L and T implies that there exists a subsequence

Uyt such that Lu,,, 75w Ty v~ h and Au,, 7—— v. Hence

=

”“kml —(U + AW — h)”l; = ”Aukml + )'Lukml - Tukml —r—2W + h”l‘.‘

< | Athmy = Ullg + 1A Lttymy = Wl + [ Tty = bl 7=, 0.



48 Jan Beczek

Thus the sequence (u,! has a convergent subsequence.

Let us suppose that the sequence {u,] does not have a bounded
subsequence.
We shall now prove some properties of the function f: E — R delined by

f(v) = | AvATodx.

2

ProrerTY 1. f is continuous.

Proof. Let v, — = v in E. Then

If v —f )] = || 40,4 To,dx — [ AvATvdx|
0] 0]
< |40, ATo,dx— [ AvATo,dx|+|[ Av4To,dx— | AvA Todx|
Q 2] Q Q

< [14vllo2 114 To, — ATollo, + 14 Tyl 1 4v, — Avllo2
< olle 1 Top— Tollg + | Tl llvn—vllg

< cllTey= Telle+¢, o —tlls - 0.

PrROPERTY 2. f(v) = O for every veE.

Proofl. For ve C{(R2) we obtain

f(ry={AcATedx = [(=Av)[e]?~ vdx = | VeV (o]P~ " v)dx
0 0 0

= [ Ve(elP~t ve+(p=DelP™ ! Ve)dx = p [|Ve]*u]? P dx 2 0.
) o

The density of the set C3(2) in E implies that f(v) > O for every r€E. m
To complete our main proof, we assume that |jull,, =5~ + . Then

(Auy, )y > = (i, w2 — 2 (Luy, U2 (T, ),
= ||“k||fz -/ ||”k||(2)2 + ||“k”8;+1| 2 ||“k“f2 —4 ||“k“(2)2 "‘C”'/‘k“gzH
= lluellF2 + llealIg2 (c llul1Bz ' — )
and
(Aug, )y < Awlly2 |l 2-

Consequently,

NAwglly 2 = Nuglly 2 + Neall32/Nuelly 2 (e Nullfz = 2) —— +

k—x
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and, since ||[Aullg > cllAull;,, we get ||Awlly .- +oo. This is contrary to
the assumption that lim Ay, = v and therefore |ju,||;, < C for all keN. Then

k =

(Auy, w)g = (U, g — A(Luy, u)g +(Tigg, uy)g
= [JulIF — AliwellF2 +1 ().

But |lull,, < C. f(u) 20 and so (Auw. u)y 7> + . Further, (Au,. i)y
< [[Auglg lfugllg . This gives

Al = Mgl = 2 a1 o/l + £ Qo <> + %

indiv §
This is contrary to the assumption that hm Ay, = v. Thus X 1s compact and
k +x
A 1s proper. m
THeOREM 1.6. The map A is surjective.

Proof. It follows from the fact that a continuous proper and odd map
of the form I+ C (where C is compact) is surjective.

THEOREM 1.7. For A < 4y, A is a homeomorphism, where 4, is the first
eigenvalue of the operator —A.

Prool. We shall prove that A4 is injective. Let us assume that there exist
u, ve E such that Au = Av. Then

(Au, -u_v)lz = (AU. u—v)”,
(U—v, u)ys—2(Lu, u—v) (T, u—10), —(r, u—1r), +
+2(Lv,u—v)>—(Te, u—1r);>

=W—rv,u=0v),—4(Lu—Lv.u—v) s +(Tu—Ti, u—1v),,

= Jlu—eflf2 =2l =vllf,+ fQul” ™ u— el o) (u—r)dx = 0.
Q

Hence
llu—vlli,—Allu—vllg, = — _[(iulp_ "u—1v]? ! ) (u—v)dx.
Q

Since 4 < 4,, the left-hand side of this equation is non-negative, the right-
hand side is non-positive, so u =v and therefore A is injective. From
Schauder theorem and Theorem 1.5 we conclude that 4 is a homeo-
morphism. =

IL. An element ue W,,(Q) is called a weak solution of problem (2) if the
following conditions are satisfied:

(2.1) (] 'uwe L, (Q),

4 — Annales Poloniei Math, 491
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(2.2) | PubVwdx— 2z fuwdx+ {[ul” " uwdx = — | gwdx
0 ) o o
for every we W,,(Q).

We shall now consider the weak solutions ue E. From (1.1), the lelt-hand side
of (2.2) can be written in the form

(u, w)y—A(Lu, W)y +(Tu, w)y, = (u—ALu+ T, w),,.
Let V = lve W.,,(Q); there exists he E such that {vwdx = (h, w),, for every

o
we W,,(Q)!. Let —geV. Then (2.2) can be written in the form

(2.3) (u—ilu+Tu, w), = (h. w),, for every we W,, ().
The equation is equivalent to

(2.4) u—ALu+Tu=h

or

(2.5) Au = h.

THEOREM 2.1. L,(Q) c V.

Proof. Let ge L,(Q). Then f;(w) = {gwdx is a linear continuous func-
0

tional on W,,(Q). and so f(w)= .|'gwdhx=(h, w);, where he W,,(Q) for

every we W,,(Q) and —4h =¢. The above problem has exactly one solution
in E. It means that heE and g€V a

We may state the main result of this paper.

THeOREM 2.2. For each ge L,(Q) problem (2) has a weak solution in E. If
A< Ay, then (2) has exactly one weak solution for each ge L, (Q).

Proof follows from Theorems 1.6, 1.7 and 2.1.
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