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Estimations of the coefficients of quasi-starlike functions
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Abstract. In the earlier paper (see [1], p. 175) it was introduced the class GM
of quasi-starlike functions g determined by the equation

G(g) = ——IEG(z). 2l < 1, :

where G i8 a starlike function and M is an arbitrary real number in the interval (1, o).
In this paper the sharp estimations of the form:

layl < 2a(1—a), Ol<a<l,
a(l—a)(3—5a), O<a<i,
12| {a(l—a’), i<a<l,
2a(1—a)(7a®— 8a +2), 0<a<gz,,
2a(1 — a — 4a?)3/2 (8a + 7)3/2(7a% — 8a + 2)
_ : y B|\<e< T,
la, < { V5(16a% + 64a + 1)(1 — 4a)!/2(a? +a + 1)!/2
a(2 — 3a2)32, Ty < Q< Ty,
a(l —a?), < a<l,

where ¢ = 1/M and z,, z,, #, are roots of equations

487° 4 245 + 61z~ 13 = 0O,
52824 4- 360x® — 37722 — 200z + 68 = O,
30z — 5478 — 6x® 13622 —5 = 0,

was obtained in the class GM.

1. Introduction. In [1] a class & of quasi-starlike functions was
introduced

(1) g(z) = az+a2*+..., a=1/M, |2|<]1,

determined by the equation
1
(2) G(g) = EG(z), l2l <1,

where @G is a starlike function belonging to class 8, and M is an arbitrary
real number in the interval (1, o). In the class G subelasses G of quasi-
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starlike functions were singled out for which function @ from (2) isgiven
by the formula

2
(3) G = 4, RI<1,
[T(1—a,)
k=1
where
(4) Db=2, B.>0,
k=1
(5) op =€%, ¢,—real, k=1,...,m, o #0

for 1 #j, lL,j=1,...,m.

In the above-mentioned paper ([1]) it was proved in Theorem 2
that the extremum of the functional H, = H(a,,..., ay) in the class
G is attained by a certain function of the class G, m being smaller
than or equal to m << N —1. In Theorem 1, at same time, it was proved
that numbers 7,, ¥ =1,...,m, in (3) and (5) are double roots of the
function

N-1 .
~ 1(92, _
Q do = 3, ~(% +3,2)+4,
where
N-p N-p
(N 2, =D ¢ (@iD—ad)H,, (»=0,1,..,N-1),
=1 k=i
0H 0H
8 H =— _— =2,...
(8) > =3, +(aa,, (P =2,..., N),
-1
(9) ¢, =1, ¢, = _2 8y (P =2,...)
k=1
m
(10) dy=1, dy=Dfol (p=2,..),
k=1
(11) (9(2))° = &P +a®) 2P ... (p=1,2,..).

The main purpose of the paper is to obtain on the basis of the general
results in [1] the estimations of the coefficients a,, a,, a,, of quasi-starlike
functions.

The author would like express his sincere gratitude and cordial
thanks to Profesor Zygmunt Charzynski for many valuable suggestions
and advice given during the author’s investigations concerning the above
problem.
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Since the function g(z) of (1) belongs to ) and so does ¢“g(ze~*)
(where 0 is an arbitrary real parameter), the maximum of the functional
|a,] under consideration equals the maximum of rea,.

So let us consider the functional H, = rea, = 1/2 (a, +a,),n = 2, 3, 4.

We may, without loss of generality, assume that for the extremal t'unctlon
with respect to H, we have

(12) rea, =@a,>0, n =2,3,4.
2. Estimating 4,. Consider the functional
(13) H, = rea,.

From Theorem 2 [1] we infer that functional (13) attains its maximum
for some function ge®Y. Then function ¢ in view of (2) and (3) is de-
termined by the equation

g 1
(4. A—og) M (I—o2p’

From (14) we immediately have

(15) a, =%(1—i)a.

Hence, by (12), for the extremal function we deduce the following
result:

THEOREM 1. For any quasi-starlike function g of the form (1) the fol-
lowing ineguality is true:

(16) |as| < 2a(1—a), a=1/M,

where for the function g determined by the equation

g 1 z
(1—ag)® M (1—o2)?
we have o

las] = 2a{l—a), @ =1/M.

3. Estimating a;. Consider the functional
17) H, =reay.

From Theorem 2 [1] we infer that functlonal (17 ) attains its maximum

for some function geU(ﬁk . We cons1der separately the cases ge®M and
g 6(53 .. k=1

3.1. Suppose first that ge®Y. Then the function g is determined
by equation (14) and its coefficient a, is of the form

a; = a(l—a)(3—5a)e?, a=1/M.
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Hence, by (12), we get
(18) a3 = —a(l—a)(3—5a)c® for 3/5<a<]1,
(18") a, = a(l—a)(3—5a)s® for 0<a<3/s.

3.2. Suppose next that ge®}. Then the function g is determined
by the equation
g 1 2

(19) A gl (l—osg) M (I— 2P (l—oye)s

and its coefficient a, is of the form

(20) @y = }a(1—a)((1—3a)(By01+ B202)2 + (1 + a) (B, + B h).

From Theorem 1 [1] we infer in our case that
31 (9
9@(2) =2;(7:- +@pz”),

where, by (7)-(11), we have

2, = a(l—a)(3a—1)(f,0,+ B;0,),
9, = —a(l—a?.

Moreover, é(z) has double roots at the points g, (k¥ = 1, 2). Hence
and from (4) we obtain the set of equations

oio; =1,
(21) (Bt ao) = o1+,
BitBy =2.
From the second and third equation of the set (21) we have
3a—1 3a—1
a+1 % a+1 2 91+ %2
3a—1 3a—1 = 0.
atl O Tay1 2Ot
1 1 1
Hence, after a direct calculation,
(22) 38—1 G 5—7,0) = 0.

a+1
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Suppose first that a # 1/3. Then from (22) and the first equation
of (21) we get

(23) ot—ai =0, dio;=1
and, in view of o; # oy, we gel, further
(24) 0y =14, Oy= —i,

(24') o=1, g =—1.

Substituting the numbers obtained for ¢, 0, in (24) and (24’) into (21)
we get at all times f; = f, = 1. Then we have two solutions

(26) oy =1, 0y = —1, pr=p=1,

(25%) oo=1, o6 =-1, B =p§=1.
Substituting in succession (25) and (25’) into (20) we have

(26) a; = —a(l—a?) <0,

(26") a; = a(l—a?).

By (12) it follows from (26) that the function g determined by the
system of numbers (25) is not an extremal function. Then we omit the
solution (25).

Suppose next that a = 1/3. From (21) we have
(27) oy = 1, oy = —i, Bi+8: =2, B> 0, B> 0,
(277) op=1, o= —-1, pf+p=2, Bp,>0, i B> 0.

The solution (27) is omitted, as before. Substituting (27’) into formulas
(20), we get

(28) a, = 8/27 for M = 3.
It is worth noticing that for any funetion g determined by the equation

g _ 1 2
(1—o0g)'(L—0g)? M (1—o02)1 (1—o02)’

(29)

where 8,4+ 8, =2, ;> 0, >0, |o|] =1, we have (28).
Comparing (18), (18’), (20) and (28), we obtain

THEOREM 2. For any quasi-starlike function g of the form (1) the fol-
lowing inequalities are true:

a(l—a)(3—5a) for 0<a<i,

|as| <
a(l—a? for ¥} <a<1 (a =1/M),
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where for the functioh g determined by the equation

g 1 2
1—0%¢g M 1—o22

we have
s} = a(l—a?), a=1/M,

for g determined by (29) we have a; = 8(27, and for g determined by (14)
we have

las] = a(l—a)(3—ba), a=1/M.
4. Estimating a,. Consider the functional
(30) H, =rea,.

From Theorem 1 [1] we infer that functional (30) attains its maximum
3

for some function ge| JGY. We consider, separately, the cases geGX
(k =1,2,3)(*). k=

4.1. Suppose first that ge®X. Then the function g is determined by
equation (14) and its coefficient ay;, is of the form

ay) = 2¢(1—a)(7a*—8a+2)0?, a =1/M.
Hence, by (12), we get
(31) ) = 2a(1—a)(7a?—8a+2)

4—V2 4472
for 0 <a< 7'/—, _}:;/ <eae<l,
4—V2 442
(31) o) = —2a(1—a)(7a*—8a+2) for 7l/—<a< 4:;/ .

4.2. Suppose next that ge®M. Then the function g is determined
by equation (19) and its coefficient a,,) is of the form

(32) @y, = P(%Q(ﬁldx+ﬂ=02)’—2%(l_3161+ﬂsaz)(ﬁx¢ﬁ+ﬂzo’§)+

+(ﬁx°§+ﬂz"g))’
where
3 16a2—1la+1 3 4a2+a-—1
1 —ad L= — _ —,— ————.ee————
©3)  p=300-0Y 0= Ui *T 1 @taerl

() This maximum will be denoted by a,y,)-
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From Theorem 1 [1] we have

3
~ 1/(9. —
(34) a0 = 3~ (22 +3,2)+1,
p=1
where

2, = p(2"(ﬂ1°€+ﬂz°§)—9(1910'1+ﬂ2°'z)3):
D, = 4px(Pr01+ fr03),
2, = —3p,
has double roots at the points @, (¥ = 1, 2). The remaining roots of gf(z)

may, in view of (34), be denoted by g,o and 1/¢,7(le] = 1 and 0 < g; < 1).
Hence and from (4) follows the equation set:

gio36° =1
#(f10,+ Ba0,) = 8+ g0,

(35)
2%(B, 01+ B203) — q(B101+ Ba05)® = — 82— 0% — 20,0, — 4¢0s,
ﬂ1+ﬂz =2,
where
1
(36) =%(91+—)> 1,
1
(37) 8§ = 0’1""‘0’2-
Let us therefore consider two systems of equations:
010‘20' = 1,
(38) %(P101+ fa0;) = 8+ g0,
2%(B101+ B203) — q(B101+ Bo03)? = — 82— 0? — 20,0, — 4g08,
ﬂ1+ﬂz =2
and
0,0,0 = —1,
(38") %(fr01+ By02) = 8+ g0,

2%(By 01+ B203) — q(B101+ B203)2 = — 82— 0% —20,0,— 4908,
ﬁl"‘ﬂz = 2.
Let us point out that adopting the notation

. T R T . T . R R
(39) 6, =0,68, G,=0.8", 0 =06, 8§ =0,+}0,
we obtain from (38’) system (38) with unknowns ¢, (k = 1, 2, 3), B4, B,, o-
Because of (39) and (32) the solutions of (38’) yield in every case a reverse
value of the coefficient a,y,, in comparison with the solution of (38).
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Let us therefore consider system (38).

Let us at first assume that » 0, i.e. a = (l/ﬁ-l)/s. In this case
system (38) will assume the following form:

0'10'20' == 1,

8§ = -0,
(40) q(Br01+ Ps09)® = 02+ 206 —3¢%0?
BrtB: =2.
From the first two equations we have s = — po and 8 = — 52 and

hence
=1, thatis o¢=1, o=e¢*, o=c¢°.

1° Assuming ¢ = 1, we obtain the following from (40):

06,0, =1,
(40') o1+oy = —o,
q(B101+B205)* = 3(1—p?),
ﬂl+ﬂ2 = 2.

From the first equation (40’) we have o, = ¢ and o, = ¢~ *°, from the
second

(41) cosg = —ig,

while from the third equation we obtain:
i+ Bae™® = +V3(1—0%)/q,
B+ Bye® = +V3(1—0?)/q.

Adding the members of equation (42), we have

1 3(1— p2
(42") cosp = igl/(—qg—) .

From (41) and (42'), taking (36) into consideration, we have at once

—‘/3 and cosp = L 3
*TV 354 PPE TV 35

Subtracting both sides of the equation from (42) and taking into

consideration the fact that ¢, +* o,, we have f, = f, = 1. Substituting
. 1./

ﬂ1=ﬁ2=1,Ul=e{"’,o'2=6_w,cOS¢p=—§ 3+q

(42)

to (32) we have:

2V3 17—1
(43) Qyz) = —Z—a,(2—.‘.’»a“‘)l’2—3a2 for a = v 3
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2

g :
2° Let ¢ = ¢® ; set (40) then has the form:
?

2_,
—Sfﬂ
010'2 = e y

(40") oy+o, = —ge’,
4r ,
—_1
q(B101+ P20,)* = 3¢ (1—e?,
ﬁ1+ﬂz = 2.
R T R T .
Adopting a new notation, ¢, = ea'o,, o, =€ 0, 0 = — 0, We easily

notice that set (40’') is reduced to (40’). Hence follow immediately the
solutions of (40"’) of the form:

i(e-3) —i{e+3) 1 ]/ 3
=8, =1 6, =e"' °3 g, = € 3 cosgp =—1/ —— .
B1 = B ’ 1 ’ 2 ’ 9 2 3+¢

Substituting the above solution into formula (32), we get the value
of a,,) equal to the value of a,;, from formula (43), case 1°, which means
that this case can be omitted(2).

Assuming in turn that » # 0, we can write (38) in the following form:

0,050 =1,

1 0
p101+ B0y = —8+—o0,
% ®

- Bro1+Bact = q;:z 82+ e(q:f”a) as+——qu;x2 a’—%ﬁ,
ﬁ1+ﬂ2 = 2.
From (44) we easily get
11 2
1 e
(44") 91 02 ST o,
o, O, —§+£ﬁ
”
11 2
1 e
44y |7t % PR — 0.
52 o4 D 2,2

i
(3) Analogously we can show that for 39, i.e. for ¢ =" , Wwe get the value of
g
a43) equal to the value of a,) from (43).

6 — Annales Polonici Mathematici 30.9
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From equations (44’) and (44"), after suitable transformations have
been made and the condition o, # o, has been considered, we get

(4b) (6+1)o—2(x—1)s80%2 =0,
(46) (go®—#2) 03+ 2(q —3x2) 0802+ (¢ — 3x2) 820 -+ 2%%2(2%x—1) = 0.
Equation (45) gives
, _ 0 a+1
(45°) ¢ = 2(x—1) o* ’
hence, on inserting (45’) into (46), we have
’ 2 q—3x° 3 3 _q_—3,‘a_ 3 3 6)
(46') o ( 1 (®+1)a +4(x-—1)* (6®+1)*+qo

= x20°—2x2(2x — 1) 03
and consequently, also the equation
q—3x? q—3x?

ao1 OO T

(46") e"‘( (6’+1)’+9)

= %2 —2x%(2% —1) 03,

From (46’) and (46"'), after ¢ has been ejected and the whole ordered
we obtain '

A7) (6*—1){(g—3+)0° +2(2x — 1) [4x(x — 1)(g—3x) + ¢ — 3x*]0® +

+(g—3+")} = 0.
The following equations result from (47):
(48) -1 =0,
(49) 6®+1 =0,

(50) (g—3%2)0°+2(2x—1)[4x(x—1)(q— 3%) +q—3x%%]e®+q—3x% = 0.
Let us consider these equations in turn.
In case of (48) we get for o:

T T,
2_‘ ._2_.

=1, oc=¢’, o=¢?
Assuming that ¢ =1 from (44), in view of (45’), we obtain:
0,0, =1,

Bi0,+Bso; = _9_’
x—1 .

q—4x+3 . 3
e — 5

2x(x—1)2 2%
Br1+PBs = 2.

(51)
ﬂﬂﬁ +ﬂ20§ =
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From the first equation (51) we have: g, = €, 0, = ¢~ %, irom the
second

(62) cosp = 2(,‘—(1_1)

From the third, in turn,

2x(x—1) 2%

—2ip o — 9-'_4”_-*'_3 0 — i
bre™ +Fae 25 (% — 1) 2%

Br€0 + e~

I

(63)

Adding both sides of equation (53), we get

. g—4x+3 _ 3
53’ 20 = — 1 8
(53 8P or—1) ¢ 2x°

From (52) and (53') we finally have

(2—1)%(3 —4%) 1 3—4x
d g = ———
q—6x+3 an cos’y 4 q—6x+3°

(b4) e =

Considering condition (36) and relation (33), the first of the formulae
implies the inequality
240a% + 432a® 4 163a®—128a — 50 < 0,

which, for ae (0, 1), implies the condition 0 < a < z,, where =, ~ 0.5087
is the only root in the interval (0, 1) of the equation:

(54") 24024 4 4322 416322 — 1282 — 50 = 0.

From the second formula (54), in view of (36), (562), (54’) and the
inequality »—1 << 0 for ae (0,1) we have:

3 —4x
(85) cosp = ——]/q 6213 for a< (0, z,].
Subtracting the members of equations (53), by (36), (62) and o, # o,,

‘we get: f, = B, = 1.
Inserting

3—4x
q—6x+3

. 1
fp=p.=1, o =¢7, 0y = e-w’ cosp = ——]/
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into (32) we obtain

2V3
(56) alh = —9—41(2—3@")1’2—3412 for 0 < a < x,,
where x, ~ 0.5087 is the root of equation (54’).

n,
The values o = o3 lead, similarly as in 2° and 3° to the value
@y, given by formula (56). This case can therefore be ignored. Moreover,
it should be noticed that formula (43) for a,, obtained by x =0 is a
special case of (56).
In the case (49) we have:

c=—1, o= el;i, 6 = 6—;—'5.
Assuming that ¢ = —1, we obtain
(67) s =0
from (45’). This and (44) imply the set of 'equa,tions
0,0, = —1,
B101+ 0y = — ’s‘v
(58) go* 4 x?
ﬂl“f‘f‘ﬂaf’: = 2.3 !
Bit+Bs=2.
It follows from the first equation (58) and from (57) that
(59) g, =1, o0,=—1.
From the third and the fourth equation of (58) we have
(60) 0% = ﬂ?"____l) .
q
From the third and the fourth equation of (58) and (60) we get
(61) ﬁl=1—'2—’:- 4";1, p,=1+% i”q_l.

Let us point out that (36) and (60) imply the-f'ollowing conditions:

— 3 2
-433 + %2+ q <
q

— 4+ %2+ <0,
g #0,
l—4n’+x2+q>0,
or
g #0.

0, that is |
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Hence, and in view of (33), the following inequalities are obtained:
(62) (16a2—11a +1)(400a° + 592a* + a® —211a%— 824+ 20) < 0,
16a2—11¢4+1 # 0.
Inequalities (62), for ae (0, 1) hold in the intervals

| 11—V57 114 V57
() T S0S™ Ty <

a < &y,
where », ~ 0.1737 and z, ~ 0.5932 are roots of the equation
(63") 4002 + 592 + 23— 21122 — 822120 = 0.

Another condition follows from (61) and (4):

1 42—1
(64) 5]/ . <1,

Hence, by (33), we get the inequality:
(65) (85a2 — 68a +10)(16a2 —11a+1) > 0.

It can be verified quite easily that inequality (65) for a determined
by inequalities (63) does not hold. It follows that the case ¢ = —1 does

not yield the extremal value of coefficient a,. The same result can be
2n

obtained by considering the cases o = ¢ 3. In order to do this, it
is enough, similarly as in 2° and 3°, to reduce the set (44) to (58).
Finnally, let us consider the last of equations (48)—(50), i.e. equation
(b0). Subtracting both sides of equations (46’) and (46’’) and omitting
the cases where o® = +1 considered above, we have
#(x—~1)

g _ T\ T
(68) ¢ ="

hence, in view of (36) and having utilized (33), we have the inequality
(4a —1)(48a®+24a%4+61a—13) < 0,
from which for ae (0, 1) follows the inequality

(68") Ty < 0 < 0.25,
where z, ~ 0.1928 is the root of the equation:
(68") 487° +242% + 612 —~13 = 0.

Combining our further discussion to the interval for a determined
by (68’), let us examine, according to what has already been stated,
equation (50). As we are looking for those solutions of this equation which
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satisfy the codition |o| = 1, the existence of such solutions is determined
by the non-negative value of the discriminant of equation (50). Hence
follows an inequality of the form:

%(%—1)[2%(2x% —1)(q— 3x) +q—3x®][2(2% — 1) (% —1)(q — 3x) +q— 3]
<0,

and 5o, because of the inequalities x < 0 ard x—1 < 0 for ae [x, 0.25)
we have

[2%(2% —1)(g—3%) + ¢—3%*][2(2x — 1) (% —1)(¢—3x) + ¢ — 3x*] < 0.
Considering (33), the latter inequality can, be written in the form
(23844°+ 176a* — 1951a° + 91a® 4 4544 — 74)(528a* 4 360a® — 377a® —
—200a 4 58) > 0;
hence, utilizing (68’) at the same time, we find that
(69) Dy < 6K Ty

here z; = 0.1928 is a root of equation (68’) and =, ~ 0.2288 is a root
of the equation

(69') 5282* 4 3602° — 3772 — 2002+ 58 = 0.

Let us now determine o, and o, in the case under consideration.
It follows from the first set of equations (44), (456’) and (68) that o, and g,
are roots of the equation

: 1 »® od41
s 2 —_— . F =
(70) 7t ]/(n—l)t(q—3x) o 2t =0

where ¢ is a number determined by equation (50). Because of the fact

1
that only numbers of the form &, = r¢** and &, = < ¢'®are roots of equation

(70), roots for which [§,| = |£,] =1 can exist only if they satisfy the
following equality:

|£1|’+l£s|’ =2,
that is
(70%)
x (1) +l]/ i x _ (a”+1)3)2 g
8(x—1)(q—3x) o? 2 ( 4(x—1)(g—3%) o3 -
Equality (70’) holds when
(70!:) ¥ (0-8+1)2-< 4.

4(x—1)(q—3x) i o
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Taking (50) into consideration, we have
(®+1)2  4(x—1)[(g—3%")(4x—1)+2¢(%x—1)(2%— 1)]
g’ q—3%?
hence and in view of (33) inequality (70’’) for #; < @ < #, has the form
82564 — 432a° — 40124° —1663a* 4 73584 — 59334’ -+ 652a 94 > 0

It can be shown in an elementary way that in the interval under
consideration such an inequality holds.

The next step in the examination of equation (50) will be to deter-
mine the values of 8, and 8,. From the second and the forth equations
of the set (44) as well as from (45’) and (68) we have

ﬂl‘l‘ﬁz =2,

(73) l/x(x—l) 1 o®+1
Bro1+Byos = — q—3x% (2(x—1) r +0)’

(71)

and hence
1./ x(x—1) 1 o?+1
2"’_?l/ q— 3% (Z(x—-l) pr +")
fr = !
3
“l/”(” N T +o) =2,
(13) By = 2 :
g, — 0y
It follows at once from (73’), by (44), that
x—1 2%x—1 (e3+1)
" _ x(q — 3x) 4x(x—1)(q—3x) o°
(13")  fuba = - . NCEE]
4(q—3x)(x—1) o®
A - (462 +a+-1)
~ T T 9(4a*+a—1)

590724’ +30832a° —145860a° +-34895a* +-56410a° —205954* —2572a + 778.
82564’ — 432a® — 4012a° —1663a* + 73584° — 5933a* + 652a + 94

Let it be pointed out that for condition (4) to be satisfied in view
of the first equation (73), (73’) and (73"’) it suffices that the following
inequality be fulfilled:

%x—1 2%x—1 (g% +1)2

%(q—3x)  4x(x—1)(g—3x) s o0

(74) 4—
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Inequality (74), by (33) and (71), implies for @, < @ < z, the inequality

(75)  590724" + 30832a° — 145860a° -+ 34895a* + 56410a° — 2069502 —
—92572a+778 > 0,

which is fulfilled in the whole interval under investigation. Finally,
numbers B, and f,, by (73”’) and (4), are determined by the equation

(76) z2—2x+4 =0

for ae [, 2,], ¥ ~ 0.1928 and x, ~ 0.2228 being defined by equations
(68’) and (69') respectively.

In the case under consideration, i.e. equation (50), it only remains
now to determine the value of a,, from (32). Let us point out that using
the set of equations (44), (45’) and (68), we can write formula (32) in
the form

@ %(x—1) q _ _
““”"pl/ 1—3x A (x—1)(g—3x) X T1FT)
1
T 4(x—1)%(g~3x)

1 (1+0%2
TR Dig s T T

(2% —1+3%2(1 + 0%) +% (2x—1+0)+

H

(2%—1—{—33)—( 1 .1-|—o'3)

T 2x(x—1) x—1 o

hence, after rearrangement,

pl/ n(x—1)
a0 — q—3x

7 24k (x —1)2(q — 3
—3%%(96x® — 184224 1042% — 13) 4 (22 — 1) [q(22% — 1)% — 1223 + 9x2] 0% +
+3(2%x—1)[q(2% —1)2 —12%3+ 9%2]53 + (¢ — 3%2)3°},

) {39(32x* — 64x3+40x% —8x + 1) —

which means that in view of (12), we get

#(x—1)
/T
(16" ol = i

W 24u2(x—1)2(q—3x)
— 6x2(96x3 — 184x2 +104x —13) + 4 (2% — 1) [q(2% — 1)* — 1248 - 9x2] x
X (0°+7%) + (g —3x%)(o° +-8°)};

{6q(32x* — 643+ 40x%% — 8%+ 1) —
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from (76') and (50) we now have

J0 _ TApx(x—1)(4g—12x+3) o /[ x(x—1)
42 — 3(q— 3% —3% ’

and hence, having used (33), we finally arrive at the formula

(17) o) — 201 —0—409(Ba+7)(Ta?—8a+2) o /(1—a—4a)(8a+T)
42) 16a2 -+ 64a+1 5(1—40»)(a’+a+1)’
w3< a’< m4’

where 2, is the root of equation (68'’), #, is the root of equation (69’)
and numbers g,, o, are given by equation (70), while numbers §,, 8, are
given by equation (76).

The above reasoning leads to the following corollary. If ge®2, then
the maximum rea, can only determine formula (56) for 0 < a < ,, where
@y ~ 0.5087 is the root of (54), and formula (77) for z, < a < 2,, where

3 ~ 0.1928 and &, ~ 0.228 are roots of equations (68'’) and (69’) respec-
tively.

4.3. Let us finally assume that ge®]’, then the function g is deter-
mined by the equation

(18) A S

ﬁ Q—oige M f] (1—02)%

k=1 Fom1

and its coefficient ayy is given by the formula

Ay3) = P(‘M(ﬁlﬂl+ﬂzo'z‘l'ﬂao's)a—z"(ﬂl%‘}'ﬂz“a+ﬂa°’a)(ﬂ1°§+
+ Ba03+ fs03) + (ﬂl“g+ﬁz¢7;’+ﬁsag))’

with we use of the notation from (33).

From Theorem 1 [1] it follows that the function #(z) given by formula
(34) with coefficients

D =P(Z"(ﬂ1°%+.320§+ﬂa°§)—Q(ﬂ101+ﬂ2°’z+ﬂa°’s)2):
Dy = 4pu(f101+ a2+ B303),
D3 = —3p,

has double roots at points @, (k = 1, 2, 3). From the above, as well as
from (4), we obtain the following set of equations:

dioyos =1,

(80) %(01 81+ 028+ 03 fs) = 81,
—2x(01 1+ 03 B2+ 63 B5) + 4 (0181 + 0282+ 03 85)* = 81 +28,010204,

Br+B:+Ps =2,
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where
(81) 8 =0+ 03403,

Let us consider two sets in turm:
0,0,03 = 1,

%#(01f1+ 0afr+03f5) = 81,

82
(82) —2x(P B+ 2B+ 02 Ba) + (0181 + 03By + 03 Ba)? = 83+ 25,0,0,0,
ﬁ1+ﬁ2+ﬁa = 2,
0,003 = —1,
(82") %(01P1+ 0afa+ 0y fs) = 8y,

"2"(“§ﬁl+°§ﬂz+’f§ﬂa) +q(0181+ 0285+ 02 f5)? = 81+ 25,0,0,0,,
ﬂl +ﬂa +ﬂa = 2,
Note that adopting the notation

T

—1 R . ' - .
(82") e’ =0, (k=1,2,3), 38 =0,40;+0,

we obtain from (82’) the set (82) with the unknowns o, 8, (¥ =1, 2, 3)
In view of (82’') and (79) the solutions of (82’) lead in every case to the
reverse value of the coefficient in comparison with the solutions of (82).
With this in mind we can confine our discussion to set (82).

. Let us then consider set (82). Suppose first that » = 0, that is

6 = (l/l_'i’-—l)/S. Set (82) then has the form

0'10'20'3 =1,

(83) kot =9,
0181+ 03B+ 05f = 0,

ﬂ1+ﬂz+ﬁs = 2.

From the first two equations (83) it follows-immediately that
(84) 6, =1, oy =¢"™, o =et™
and then from the last two equations we get
(84") B =23 (k=1,2,3).

Inserting (84) and (84') is to (79), we obtain

(85) gy = a(1—a®) for a = (V17—1)/8.
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Let us assume now that x» — 0; then system (82) can be written in
the form

0’10'263 == 1,

1
0181+ 028+ 033 = ;317
(86) X
q_3%2 2 1

8 —— 311
2x3 *®

ﬂ1+ﬂz+ﬂa = 2.

The following equations follow from (86):

“%ﬂ1+6§ﬂa+°'§ﬂa =

1
0, 03 Og ;81

1
G, Ty Gy — &
(87) ® =0,

g—3%x* 1 _
- ——3
3 233 x 1

111 2

1
0y G2 O3 :31

_ - 1_
¢, 0; 0 — &
*

Ao
wlo

(88) :
g—3x% 1

253 x
q— 3% 1

23 %

LA

Hence, after suitable transformations and taking the condition
o; # oy for « #j (3,5 =1,2,3), we obtain

(87 (q— 3538 + dx2(x—1)F, = 0,
(88") (g —3%?%)(s3—3}) = 0.

It follows from equation (88'), in view of ¢ —3x? # 0, that

(89) 81 = 81,

(89') 81 = 516 3 .
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Inserting in turn (89) and (89’) in to (87’),' we have

(90) 8, =0, .
01 4 (1l—x)
(91) . 8 = q— 3

4r?(l—n) +ini
(92) 8, = P

Let us now consider (86) for the cases (90)-(92). Let us first assume that
81 = 0- Thell
0,003 =1,
0181+ 0282+ 03y = Qv
“ﬁﬂl‘*“fiﬂz‘l‘ agﬂs =0,
ﬂ1+lgz+ﬁs = 2.
Hence, in view of 8, = 0,4+ 0,+0; = 0, we easily obtain

2 2r |

=i -=1

(93) 6, =1, °'z=331 Oy = ¢ 3’ Br =B =B =

win
-

Inserting solution (93) into (79), we get
(94) ad) =3a(l—a%) for 0<a<l.

Moreover, it is worth noting that the case » = 0 and formula (85)

which follows from it is a special case of formula (94) obtained above.

" Let us now assume that condition (91) holds. Set (86) then has the
form

010503 = 1,

4%(1 —
0'1ﬁ1+02ﬁ2+0'3ﬂs = 9‘:(—33:)’
(95) 4=
) ) 43%(1 — 23 2_2
OB+ G2y + a2y = ”)((;_;r,;)z ¢t9
ﬂ1+ﬂz+ﬂs=2-

What is more, numbers o, (K =1, 2, 3), in view of s; = 3,, satisfy
. the conditions

o, +0ay+ 0y = 8y,
0102+ 0¢03+ 0,03 = 8y,
0’1'0'2'0'3 = 1.
Hence we have

(96) oy = éiwv 0, = e-iwy 63 =1,
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and, by (91), the inequality
(97) —-1<
must hold, i.e., in view of (33) and the inequality q/—3x2 < 0 for ae (0, 1),
we have the inequalities

)

400a° + 592a* + a® —211a*> —82a'+ 20 < 0
112a° +112a*— a® — 49a° +58a +8 > 0

It can easily be shown that the second of these inequalities holds
for any ae(0,1), while the first holds for

(97') 2, < &< Ty,

where z, ~ 0.1737 and z, ~ 0.5992 are roots of equation (63’). Inserting
(96) into (95) we get '

; _; 4%(1— %)
Bu® 4 Bos O o == o
. B 4oc(1 — ) (2%° + * —2qx + q)
P16+ Bre 4y = (g— 3 ’
Bit Bt By = 2;

hence

L 2(g—w—2) _2(q— 11024423+ 4x)
(98)  b=b = 3q— 1322+ 4x3’ h = 3¢ — 132+ 45

and at the same time, by (4), the ineqila,lities

, q—x2—2x
(98°) 3q —18x2 4 43 >0
(98") q—11232 4 433 4

3g—132 1w
should be fulfilled. Since

9(a —1)(112a° +112a* — a® — 49a® + 58¢ + 8)

3g—13x%— dxd —
g Row— % 16(a*+a+1)°

<0
for a<(0, 1), inequalities (98') and (98'’) are equvivalent with the fol-
lowing inequalities: '

(99%) 48a%+ 24a% 1 61la—13 > 0,
(99") 240a* + 432a% + 16342 — 1284 — 50 < 0



318 I. Dziubifski

which are simultaneously satisfied in the interval
(100) L 2y < a<

where z; =~ 0.1928 and z, ~ 0.5087 are roots of equations (68’’) and (54')
respectively. Finally, having assumed (91), we have obtained the solution
-of (86) of the form

. 4T
6, =¢€% o,=6¢"% g =1, cosp = 2 (g5 1 ,
2(q—n2—2x) 2(q—11x% 1 423+ 4x)
pr=p: = 2 3! ps =
3¢ —13%% + 4% 3q —13x2% -} 43

while, in view of (100), ae (x,, ,). Inserting the above solution into (79)
we have '

16(2x—1)3x%3
o =2 1)

that is, by (33),

(8a+7)%(4a2+a—1)3
(a—1)(at+a+1)2(16a2 + 64a + 1)
wa < a < wO-

(101) &l = ga (1—a=)( +1),

Let us now consider the case (92). Inserting it in to system (86),
we obtain
0,020y =1,
4x(1— 2
x—(l_x). ei3n‘; .
q—3x*
(L= %)@+ 22— 2qx +q) du
(g—3x=%)? ’

0181+ 02 f,+ %ﬂs =
(102)

o%ﬁl + °§ﬂ2+ Ugﬂa

ﬁ1+ﬂ2+ﬁa = 2.

2

Adopting the new notation o, = a,‘ei“"‘ (k =1,2,3) we can easgily
notice that system (102) is reduced to (95), and its solution, in view of (79),
leads to @, defined by formula (101), which means that it can be ignored.
The above solutions lead to the following corollary.

If geGY, then the maximum rea, can only define formula (94) for
0 < a<1 and formula (101) for z; < a < z,, where 2, and z, are roots
of equations (68’’) and (54') respectively. _

The results of 4.1, 4.2, 4.3 given by formulae (31), (31’), (56), (77),
(94) and (101) lead to the following corollaries.
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If the function g is extremal with respect to functional (30), then

3 .
gel UG and the only possible values of this functional are:
Fml

(103) @iy, ay, @, when 0 < a < a,,

(103") af), ), alhy, o), @ when zm;<a<a,

4—V2
(103”) af), ally, afd), when 2, < a < —
4—V2
(103"") oy, ), aldy, @ when ——<a<a,
4+V2
(103'7) oy,  aff) when 2,< a < —
| 44+V2
(103%) aff)y, af} when A+vz <a<l.

7

After elementary but nevertheless arduous calculations the following
inequalities can be obtained: '

(104) a$, < af))) < aff), for 0 < a < 4,
(105)  af}, < aff)) < afd) < af), for 7, < a < @,
(105")  afd), < af), for z, < a < z,,
| 4—V2
(106)  afl) < o) < alf}) for z, < a < —
4-vV2
(1061) a‘%) < a,(‘z(;) for &y <a< _7_’
. 4-—V2 V17 —1
(106”) aff), < af}) < af}) < aif}, for ——<e<——,
V17T —1
(106"") aff) < af) < afdy) < af}) for —g— <e<us,
(106™) afl), < a{p}) < afd for zy < a <z,
4+V2
(107)  aff) < aff), for zy< a< —
4+V2
(108)  afly < aff, for ————<a<1.

7
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Moreover, it can be verified that

afly = ally = afl)) for a = x,,
(109) o) = ald) for a = ,,
aldy = aid, for a = =,.

From the above inequalities follows

THEOREM 3. For any quasi-starlike function g of the form (1) the follow-
ing inequalities are true:

2a(1—a)(7a*—8a+2) for 0< a < m,,
3 3

2a(1 —a— 4a2)? (8a + 7)*(Ta? —8a +2)

for m3 < a < @y,

(110) el <) /5 (16a2+64a+1)(1—4a)%(a2+a+1)%
3
a(2 — 3a?)’ for z, < a < @,
a(l—a?) for zg < a<1,

where the notation a, = a =1 | M are adopted, and numbers x, x,, x4 are
roots of the equations

4823+ 2422+ 61x—13 =0,
52824 4 3602 — 37722 — 2002+ 58 = 0,
30x® — 54zt —62° + 3622 —5 = 0
respectively. Moreover, the values x4, x,, T, are approximately equivalent to

0.1928, 0.2228, 0,4685, respectively, x, and x4 are the only roots of the interval
(0,1), and x, of the interval (0, 0.25).

Functions g for which the equality sign in (110) holds are determined
by the equations

9 _1 =z
(b A—gr M d=2p’
(112) g 1 ?

1— 019 (1—0y9) M (1—0,2)1(1—0p2)2

where numbers ¢, and o, are roots of the equations

oty ]/(a3+a+1 )(4a2+a—1) o*+1
l1—a 5(8a-7)(4a —1) c

243 =0,

o is determined by equation (50) and numbers B,, f, are roots of the
equation

—2z+A4A =0,
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A being determined by formula (73",

g 1 2
1 -
(113) 1—2gcosp+g2 M 1-—2zcosp+22’
where
cone — V2 —3a?
¢ 2V3(1—a)’
1
(114) g ¢

1—¢° M 1—~z3’

respectively. Formulae (111)-(114) determine functions g with an accuracy
up to an arbitrary rotation angle.
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